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1 MATHEMATICAL PROOFS

1.1 LEMMA 1 (COVER & THOMAS, 2012, THEOREM 11.6.1)

If DKL(Q‖P ) is unbounded, then the inequality holds. Assume that DKL(Q‖P ) is bounded, then it
implies DKL(Q

∗‖P ) = min
Q∈Q

DKL(Q‖P ) is also bounded. Since Q is a convex set, we consider a

convex combination Qθ of Q∗ and Q, i.e., Qθ = (1− θ)Q∗ + θQ ∈ Q, where θ ∈ [0, 1]. Since Q∗
is the minimizer of DKL(Q‖P ), we have
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= DKL(Q‖P )−D(Q‖Q∗)−D(Q∗‖P ), (S.9)

where the facts that the exchange of derivatives and integrals is guaranteed by the dominated
convergence theorem and that the integrals

∫
Q∗ =

∫
Q = 1. Therefore, we have DKL(Q‖P ) ≥

D(Q‖Q∗) +D(Q∗‖P ), the desired result.

1.2 PROPOSITION 1

Note that C(PU , ε) is a convex set by definition since the KL divergence is convex, and hence
Lemma 1 applies. By Lemma 1 and the information inequality (i.e., the KL divergence is always
non-negative),
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Therefore, we have
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where the inequality comes from (S.10).

2 EXPERIMENTAL DETAILS OF SECTION 3.1

For training models on CIFAR100, CIFAR10/100 and Omniglot, we used the Adam (Kingma & Ba,
2015) optimizer with initial learning rate 0.001 for 100 epochs. For training CUB200, we set the
initial learning rate as 0.0005 and trained the model for 50 epochs. Here we also used the learning
rate scheduler which drops the learning rate by half when validation error is not decreased. All
experiments was implemented in PyTorch 1.2.0 with CUDA 9.2 on NVIDIA 1080Ti GPU.

Following Ahn et al. (2019), we use a simple CNN model for training CL benchmark dataset except
for CUB200 and details of an architecture is in Table 1 and 2.

Table 1: Network architecture for Split CIFAR-10/100 and Split CIFAR-100

Layer Channel Kernel Stride Padding Dropout
32×32 input 3

Conv 1 32 3×3 1 1
Conv 2 32 3×3 1 1

MaxPool 2 0 0.25
Conv 3 64 3×3 1 1
Conv 4 64 3×3 1 1

MaxPool 2 0 0.25
Conv 5 128 3×3 1 1
Conv 6 128 3×3 1 1

MaxPool 2 1 0.25
Dense 1 256

Task 1 : Dense 10
· · ·

Task i : Dense 10

Table 2: Network architecture for Omniglot

Layer Channel Kernel Stride Padding Dropout
28×28 input 1

Conv 1 64 3×3 1 0
Conv 2 64 3×3 1 0

MaxPool 2 0 0
Conv 3 64 3×3 1 0
Conv 4 64 3×3 1 0

MaxPool 2 0 0
Task 1 : Dense C1

· · ·
Task i : Dense Ci
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3 ADDITIONAL EXPERIMENTAL RESULTS OF SECTION 3.2

3.1 EXPERIMENTAL RESULTS OF WIDE LOCAL MINIMA USING TEST DATA
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Figure 1: Experimental result of adding Gaussian noise to test data

Figure 1 shows the experimental result of Section 3.2 using test data. We clearly see that test loss of
EWC + CPR slowly increases than EWC in all tasks.

3.2 EXPERIMENTAL RESULTS ON MAS (ALJUNDI ET AL., 2018) AND DEEP MUTUAL
LEARNING (ZHANG ET AL., 2018)
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(a) Selecting wide-local minimum method
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(b) Adding Gaussian noise to MAS + CPR

Figure 2: Experiments for selecting the regularization on CIFAR100

We did the same experiments of Section 3.2 using MAS (Aljundi et al., 2018), and Figure 2 shows
the results. In Figure 2(a), we observe that MAS shows a clear trade-off between F10 and I1,10
as β increases, unlike the result of EWC in the manuscript. (We note SI (Zenke et al., 2017),
RWalk (Chaudhry et al., 2018) and AGS-CL (Jung et al., 2020) showed similar trend as EWC
(Kirkpatrick et al., 2017) in the manuscript). MAS + CPR achieves the highest accuracy in the
range of 0.5 ≤ β ≤ 0.9 but we can see that β = {0.7, 0.9} shows a worse F10 compared with
MAS. Therefore, we can select β = 0.5 as the best hyperparameter using the criteria for selecting β
proposed in Section 3.2 of the manuscript.

We also experimented Deep Mutual Learning (DML) (Zhang et al., 2018) as the regularization for
converging wide local minima. We used β = 1 only because DML reports the best result (with β = 1)
which is converging to a better wide local minima compared to Entropy Maximization (Pereyra et al.,
2017). In our experiment, DML shows an increased A10 and decreased F10, I1,10 but it is not as
effective as our CPR. Most decisively, DML requires training at least more than two models so we
excluded DML from our consideration.
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Figure 2(b) shows the experimental result on adding Gaussian noise to the parameters which is
trained on CIFAR-100. We clearly observe that test loss of each task more slowly increases by
applying CPR to MAS. We believe this is another evidence that CPR can be generally applied to
regularization-based CL methods, promoting the wide-local minima.

3.3 EXPERIMENTAL RESULTS ON LABEL SMOOTHING SZEGEDY ET AL. (2016)
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Figure 3: Experimental results on Label Smoothing

Figure 3 shows the experimental results for using Label Smoothing (Szegedy et al., 2016) as regu-
larization for the softmax output. Similar with the case of using Entropy Maximization, Figure 3(a)
shows that we can find the best β (= 0.5) which minimizes F10 and I1,10 at the same time. Also, we
experimentally checked that Label Smoothing with the best β also makes a model converge to more
wider local minima, as shown in Figure 3(b).
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(a) Task number = 0 (b) Task number = 1 (c) Task number = 2

(d) Task number = 3 (e) Task number = 4 (f) Task number = 5

(g) Task number = 6 (h) Task number = 7 (i) Task number = 8

(j) Task number = 9

Figure 4: Visualization results of the loss landscape

3.4 ADDITIONAL VISUALIZATION OF THE LOSS LANDSCAPE USING PYHESSIAN

In Figure 4, we visualized the loss landscape of all 10 tasks using PyHessian (Yao et al., 2019). For
visualization, we used training data of each task and each single model, EWC and EWC + CPR which
are finished to be trained on CIFAR-100 (10 tasks). The visualization results show that CPR really
make the loss landscape of all tasks become wider than EWC only case.
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4 SELECTED BEST HYPERPARAMETERS

Table 3: Best hyperparameters for each regularization-based CL method and CPR

Best λ / Best β CIFAR100 CIFAR10/100 CIFAR50/10/50 CIFAR100/10 Omniglot CUB200
EWC 12,000 / 0.5 25,000 / 0.4 12,000 / 0.8 20,000 / 0.6 100,000 / 1.0 300,000 / 0.4

SI 1 / 0.8 0.9 / 0.2 2 / 0.9 2 / 0.5 8 / 0.7 50 / 0.6
MAS 3 / 0.5 1 / 0.2 2 / 0.1 2 / 0.4 10 / 0.6 50 / 0.6

RWalk 8 / 0.9 4 / 0.4 10 / 0.6 10 / 0.8 3,000 / 0.6 300 / 0.9

AGS-CL λ = 400,
µ = 10, ρ = 0.3

λ = 7000,
µ = 20, ρ = 0.2

λ = 9000,
µ = 10, ρ = 0.3

λ = 8000,
µ = 10, ρ = 0.3

λ = 1000,
µ = 7, ρ = 0.5

λ = 2100,
µ = 0.5, ρ = 0.1

For each dataset, we firstly searched best λ for each regularization-based CL method and then we
selected best β for CPR. All best hyperparameters are proposed in Figure 3.

5 EXPERIMENTAL RESULTS ON CIFAR100/10, CIFAR50/10/50

As an additional experiments of Section 3.3 in the manuscript, we experimented on CIFAR100/10 and
CIFAR50/10/50, which are the different versions of CIFAR10/100. Namely, we changed the order of
the tasks and varied the location for which CIFAR-10 task is inserted. Table 4 and Figure 5 show the
results. We can achieve better relative improvements on all metrics compared to CIFAR-10/100.

Table 4: Experimental results on continual learning senarios with and without CPR.

Dataset Method
Average Accuracy (A10) Forgetting Measure (F10) Intransigence Measure (I1,10)

W/o
CPR

W/
CPR

diff
(W-W/o)

W/o
CPR

W/
CPR

diff
(W/-W/o)

W/o
CPR

W/
CPR

diff
(W-W/o)

CIFAR50/10/50
(T = 11)

EWC 0.5978 0.6346 +0.0379 (+6.3%) 0.0288 0.0277 -0.0011 (-3.8%) 0.1682 0.1313 -0.0370 (-22.0%)
SI 0.6184 0.6468 +0.0284 (+4.6%) 0.0598 0.0532 -0.0066 (-11.0%) 0.1194 0.0970 -0.0224 (-18.8%)

MAS 0.6172 0.6238 +0.0066 (+1.1%) 0.0484 0.0448 -0.0036 (-7.4%) 0.1310 0.1277 -0.0033 (-2.5%)
Rwalk 0.5697 0.6315 +0.0619 (+10.9%) 0.0781 0.0548 -0.0233 (-29.8%) 0.1515 0.1109 -0.0406 (-26.8%)

AGS-CL 0.5921 0.6055 +0.0134 (+2.3%) 0.0137 0.0132 -0.0006 (-4.4%) 0.1870 0.1736 -0.0134 (-7.2%)

CIFAR100/10
(T = 11)

EWC 0.5808 0.6158 +0.0376 (+6.5%) 0.0304 0.0238 -0.0066 (-21.7%) 0.1694 0.1378 -0.0317 (-18.7%)
SI 0.6116 0.6332 +0.0216 (+3.5%) 0.0681 0.0692 -0.0011 (-1.6%) 0.1044 0.0832 -0.0212 (-20.3%)

MAS 0.6138 0.6363 +0.0214 (+3.5%) 0.0536 0.0532 -0.0004 (-0.7%) 0.1153 0.0942 -0.0211 (-18.3%)
Rwalk 0.5618 0.6113 +0.0495 (+8.8%) 0.0924 0.0852 -0.0072 (-7.8%) 0.1322 0.0892 -0.0430 (-32.5%)

AGS-CL 0.6065 0.6205 +0.0140 (+2.3%) 0.0122 0.0091 -0.0031 (-25.4%) 0.1761 0.1618 -0.0143 (-8.1%)
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Figure 5: Average accuracy for CIFAR10/100 and CIFAR50/10/50

6 EXPERIMENTS ON PERMUTED/ROTATED MNIST DATASETS
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Table 5: Experimental results on Permuted/Rotated MNIST datasets

Dataset Method Average Accuracy (A10) Forgetting Measure (F10) Intransigence Measure (I1,10)
W/o
CPR

W/
CPR

diff
(W-W/o)

W/o
CPR

W/
CPR

diff
(W/-W/o)

W/o
CPR

W/
CPR

diff
(W-W/o)

PermutedMNIST
(T = 10)

EWC 0.7564 0.7811 +0.0264
(+3.5%) 0.0942 0.0893 -0.005

(-5.3%) 0.1353 0.1150 -0.0202
(-14.9%)

MAS 0.7487 0.8239 +0.0752
(+10.0%) 0.1175 0.0640 -0.0535

(-45.6%) 0.1220 0.0949 -0.0271
(-22.2%)

AGS-CL 0.7684 0.7752 +0.0058
(+0.7%) 0.0030 0.0009 -0.0021

(-70.0%) 0.2043 0.2006 -0.0038
(-1.9%)

RotatedMNIST
(T = 10)

EWC 0.9852 0.9856 +0.0002
(+0.02%) 0.0038 0.0033 -0.0005

(-13.2%) 0.0075 0.0077 +0.0003
(+4.0%)

MAS 0.9837 0.9839 0.0002
(+0.02%) 0.0040 0.0043 +0.0003

(+7.5%) 0.0088 0.0082 -0.0005
(-5.9%)

AGS-CL 0.9702 0.9746 +0.0044
(+0.45%) 0 0 0 0.0254 0.0211 -0.0044

(-17.3%)

7 FEATURE MAP VISUALIZATION USING UMAP

We present next two-dimensional UMAP (McInnes et al., 2018) embeddings to visualize the impact
of CPR on learnt representations. We compare representations produced by models trained on
CIFAR-100 in two cases: (i) an oracle model which learns from the first and the t-th task at training
time t, and (ii) sequential CL using EWC and EWC + CPR. We sample 30% of the test data for
producing the visualization. Details and parameters for UMAP are provided in the SM.

We first visualize Ot,1, defined as the output feature map of the first output layer given the first task’s
test data after training the t-th task. The first row of Fig. 6 displays the respective embeddings,
where ct corresponds to the center point of the cluster for the t-th task. In the ideal case (in terms of
stability), there would be little to no change in Ot,1 during CL. This is evident in the embeddings
for the joint model, which show that each cluster Ot,1 is almost perfectly centered. In contrast, the
resulting embedding from EWC has a slightly scattered ct when compared to the joint (oracle) model.
This indicates that, whenever the model is trained on a new task, feature maps of the output layer
may drift despite EWC’s regularization for previous task parameters. EWC + CPR, in turn, display
more centered ct than EWC, indicating that by applying CPR to EWC model parameters become
more robust to change after training future tasks.

In order to provide further evidence that CPR provides better plasticity on new tasks, we visualized ht,
defined as the embedding for the feature map of the last hidden layers given t-th test data after training
the t-th task. In the second row of Fig. 6, Joint and EWC + CPR show closer feature embeddings.
EWC, in turn, has a first and second task feature maps divided from other tasks. Strikingly, the
feature embeddings for the first task are completely separated. Therefore, we believe that CPR
helps the model share feature representations from the start of training, potentially explaining the
improvement of the intransigence measure observed in Sec 3.4 of the manuscript. We are unaware of
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Figure 6: Feature map visualization using UMAP
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prior work that makes use of feature embedding to identify reasons for catastrophic forgetting and
limited plasticity of CL methods, and hope that such feature map visualizations become a useful tool
for the field.
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Figure 7: Visualization Result on EWC (seed = 9)

We visualize Ot,1 and ht of Joint, EWC (Kirkpatrick et al., 2017), EWC (Kirkpatrick et al., 2017)
+ CPR with a different seed and visualizations are shown in Figure 7. We hold the experimental
settings and we can see the similar pattern of Ot,1 and ht, which is already shown in Section 3.5
of the manuscript. Especially, Ot,1 of EWC showed clearly divided clusters compared with the
visualization result in the manuscript, nevertheless, we confirm that the feature maps become to be
more shared and centered by applying CPR to EWC.

We also did same visualization using MAS (Aljundi et al., 2018) and the results are shown in Figure 8.
We checked the similar results of Ot,1 and ht, and we could see that, by applying CPR to MAS, Ot,1
and ht are more centered than before. From these additional visualizations, we want to emphasize that
the pattern of Ot,1 and ht is a general phenomenon of regularization-based CL methods, and these
can show why the typical regularization-based CL methods still suffer from the stability-plasticity
dilemma at the feature map level. Also, we could check again that CPR increases the stability and
plasticity of the regularizaion-based CL methods by alleviating this phenomenon.
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(a) Visualization result on MAS (seed = 0)
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(b) Visualization result on MAS (seed = 9)

Figure 8: Feature map visualization of MAS

7.1 HYPERAPAMETER SETTINGS AND VISUALIZATION DETAILS OF UMAP

From several visualizations, we found out that best hyperparameters for UMAP(McInnes et al., 2018)
as {n_neighbors = 200, min_dist = 0.1, n_components = 2} and we got all visualization results with
these hyperparameters. We used raw features of Ot,1 as a input of UMAP, however, for visualizing
ht, we reduced the dimension of ht to 50 by using PCA.
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Table 6: Results on broader classes of algorithms (CIFAR-100, Task-IL).

Representative
Algorithms

Average Accuracy (A10) Forgetting Measure (F10) Intransigence Measure (I1,10)
W/o
CPR

W/
CPR

diff
(W-W/o)

W/o
CPR

W/
CPR

diff
(W-W/o)

W/o
CPR

W/
CPR

diff
(W-W/o)

Reg-based
Method

UCL (Ahn et al., 2019) 0.6368 0.6387 +0.0018
(+0.28%) 0.0630 0.0558 -0.0072

(-11.43%) 0.0767 0.0813 +0.0046
(+6.00%)

LWF (Li & Hoiem, 2017) 0.5209 0.5516 +0.0306
(+5.87%) 0.1402 0.1757 +0.0355

(+25.32%) 0.1231 0.0605 -0.0626
(-50.85%)

Parameter
Isolation
Method

HAT (Serra et al., 2018) 0.5534 0.5882 +0.0348
(+6.29%) 0.0553 0.0561 +0.0008

(+1.45%) 0.1670 0.1314 -0.0356
(-21.32%)

PNN (Rusu et al., 2016) 0.7116 0.7193 +0.0077
(+1.08%) 0 0 0 0.0541 0.0464 -0.0077

(-14.23%)
Replay
Method ER (Chaudhry et al., 2019) 0.6987 0.7274 0.0287

(+4.11%) 0.0541 0.0410 -0.0130
(-24.03%) 0.0247 0.0081 -0.0166

(-67.21%)
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Figure 9: Accuracy across tasks

8 APPLYING CPR TO BROADER CLASSES OF RECENT CONTINUAL LEARNING
ALGORITHMS

We report the results on applying CPR to broader classes of recent continual learning algorithms
in Table 6 and Figure 9 (for CIFAR-100). Following the taxonomy given in Fig.1 of the survey
(De Lange et al., 2019), we took some representative methods in 3 different categories as shown in
the table; UCL is a Bayesian-based, LwF is a data (distillation)-focused, HAT is a mask-based, PNN
is a dynamic architecture-based, and ER (with memory size 5000) is a rehearsal-based method. From
Table 6, we again observe adding CPR improves the average accuracy for all methods, and Figure
9 shows the gain is attained across all tasks for all methods. We note that adding the CPR term to
the loss functions, PNN, and ER is quite natural, whereas adding it to UCL, LwF, and HAT does not
clearly match with each algorithm’s philosophy. Namely, it is not clear how to connect CPR with
the variances of the parameters in Bayesian NN (UCL), whether the wide-local minima intuition of
CPR would also hold for data-driven regularization (of LwF), and what is the notion of attaining
wide-local minima for learning the attention masks (in HAT). Despite these mismatches, which may
cause the glitches for F10 and I1,10 (red), we believe the uniform, positive impact on the accuracy
convincingly shows the high potential of CPR as a general regularizer for various continual learning
methods. We believe above result significantly strengthens our method and believe our work is the
first to state and verify the link between generalization and forgetting.

9 REINFORCEMENT LEARNING

9.1 DETAILS ON NETWORK ARCHITECTURES

We used the same architecture which was proposed in (Jung et al., 2020). Figure 7 shows the details
of an agent model.

Table 7: Network architecture for Atari

Layer Channel Kernel Stride Padding Dropout
84×84 input 4

Conv 1 32×4 8×8 4 0
ReLU
Conv 2 32×4 4×4 2 0
ReLU
Conv 2 64×4 3×3 1 0
ReLU
Flatten
Linear1 32×4×7×7

Task 1 : Dense C1

· · ·
Task i : Dense Ci

9.2 HYPERPARAMETERS OF PPO AND CPR

Figure 8 shows hyperparameters that we used for PPO. We evaluate each method every 40 updates,
therefore, i.e. we have 30 evaluations during training each task. We trained the model using Adam
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optimizer (lr = 0.0003) and we used default hyperparameters as in (Schulman et al., 2017). We did
hyperparameter search for β of CPR, as a result, we found out that β = 0.05 shows the best result for
all methods.

Table 8: Details on hyperparameters of PPO.

Hyperparameters Value
# of steps of each task 10m

# of processes 128
# of steps per iteration 64

PPO epochs 10
entropy coefficient 0

value loss coefficient 0.5
γ for accumulated rewards 0.99

λ for GAE 0.95
mini-batch size 64
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