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1 Theoretical Details

1.1 Measurability

Let B (Rn) be the Borel σ-algebra over Rn, for some n ∈ N.

Definition 1. The σ-algebra generated by a random variable Y is σ(Y ) =
{
Y −1(B) : B ∈ B (Rn)

}
.

Definition 2. A random variable X is Y -measurable if σ(X) ⊆ σ(Y ).

Intuitively, the σ-algebra generated by Y describes all events that Y “can express” and can be
measured in probability. If X is Y -measurable, that means that Y can express all what X can express.

1.2 D-separation and Confounding

We provide here a brief overview on d-separation and confounding and refer the reader to Bishop and
Nasrabadi [2006] for details.

Definition 3. Two random variables in a Bayesian network are confounded if they share a latent
parent.

Definition 4. A path is a sequence of random variables (V1, . . . , Vn) in a Bayesian network, where
Vi is a parent or child of Vi+1, for i < n. For 1 < i < n, the variable Vi is a collision if Vi is a child
of both Vi−1 and Vi+1.

Definition 5. A path is blocked if V1 and Vn are not observed and at least one of following holds:

• For some collision V in the path, neither V nor any of its descendants is observed.

• For some variable V in the path that is not a collision, V is observed.

We now recall the d-separation principle.

Lemma 1. Let W be a set of observed variables and V1 and V2 two variables not observed. If any
path from V1 to V2 is blocked, then V1⊥V2 | W .

1.3 Detailed Proof of Theorem 1

We repeat in Figure 1 the causal graph for anomaly detection here for convenience. To prove Theorem
1, we use the following lemma.

Lemma 2. If W and E are confounded, then Xa ⊥E | W . Otherwise, Xa ⊥E.
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Figure 1: Causal graphs for anomaly detection. The left figure shows the case of no confounding. The
right figure shows the case of confounding. An intervention at the E variable induces a domain shift
(gray hammer), whereas an intervention at the Xe variable induces a covariate shift (black hammer).

Proof. We prove this via d-separation. We start with the case of W and E not being confounded.
Note that there are two paths from Xa to E. One via W and the other via Z. The path via W is
blocked, because Xe is a collision and neither Xe nor its descendant Z are observed. The path via Z
is blocked, because Z is a collision with no descendants and is not observed. Hence, Xa⊥E, when
W and E are not confounded. In the case of W and E being confounded, we can show analogously
that Xa ⊥E | W . Note that there are three paths from Xa to E. The first one is via U , but this is
blocked, because W is in that path, it is not a collision, and it is observed. The second one is via W
and Xe, but W is in that path and it is not a collision there, so that path is also blocked. The third
one is via Z, but Z is a collision in that path with no descendants and it is not observed, so it is also
blocked. Since all paths are blocked, when W is observed, we conclude that Xa ⊥E | W , when W
and E are confounded.

Theorem 1. Suppose that f learns invariant representations. If W and E are confounded, then
Z ⊥E | W . Otherwise, Z ⊥E.

Proof. Recall that if f learns invariant representations, then we assume it to be Xa-measurable. This
assumption is justified in Veitch et al. [2021]. As a result, since Z = f(Xa, Xb), we have that Z is
Xa-measurable.

We assume that W and E are not confounded and show that Z⊥E by proving that p(Z ∈
A,E ∈ B) = p(Z ∈ A)p(E ∈ B), for any A,B ∈ B (Rn). Note that p (Z ∈ A,E ∈ B) =
p
(
Z−1(A) ∩ E−1(B)

)
= p

(
X−1

a (CA) ∩ E−1(B)
)
, for some Borel set CA. The last equality fol-

lows from Z being Xa-measurable, which implies that Z−1(A) = X−1
a (CA), for some Borel set CA,

by Definition 2. By Lemma 2, we have that Xa⊥E. This implies that p
(
X−1

a (CA) ∩ E−1(B)
)
=

p
(
X−1

a (CA)
)
p
(
E−1(B)

)
= p

(
Z−1(A)

)
p
(
E−1(B)

)
= p(Z ∈ A)p(E ∈ B), which is what we

wanted to show.

We now assume that W and E are confounded and show that Z⊥E | W by proving that
p(Z ∈ A,E ∈ B | W ∈ C) = p(Z ∈ A | W ∈ C)p(E ∈ B | W ∈ C),

for any A,B,C ∈ B (Rn). By an analogous argument, we can show that
p (Z ∈ A,E ∈ B | W ∈ C) = p

(
X−1

a (CA) ∩ E−1(B) | W−1(C)
)
. By Lemma 2, we have that

p
(
X−1

a (CA) | W−1(C)
)
p
(
E−1(B) | W−1(C)

)
. With arguments similar to those above, we can

show that the last expression is equal to p(Z ∈ A | W ∈ C)p(E ∈ B | W ∈ C), which is what we
wanted to show.

2 Dataset Details

2.1 Camelyon17

Our realistic anomaly detection dataset was derived from the Camelyon17 dataset (Koh et al. [2021],
Bandi et al. [2018]), and contains 3× 96× 96 patches of whole-slide images of lymph node sections
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sourced from patients who may have metastatic breast cancer. This dataset encompasses tissue
patches obtained from five different hospitals. The objective here is to accurately predict the presence
of tumor tissue within the patches drawn from hospitals that were not part of the training data. Prior
work has shown that differences in staining between hospitals are the primary source of variation in
this dataset, however, other divergent factors in the sampling distribution include different acquisition
protocols and patient populations (Tellez et al. [2019]).

The in-distribution data was comprised of 151, 280 images evenly distributed across three hospitals,
or 100, 810 images evenly distributed across two hospitals depending on the training setting. The
other out-of-distribution data covered two additional datasets, the first with 34, 904 patches, and the
second with 85, 054 patches. Note that to adapt this dataset to the anomaly detection setting, only
normal images were included in the in-distribution training data.
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Figure 2: Illustration of our experimental setup for the synthetic covariate shift experiment. The image
demonstrates representative examples of training data from two distinct environments, alongside
instances of normal and abnormal test data subject to progressively accumulated covariate shifts. This
configuration embodies the nuanced challenge of identifying subtle, yet potentially consequential,
changes in the data distribution.

2.2 Synthetic datasets

The synthetic datasets employed in this study were derived from the DiagViB-6 benchmark (Eulig
et al. [2021]). This benchmark uniquely allows for the manipulation of five independent generative
factors from colored images: overlaid texture, object size, object position, lightness, and saturation,
in addition to the semantic features that correspond to the label. Our synthetic experiments utilized
two datasets: MNIST (Deng [2012]) and Fashion-MNIST (Xiao et al. [2017]). All images in both
datasets were upsampled to dimensions of 3 × 256 × 256. Initially, we generate two unique and
distinct environments specifically designed for the training data. Our primary goal during this stage
was to guarantee that all these factors exhibited noticeable differences when compared across the two
generated environments. Following the generation of these training environments, we proceeded to
develop another pair of environments. These new environments were crafted for the validation data.
To ensure consistency, these validation environments were fashioned in such a way that they closely
mirrored or replicated the factor configuration that was present in the initial training environments,
thus retaining an in-distribution setting.

In the final step, six additional environments, denoted as e0, e1, ..., e5, were generated. Each environ-
ment ei consists of images in which i factors have been altered with respect to e0. For a depiction of
the samples for these different environments, please refer to Fig. 2.

In devising our evaluation setup, we opted for inducing covariate shifts that are minor deviations
from the original in-distribution environments. This decision was motivated by our goal to simulate
subtle yet potentially detrimental covariate shifts, particularly in comparison to the challenge of
differentiating normal from abnormal.
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A description of the accumulated covariate shifts in the test environments, e0, e1, e2, e3, e4, is
provided in Table 1.

i Chosen factor in ei
0 None
1 Hue
2 Texture
3 Lightness
4 Position

Table 1: Environments e0, . . . , e4 used in our synthetic benchmark. For 0 < i ≤ 4, the environment
ei modifies the new factor indicated in the table in addition to the factors modified by e0, . . . , ei−1.

3 Invariantly pretrained encoders

We also extend our experimental evaluation by adding a comparison to Smeu et al. [2022], an
environment-aware framework for AD that pretrains the encoder of the AD model using an invariance-
inducing method (LISA or IRM). We evaluate this method in MNIST and F-MNIST subject to
targeted covariate shifts (the exact same setup as seen in our original experiments). The method
was incorporated into all baselines and compared to the same baselines while regularized through
partial conditional invariance. We show the results of these experiments in Fig. 3. Across all methods
tested, and in both datasets, we observe a sharp decrease in performance when compared to a baseline
non-invariant method and that it provides less robustness to covariate shifts than our proposed
methodology.
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(e) e2:F-MNIST s.t. one covariate
shift
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STFPM ReverseDistil MeanShift Red PANDA

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

// // //// // // //// // // //// // // ////

Original

PCIR

IRM pretraining

LISA pretraining

(g) e3:F-MNIST s.t. three covariate
shifts

STFPM ReverseDistil MeanShift Red PANDA

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

// // //// // // //// // // //// // // ////

Original

PCIR

IRM pretraining

LISA pretraining

(h) e4:F-MNIST s.t. four covariate
shifts

Figure 3: Experimental results MNIST and Fashion-MNIST with additional invariant pretraining
following. (background transparent bar-plots: in-distribution evaluation; foreground opaque
bar-plots: out-of-distribution evaluation). (a-d) Results in MNIST. (e-h) Results in Fashion-MNIST.
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4 Visualization of Invariance vs Informativeness

In Fig. 4 we plot the two-dimensional representation of the final layer of a model trained through
MeanShift(Reiss and Hoshen [2021]) at different levels of PCIR regularization. The embeddings are
obtained through t-SNE. From the progressive increase in the weight of the PCIR term, we see the
increased superimposition of the different environments leading to more invariance at the loss of
informativeness in the representation.

−7.5 −5.0 −2.5 0.0 2.5 5.0
X

−7.5

−5.0

−2.5

0.0

2.5

5.0

Y

Environment 1 (blue digits)

Environment 2 (red digits)

Environment 3 (yellow digits)

(a) Invariant and informative

−7.5 −5.0 −2.5 0.0 2.5 5.0
X

−7.5

−5.0

−2.5

0.0

2.5

5.0

Y

Environment 1 (blue digits)

Environment 2 (red digits)

Environment 3 (yellow digits)

(b) Invariant but non-informative

−5 0 5
X

−7.5

−5.0

−2.5

0.0

2.5

5.0

Y

Environment 1 (blue digits)

Environment 2 (red digits)

Environment 3 (yellow digits)

(c) Informative but non-invariant

Figure 4: TSNE embeddings of MNIST with three background colors for the digits 4 and 9. The
model used was MeanShift subject to different degrees of partial conditional invariant regularization.
(a) PCIR term set to 5 (b) PCIR term set to 150. (c) PCIR term set to 0.

5 Tables of Results

In dist. Out of dist.
e1 e2 e3 e4 e5

(↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC

STFPM 0.850 ± 0.005 0.883 ± 0.014 0.815 ± 0.024 0.753 ± 0.007 0.745 ± 0.005
STFPM (PCIR) 0.868 ± 0.007 0.873 ± 0.008 0.814 ± 0.014 0.798 ± 0.011 0.774 ± 0.010
ReverseDistil 0.853 ± 0.009 0.884 ± 0.014 0.797 ± 0.015 0.716 ± 0.009 0.723 ± 0.004
ReverseDistil (PCIR) 0.866 ± 0.007 0.903 ± 0.007 0.857 ± 0.010 0.744 ± 0.021 0.718 ± 0.010
CFA 0.625 ± 0.002 0.689 ± 0.008 0.566 ± 0.014 0.454 ± 0.005 0.590 ± 0.017
CFA (PCIR) 0.625 ± 0.003 0.700 ± 0.007 0.597 ± 0.011 0.473 ± 0.009 0.595 ± 0.027
MeanShift 0.751 ± 0.012 0.761 ± 0.014 0.731 ± 0.015 0.703 ± 0.009 0.701 ± 0.010
MeanShift (PCIR) 0.781 ± 0.014 0.791 ± 0.014 0.778 ± 0.012 0.772 ± 0.013 0.770 ± 0.011
CSI 0.601 ± 0.021 0.600 ± 0.017 0.582 ± 0.014 0.491 ± 0.015 0.531 ± 0.014
CSI (PCIR) 0.648 ± 0.022 0.652 ± 0.021 0.621 ± 0.020 0.581 ± 0.018 0.600 ± 0.023
Red PANDA 0.761 ± 0.017 0.764 ± 0.015 0.671 ± 0.015 0.641 ± 0.015 0.651 ± 0.012
Red PANDA (PCIR) 0.761 ± 0.017 0.769 ± 0.015 0.742 ± 0.019 0.731 ± 0.015 0.740 ± 0.015

Table 2: Experimental results on realist domain shift in the Camelyon17 dataset, for both regularized
and unregularized models trained on two environments. Results are presented over in-distribution
evaluation (environments e1 and e2) and over out-of-distribution (environments e3, e4, and e5).
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In dist. Out of dist.
e1 e2 e3 e4 e5

(↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC

STFPM 0.854 ± 0.011 0.873 ± 0.004 0.782 ± 0.013 0.771 ± 0.013 0.735 ± 0.008
STFPM (PCIR) 0.865 ± 0.006 0.873 ± 0.005 0.796 ± 0.014 0.782 ± 0.012 0.759 ± 0.009
ReverseDistil 0.830 ± 0.028 0.866 ± 0.007 0.781 ± 0.004 0.707 ± 0.023 0.710 ± 0.033
ReverseDistil (PCIR) 0.843 ± 0.009 0.880 ± 0.015 0.799 ± 0.004 0.714 ± 0.010 0.715 ± 0.009
CFA 0.667 ± 0.004 0.708 ± 0.011 0.628 ± 0.019 0.559 ± 0.005 0.643 ± 0.006
CFA (PCIR) 0.667 ± 0.014 0.705 ± 0.019 0.623 ± 0.004 0.561 ± 0.003 0.644 ± 0.003
MeanShift 0.742 ± 0.014 0.741 ± 0.013 0.681 ± 0.014 0.739 ± 0.012 0.690 ± 0.013
MeanShift (PCIR) 0.772 ± 0.013 0.784 ± 0.012 0.739 ± 0.018 0.747 ± 0.013 0.731 ± 0.013
CSI 0.620 ± 0.015 0.636 ± 0.014 0.548 ± 0.013 0.571 ± 0.012 0.541 ± 0.015
CSI (PCIR) 0.650 ± 0.019 0.650 ± 0.010 0.613 ± 0.015 0.624 ± 0.014 0.611 ± 0.010
Red PANDA 0.751 ± 0.012 0.742 ± 0.013 0.651 ± 0.010 0.751 ± 0.010 0.641 ± 0.011
Red PANDA (PCIR) 0.767 ± 0.016 0.781 ± 0.014 0.761 ± 0.013 0.770 ± 0.012 0.751 ± 0.009

Table 3: Experimental results on realist domain shift in the Camelyon17 dataset, for both regularized
and unregularized models trained on three environments. Results are presented over in-distribution
evaluation (environments e1, e2, e3) and over out-of-distribution (environments e4, and e5).

In dist. Out of dist.
(↑) AUROC (↑) AUROC

STFPM 0.699 ± 0.025 0.630 ± 0.025
STFPM (PCIR) 0.724 ± 0.020 0.698 ± 0.023
ReverseDistil 0.673 ± 0.057 0.617 ± 0.032
ReverseDistil (PCIR) 0.734 ± 0.013 0.723 ± 0.013
CFA 0.752 ± 0.003 0.705 ± 0.018
CFA (PCIR) 0.785 ± 0.003 0.759 ± 0.005
MeanShift 0.683 ± 0.041 0.629 ± 0.043
MeanShift (PCIR) 0.731 ± 0.022 0.726 ± 0.052
CSI 0.671 ± 0.026 0.626 ± 0.024
CSI (PCIR) 0.692 ± 0.017 0.674 ± 0.019
Red PANDA 0.732 ± 0.026 0.691 ± 0.031
Red PANDA (PCIR) 0.742 ± 0.029 0.721 ± 0.012

Table 4: Experimental results on realist shortcut learning in the Waterbirds dataset, for both
regularized and unregularized. Results are presented over in-distribution evaluation and over out-of-
distribution.

In dist. 1 cov. shift 2 cov. shifts 3 cov. shifts 4 cov. shifts
(↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC

STFPM 0.850 ± 0.005 0.883 ± 0.014 0.815 ± 0.024 0.753 ± 0.007 0.745 ± 0.005
STFPM (PCIR) 0.868 ± 0.007 0.873 ± 0.008 0.814 ± 0.014 0.798 ± 0.011 0.774 ± 0.010
ReverseDistil 0.853 ± 0.009 0.884 ± 0.014 0.797 ± 0.015 0.716 ± 0.009 0.723 ± 0.004
ReverseDistil (PCIR) 0.866 ± 0.007 0.903 ± 0.007 0.857 ± 0.010 0.744 ± 0.021 0.718 ± 0.010
CFA 0.625 ± 0.002 0.689 ± 0.008 0.566 ± 0.014 0.454 ± 0.005 0.590 ± 0.017
CFA (PCIR) 0.625 ± 0.003 0.700 ± 0.007 0.597 ± 0.011 0.473 ± 0.009 0.595 ± 0.027
MeanShift 0.751 ± 0.012 0.761 ± 0.014 0.731 ± 0.015 0.703 ± 0.009 0.701 ± 0.010
MeanShift (PCIR) 0.781 ± 0.014 0.791 ± 0.014 0.778 ± 0.012 0.772 ± 0.013 0.770 ± 0.011
CSI 0.601 ± 0.021 0.600 ± 0.017 0.582 ± 0.014 0.491 ± 0.015 0.531 ± 0.014
CSI (PCIR) 0.648 ± 0.022 0.652 ± 0.021 0.621 ± 0.020 0.581 ± 0.018 0.600 ± 0.023
Red PANDA 0.761 ± 0.017 0.764 ± 0.015 0.671 ± 0.015 0.641 ± 0.015 0.651 ± 0.012
Red PANDA (PCIR) 0.761 ± 0.017 0.769 ± 0.015 0.742 ± 0.019 0.731 ± 0.015 0.740 ± 0.015

Table 5: Experimental results on synthetic covariate shift over the MNIST dataset, for both regularized
and unregularized models. Results are presented over in-distribution evaluation, and test sets subject
to one to four different covariate shifts, as portrayed in Fig. 2

.
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In dist. 1 cov. shift 2 cov. shifts 3 cov. shifts 4 cov. shifts
(↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC (↑) AUROC

STFPM 0.752 ± 0.010 0.530 ± 0.002 0.526 ± 0.004 0.526 ± 0.004 0.516 ± 0.007
STFPM (PCIR) 0.733 ± 0.014 0.601 ± 0.034 0.566 ± 0.004 0.562 ± 0.008 0.546 ± 0.006
ReverseDistil 0.737 ± 0.008 0.660 ± 0.013 0.655 ± 0.014 0.582 ± 0.011 0.543 ± 0.014
ReverseDistil (PCIR) 0.740 ± 0.007 0.689 ± 0.009 0.683 ± 0.008 0.615 ± 0.007 0.564 ± 0.004
MeanShift 0.751 ± 0.010 0.701 ± 0.009 0.692 ± 0.012 0.670 ± 0.010 0.643 ± 0.010
MeanShift (PCIR) 0.764 ± 0.010 0.742 ± 0.010 0.739 ± 0.009 0.720 ± 0.010 0.703 ± 0.008
CSI 0.691 ± 0.016 0.629 ± 0.011 0.571 ± 0.014 0.550 ± 0.012 0.542 ± 0.014
CSI (PCIR) 0.681 ± 0.014 0.661 ± 0.016 0.639 ± 0.014 0.611 ± 0.015 0.599 ± 0.011
Red PANDA 0.729 ± 0.013 0.693 ± 0.013 0.672 ± 0.015 0.637 ± 0.014 0.614 ± 0.010
Red PANDA (PCIR) 0.715 ± 0.016 0.690 ± 0.013 0.681 ± 0.010 0.661 ± 0.012 0.642 ± 0.009

Table 6: Experimental results on synthetic covariate shift over the Fashion-MNIST dataset, for both
regularized and unregularized models. Results are presented over in-distribution evaluation, and test
sets subject to one to four different covariate shifts, as portrayed in Fig. 2

6 Performance Gained Compared to Baseline

Our investigation of the influence of partially conditional regularization on model performance is
further expanded in Fig.5. This figure presents the percentile difference in mean-AUROC (Area Under
the Receiver Operating Characteristic) between partially conditionally regularized and unregularized
models.

By comparing each regularized model to its unregularized equivalent across all the tested environ-
ments, we have been able to observe a consistent improvement in performance when regularization is
applied. This observation holds true across all models and out-of-distribution environments studied.

The increase in performance due to regularization varies from 2.5% to as substantial as 20% in some
models. This variability implies a model-specific dependency on the degree of invariance that can be
induced. Crucially, however, regularization substantially bolsters out-of-distribution performance
without any additional training cost, reinforcing its merit as an effective strategy for developing robust
anomaly detectors.

To further highlight this point and for the sack of completeness, we also present in Fig. 6, Fig. 7 and
Fig. 8each regularized model compared to its baseline.
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Figure 5: Percentual performance gain over each regularized model when compared to unreglarized
baseline.
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(d) Camelyon17: MeanShift
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Figure 6: Mean-AUROC curve of each anomaly detector and its regularized version in the Camlyon17
dataset.
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Figure 7: Mean-AUROC curve of each anomaly detector and its regularized version in the MNIST
dataset.

7 Ablation Studies

As part of our comprehensive examination of how covariate shifts influence individual regularization
weights, we have plotted the performance trajectories of all evaluated models, traversing environments
frome0 to e4. These are captured in Fig.9 and Fig.10.

As expected, and already observed in both our main findings and previous work (Ming et al. [2022]),
a review of these plots unveils a trend that permeates across all examined models: the performance
of models appears to inversely correlate with the number of induced covariate shifts. As the com-
plexity introduced by these shifts mounts, the models’ performance experiences a proportionate and
systematic decline. This observable trend is essentially monotonic, signifying a erosion in model
performance with each incremental rise in the quantity of covariate shifts.

However, it is important to note that this trend is not without exceptions. In particular, when
scrutinizing the data pertaining to environment e4, we can observe anomalies to this downward trend.
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Figure 8: Mean-AUROC curve of each anomaly detector and its regularized version in the Fashion-
MNIST dataset.

In these exceptional instances, despite the increase in the number of covariate shifts, the performance
of certain models appears to resist the general declining pattern.

Thus, our overall conclusion, while acknowledging these exceptions, is that the prevalence of covariate
shifts largely contributes to a degradation in model performance.

It is however important to note that the unregularized methods still underperforms when compared to
the same method under a even small amount (0.001) of partially conditional regularization added.
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Figure 9: Ablation study over the weight of the regularization term for MNIST under distribution
shift, with separate plots for each model.

8 Additional Discussion

8.1 Shortcut Learning in Anomaly Detection

To expand on the experiment tackling real-world shortcut learning, and to better understand how a
distribution shift affects different kinds of shortcut features (Geirhos et al. [2020]) captured by the
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Figure 10: Ablation study over the weight of the regularization term for Fashion-MNIST under
distribution shift, with separate plots for each model.

model, we now will look at how inducing distinct changes to the anomaly detection causal graph may
lead to malfunctions in the model.

Suppose we recover our formulation of the partition of an object X into the semantic features that
distinguish normal and abnormal samples, Xa, and into the style features induced by the environment,
Xe. In that case, it is possible to distinguish between settings that may lead to a model failure when a
shortcut feature is captured.

Let us simplify our analysis by considering the setting where the training data is sampled under
the intervention pdo(E=e′)(X), that is the style features are fixed into a specific setting, X

′

e. This is
a prevalent setting in real-world applications as spurious correlations between style and semantic
features may occur when sampling the training data. Remember that in the training set, Xa only
produces features of normal objects. Under this constraint, it was already previously noted that
anomaly detection methods are particularly susceptible to capturing the style features as a prominent
factor for the representation of X (Ming et al. [2022]).

Moving to the evaluation stage of the anomaly detector, we can then consider two settings.

The first setting consists of no changes to the intervention pdo(E=e′)(X), that is, there was no
distribution shift in the sampling of the data. In this setting, the main surrogate for a model failure
is derived from anomalies that are characterized by small changes in Xa from normal to abnormal
samples. That is, the style features would be considered the main source of information to characterize
new samples, and under these constraints, it is only natural that all test instances would be highly
likely to be set as normal. This setting was introduced by both Ming et al. [2022] and Cohen et al.
[2023], and the underlying features can be referred to as nuisance features.

The second setting consists of a different intervention, pdo(E=e′′)(X) such that it differs from the
training density pdo(E=e′)(X). In particular, we can consider an intervention that only changes
stylistic features, Xe, captured by the model. We are essentially operating under a highly targeted
covariate shift that focuses on the shortcut features. Therefore, depending on the extent of the changes
in Xa from normal to abnormal samples and how well they are captured by the model, this distribution
shift would lead to an anomaly detector that classifies all new samples as anomalies.

Note that in both settings, as shown in our main presentation of the method, by inducing a partially
conditional invariance to different environments, our regularization method also inherently introduces
an invariance to the style features Xe. As supported by our results in the synthetic covariate shift
experiments, we believe this also produces models that are not only robust to covariate shifts, as in
the second scenario, but also to shortcut learning, as described in the first scenario.
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8.2 Data Augmentation

Although data augmentation is a well-established technique to tackle model robustness to distribution
shifts, there are two main problems with solely relying on data augmentation to solve a problem of
distribution shift. First, data augmentation relies on both knowing of the existence of a distribution
shift, and a way to simulate it. This could be achievable when the distribution shift is characterized
by transformations in easily identifiable attributes (e.g. the color of a digit), and which are also
easy to simulate through data transformations. However, in real-world settings, this is rarely the
case: distribution shifts are complex transformations that are almost impossible to identify, and in
many cases impossible to programmatically simulate. For example, in the case of the Camelyon17
dataset that considers histological cuts from different hospitals, the changes between environments
that are derived from the change in histological staining are easy to visually inspect, and could even
be simulated. But, by changing the hospital, the patient population also changes, and with it several
cofounders, such as group age or patient comorbidities. These are both impossible to know without
further annotation and unfeasible to simulate. Furthermore, data augmentation does not induce an
invariance to a particular distribution shift, giving no additional “guarantees”. It only increases the
pool of examples of the data in hopes that the model implicitly captures the additional simulated
variance in the images.

Yet, data augmentation could still be beneficial in the context of penalized invariant regularization, by
producing meaningful augmentations in the context of a multi-environment setting. It could be used
to generate additional data for a single intervention, thus increasing the pool of available samples
of a specific environment, or be used to generate new data for a new intervention, leading to an
increased number of environments available, and the overall pool of samples in the dataset. This
would effectively alleviate the second drawback of solely using data augmentations.

8.3 Choice of Distance Metric

We considered other options aside from MMD, like the Wasserstein distance. MMD is known to be
computationally easier than Wasserstein’s distance. This is because MMD can be easily computed
using Gaussian kernels, whereas the Wasserstein distance requires computing a supremum over a set
of probability measures, which is computationally intractable in general.

Another option we considered was the KL-divergence. However, previous works have demonstrated
that this divergence is very unstable for probability distributions supported on low-dimensional
manifolds (Arjovsky et al. [2017]). Note that many of the methods used for anomaly detection and
machine learning are trained on samples from such distributions. A similar argument applies for
variations of this divergence like Shannon-Jensen divergence and total variation.

Finally, we remark that MMD has a strong theoretical foundation. In spite of its simplicity, it is
derived from a supremum of differences of expected values of functions from a reproducible-kernel
Hilbert space (Gretton et al. [2012]). It has been shown that when this metric is 0 then the two
distributions must match, which is precisely what we aim to achieve when learning representations
that are invariant to the environments.

9 Implementation Details

9.1 Baselines

STFPM The STFPM (Wang et al. [2021]) algorithm incorporates a pretrained teacher network
and a student network that share the same structure. The student network assimilates the distribution
of images devoid of anomalies by aligning the features with corresponding features in the teacher
network. To boost robustness, the algorithm uses multi-scale feature matching. This multi-tiered
feature alignment lets the student network absorb a blend of multi-level insights from the feature
pyramid, thereby permitting the detection of anomalies of varying magnitudes.

During the inference stage, the feature pyramids of both teacher and student networks are put into
comparison. A larger discrepancy between these pyramids implies a heightened likelihood of the
presence of anomalies.
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Reverse distillation The reverse distillation method (Deng and Li [2022]) is assembled from three
networks: an initial pretrained feature extractor, f , a bottleneck embedding, ϕ, and the student
decoder network, ν. The primary layer, or the backbone, of f is derived from a ResNet model that
was pretrained on the ImageNet dataset.

During the execution of a forward pass, the model extracts features from three separate ResNet blocks.
These features are encoded by amalgamating the three feature maps using the multi-scale feature
fusion block of ϕ, and then transferred to the decoder, ν, which is constructed to mirror the feature
extractor, albeit with operations reversed.

Throughout the training process, the output of these mirrored blocks is made to match the outputs
from the respective layers of the feature extractor. This is ensured by adopting the cosine distance as
the loss metric.

CFA Feature Adaptation based on CFA (Lee et al. [2022]) identifies anomalies utilizing features
that are specifically tailored to the target dataset. The CFA model comprises two main elements:
firstly, a learnable patch descriptor that learns and assimilates features oriented towards the target,
and secondly, a scalable memory bank that remains unimpacted by the size of the target dataset. In
conjunction with a pre-trained encoder, CFA applies a patch descriptor and memory bank. By doing
so, it makes use of transfer learning to bolster the density of normal features. Consequently, this
facilitates an easier distinction between normal and abnormal features.

Mean-shifted The mean-shifted contrastive learning method (Reiss and Hoshen [2021]) introduces
a novel loss function that calculates angular distances using the mean of all feature vectors as a
reference point. This is done in contrast to using the origin as a reference and the Euclidean distance.
It also combines two loss functions, one involving contrastive terms akin to Chen et al. [2020], but
these terms are positioned around a hypersphere centred on the mean of all feature vectors. To deter
positive samples from repelling themselves, it also incorporates an angular centre loss that encourages
samples to gravitate towards the mean of normal samples.

CSI CSI (Tack et al. [2020]) is a direct extension of Chen et al. [2020], introducing a unique form
of data augmentations known as distribution-shifting augmentations. In this setup, distribution-shifted
augmentations are treated as negative samples instead of positive ones and are consequently pushed
away from all positive samples. These augmentations include manipulations such as rotations and
permutations. The augmentation’s potential to shift the distribution is assessed through the AUROC,
where samples altered by the said augmentation are considered out-of-distribution samples. The
underlying notion here is that distinguishability is directly proportional to the shift in distribution.

Red PANDA The Red PANDA method for anomaly detection Cohen et al. [2023] tackles the
particular problem of anomaly detection under nuisance or distracting features. Relying on labels
from the nuisance factors, it employs a contrastive disentanglement loss following Kahana and
Hoshen [2022], in conjunction with a perceptual loss to train a generator function end-to-end with a
pretrained encoder.

9.2 Anomaly Scoring

STFPM During training, the student feature tries to align the distribution of training dataset with
the teacher. During prediction, the input x is fed into both student and teacher feature extractors,
where the student outputs fs(x) and teacher outputs ft(x). For the anomaly scoring, it relies in
a traditional density estimation approach. The assumption would be that the normal samples are
mapped to the high density area where the student encoder and the teacher encoder are aligned, and
the anomalous samples are mapped to the low density area of the student extractor. Therefore, the
anomaly score is computed as the distance between fs(x) and ft(x), i.e. AS(x) = d(fs(x), ft(x)).
In this case the distance metric d is the l2-norm.

Reverse distillation The anomaly scoring function here is derived from the standard anomaly
scoring functions used in reconstruction-based anomaly detection algorithm. In particular, the
anomaly score is defined as the distance between the encoded features and the reconstructed features
from the decoder. AS(y) = d(f(y), ν(ϕ(f(y)), where ν(·) is the decoder, ϕ(·) is the distiller and
f(·) is the encoder. The idea behind this anomaly scoring function is that the decoder has learned to
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reconstruct normal samples due to training dataset, but isn’t able to reconstruct anomalous samples.
Therefore, anomalous samples would have a higher anomaly score.

CFA For CFA we use the standard image-level density estimation approach. In particular, the
training samples are mapped to a feature map f(x) and clustered into k clusters using k-means. For
the prediction, given an input y, its final feature f(y) is computed after feeding it into the feature
extractor and descriptor. Then the d nearest cluster centers of f(y) would be selected, and the anomaly
score for that sample is the mean distance to those d centers. AS(y) = Σfi∈Nk(x)d(fi, f(y)). In
this case, the distance metric d is simply the l2 distance. The idea behind this approach is to assume
that the anomalous samples would be mapped to low-density area in feature space, which are far
away from all the cluster centers, while the normal samples would be mapped to high density area in
feature space, which is close to the normal samples in training dataset.

Mean-shift and Red PANDA Both contrastive learning based methods used as baselines, namely,
mean-shift (Reiss and Hoshen [2021]) and Red Panda (Cohen et al. [2023]) rely on finetuning an
encoder (both pre-trained or not) by grouping the set of feature vectors from images in the training
data around a sub-region of the hypersphere centered in the origin. During prediction time, the most
common approach to classify a new sample as anomaly or not is through the mean distance of the
kNN normal images. Following the original work, in mean-shift, k was set to 2, and in Red Panda it
was set to 1.

CSI CSI (Tack et al. [2020]) relied on only a vanilla contrastive loss between original samples, and
highly augmented samples to serve as a proxy for abnormal samples. Similarly to the previous setting
of mean-shift and Red Panda, this leads to a feature space that falls around the hypersphere centered
in the origin, but not necessarily in the surface. However, operating with the underlying hypothesis
that the highly augmented samples match the anomalies, the feature vectors from images in the
training data are already being pushed to the diametrically opposite side of the hypersphere when
compared to abnormal samples. Additionally, it was empirically verified that the norm of vectors
of abnormal samples is much lower than that of in-distribution samples. This leads to a distance
criterion that measures the closest training sample through the cosine similarity and the norm of the
feature vector of the sample: maxm sim(f(xm), f(x)) · |f(x)|, where f is the encoder that maps the
input object, x, to its feature space, and sim is the cosine similarity.

9.3 Hyperparameters

As this work considered a novel setting where each anomaly detection method was evaluated for the
first time, we modestly optimized hyperparameters. Our approach consisted of two primary steps.
The first involved scaling up two key factors: (a) batch size, and (b) learning rate. Subsequently,
we methodically scanned through an array of distinct parameters for each baseline model. These
included the backbones ResNet18, ResNet34, ResNet50 and WideResNet50, alongside various
anomaly scoring methodologies that leverage image-level, density estimation, reconstruction error,
and pixel-wise density estimation approaches. An additional aspect of our study was an ablation
analysis where the regularization weight was fine-tuned by sweeping through the set of values
0.001, 0.01, 0.1, 1, 10, 100. We adhered to the hyperparameters as depicted in the original works for
all other variables and refrained from performing any further optimizations on them.

9.4 Backbone choice

One thing we notice during our experiments is that for models that rely on the pretrained backbones,
the choice of backbone matters. For instance, for STFPM, the optimal choice was the simplest feature
extractor ResNet18, but for reverse distillation, the optimal choice was WideResNet50. The choices
seem to be model dependent more than dataset relevant. For more details on the chosen backbone for
each method refer to Tab. 7

9.5 Computational resources

The complete project required 3400 hours of GPU usage throughout all experiments, covering
development, testing, and comparisons. The resources supplied were part of a local custer, and
consited of two GPU models: the NVIDIA TITAN RTX and the NVIDIA Tesla V100.
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STFPM ReverseDistil CFA MeanShift CSI Red PANDA
Wang et al. [2021] Deng and Li [2022] Lee et al. [2022] Reiss and Hoshen [2021] Tack et al. [2020] Cohen et al. [2023]

Camelyon17 (3x96x96)

learning rate 10−2 10−2 10−5 10−3 10−3 10−4

optimizer SGD Adam AdamW Adam Adam SGD
batch size 32 32 16 32 64 128
backbone ResNet18 WideResNet50 ResNet18 ResNet50 ResNet18 ResNet50
pretaining True True True True False True
best reg. weight 100 10 100 10 1 10

anomaly score density
estimation

reconstruction
error

density
estimation

density
estimation

density
estimation

density
estimation

DiagViB-6 (MNIST) (3x256x256)

learning rate 10−1 10−2 - 10−3 10−3 3 · 10−4

optimizer SGD Adam - Adam Adam SGD
batch size 32 32 - 32 32 32
backbone ResNet18 WideResnet50 - ResNet50 ResNet18 ResNet50
pretaining True True - True False True
best reg. weight 1 10 - 1 1 10

anomaly score density
estimation

reconstruction
error

- density
estimation

density
estimation

density
estimation

DiagViB-6 (Fashion-MNIST) (3x256x256)

learning rate 10−1 10−2 - 10−3 10−3 3 · 10−4

optimizer SGD Adam - Adam Adam SGD
batch size 32 32 - 32 32 32
backbone ResNet18 WideRestNet50 - ResNet50 ResNet18 ResNet50
pretaining True True - True False True
best reg. weight 0.1 1 - 10 1 1

anomaly score density
estimation

reconstruction
error

- density
estimation

density
estimation

density
estimation

Table 7: A detailed summary of the hyperparameters used for each evaluated model across three
datasets: Camelyon17, DiagViB-6 (MNIST), and DiagViB-6 (Fashion-MNIST). Parameters include
learning rate, scheduler, optimizer, batch size, backbone, pretraining, regularization weight, and mmd
kernel type, along with the type of anomaly score. Notably, the CFA model could not be successfully
implemented for DiagViB-6 based experiments despite trying an extensive range of hyperparameter
combinations. Models are referenced by their respective citations.

9.6 Code and Licensing

The main Python libraries used in our implementation, were Pytorch, which is under a BSD-3 license1,
and Pytorch Lightning, which is under Apache 2.0 license2.

Methods that were derived from the anomalib library (Akcay et al. [2022]), namely STFPM, reverse
distillation, and CFA, were already implemented as a Pytorch Lightning Module, and are all under an
Apache 2.0 license3. These were incorporated directly in our pipeline.

DCoDR (Kahana and Hoshen [2022]), which Red Panda is based from, was released under a
Software Research License4. Our experiments for Red Panda were derived directly from the official
repository. Mean-shifted contrastive learning was released under a Software Research License5. We
re-implemented this method as a Pytorch Lightning Module, loosely following its original official
implementation. DiagViB-6 (Eulig et al. [2021]) and the Camelyon17 (Koh et al. [2021]) datasets
were also publicly released with a GNU Affero General Public License v3.06 and a MIT License7,
respectively. Our implementation follows directly from its official repository.

1https://github.com/pytorch/pytorch/blob/main/LICENSE
2https://github.com/Lightning-AI/lightning/blob/master/LICENSE
3https://github.com/openvinotoolkit/anomalib/blob/main/LICENSE
4https://github.com/jonkahana/DCoDR/blob/main/LICENSE
5https://github.com/talreiss/Mean-Shifted-Anomaly-Detection/blob/main/LICENSE
6https://github.com/boschresearch/diagvib-6/blob/main/LICENSE
7https://github.com/p-lambda/wilds/blob/main/LICENSE
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