
Dual-CriterionQuality Loss for Blind ImageQuality Assessment
Desen Yuan∗

desenyuan@gmail.com
University of Electronic Science and Technology of China

Chengdu, Sichuan, China

Lei Wang∗
lwang@std.uestc.edu.cn

University of Electronic Science and Technology of China
Chengdu, Sichuan, China

Abstract
This paper introduces a novel approach to Image Quality Assess-
ment (IQA) by presenting a new loss function, Dual-Criterion Qual-
ity (DCQ) Loss, which integrates the Mean Squared Error (MSE)
framework with a Relative Perception Constraint (RPC). The RPC
is comprised of two main components: the Quantitative Discrep-
ancy Constraint (QDC) and the Qualitative Alignment Constraint
(QAC). The QDC focuses on capturing the numerical relationships
of relative differences by minimizing the mean squared error be-
tween the differences in predicted scores among samples within
a batch size and the differences in Mean Opinion Scores (MOS).
Meanwhile, the QAC aims to capture the ordinal relationships be-
tween these differences. This method is designed to closely align
with human subjective assessments of image quality, which are
frequently quantified using the MOS, and to enhance the inter-
pretability and reliability of IQA. Unlike existing ranking methods
that suffer from complex pipelines and the introduction of errors
through the generation of pair-wise or ordering data, DCQ Loss
provides a more straightforward and efficient approach. Moreover,
the loss function outperforms current rank-based IQA methods in
terms of convergence, stability, and the ability to emulate human
perception of visual quality. The effectiveness of this approach is
validated through extensive experiments on various mainstream
datasets and IQA network architectures, demonstrating significant
performance gains over traditional rank loss approaches and con-
tributing to the ongoing development of IQA.
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Figure 1: SRCC v.s PLCC of different losses for DBCNN on
TID2013 dataset. To make the figure appear more compact,
the lower left corner of the diagram is designated as the
second coordinate area, which contains the results forMONO.

VIC, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3664647.3681250

1 Introduction
Images serve as a crucial form of data across a multitude of sectors.
However, these images are often subject to quality degradation
due to various factors such as acquisition methods, transmission
processes, and storage conditions. Image Quality Assessment (IQA)
[4, 11, 14, 22, 34, 64, 73] is an automated technique designed to
gauge the perceptual quality of images. One of the key objectives of
IQA is to generate estimates that align closely with human subjec-
tive assessments, which are frequently quantified using the Mean
Opinion Score (MOS). Blind IQA [20, 20, 24, 39, 63, 68] has emerged
as a focal point in IQA research, offering the advantage of assess-
ing quality without the necessity for a reference image. IQA is
especially crucial in specialized sectors that require rigorous image
fidelity[41–43], such as medical imaging, video streaming services.

Certainly, the essence of IQA [3, 13, 38, 44–47, 54, 60, 71, 73]
lies in a ranking task designed to evaluate and order images based
on their perceptual quality. Strangely enough, this fundamental
characteristic often seems overlooked in contemporary IQA re-
search. Despite the apparent shift of focus, it’s crucial to recognize
that the domain of ranking-based IQA is far from being exhausted.
In fact, there is substantial room for further research, especially
in leveraging advanced machine learning algorithms to emulate
human perception more accurately. Various scholars have made
notable contributions in this area, such as Ma et al.’s dipIQ [23] and
Liu et al.’s RankIQA [21], both seminal works in the application of
learning-to-rank methodologies for IQA.
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Figure 2: The density plot results of the predicted scores and
Ground Truth for four types of loss functions after normal-
ization (TID2013, DBCNN) show that the density distribu-
tions of our loss function and the MSE loss function largely
overlap. However, the density distributions of PLCC and
MONO differ significantly, especially for MONO, where the
predicted distribution is comparatively narrower.

Existing ranking methods in IQA face challenges due to their
complex pipelines and the need for generating pair-wise or ordering
data, which complicates their integration into IQA frameworks and
can introduce errors. This complexity signals a critical demand for
simpler, yet efficient, ranking techniques. In the field of IQA, main-
stream deep neural networks typically utilize Mean Squared Error
(MSE) loss for optimization, focusing on minimizing the discrep-
ancy between predicted quality scores and Mean Opinion Scores
(MOS). Additionally, some research methods employ loss functions
with ranking characteristics to aid image quality evaluation models
in better learning the relationships between image qualities. As
shown in Fig. 1, the corresponding loss function on the TID2013
dataset, utilizing DBCNN, produced results in Spearman’s Rank
Correlation Coefficient (SRCC) and Pearson’s Linear Correlation
Coefficient (PLCC).

Li et al. [19] introduced a monotonicity loss (MONO for short)
to learn the monotonicity between scores. However, the ReLU trun-
cation of its function limits the differentiation between correctly
predicted images, resulting in overly similar output scores and poor
generalizability. Compared to MSE, monotonicity loss is less con-
ducive to learning the numerical relationship between predictions
and Ground Truth. Li et al. [18] proposed a NIN loss aimed at en-
hancing convergence and performance, but this also leads to higher
computational complexity due to numerous conditional judgments,
its unique form being PLCC. Wu et al. [48, 49] used PLCC as a loss
function. Although PLCC directly corresponds to the objective of
image quality assessment as a metric, its optimization efficiency,
handling of non-linearities, and generalization capabilities are infe-
rior to those of MSE.

AlthoughMean Squared Error is suitable for regression problems
related to image quality assessment, it overlooks a critical aspect of

human perception: the relative ranking of image quality. To address
this shortfall while maintaining compatibility with existing Image
Quality Assessment frameworks, we introduce a novel loss func-
tion called Dual-Criterion Quality (DCQ) Loss. DCQ Loss is derived
from the original MSE loss, augmented with a ranking constraint
that we term Relative Perception Constraint (RPC). The concept
of relative perceptual constraints consists of two components: the
Quantitative Discrepancy Constraint (QDC) and the Qualitative
Alignment Constraint (QAC). The Quantitative Discrepancy Con-
straint is utilized to capture the numerical relationships of relative
differences. It achieves this by minimizing the mean squared error
between the differences in predicted scores among samples within
a batch size and the differences in Mean Opinion Scores. The Qual-
itative Alignment Constraint is employed to capture the ordinal
relationships between relative differences.

This DCQ Loss is crucial for ensuring that the model’s predic-
tions resonate with the human ability to recognize and rank visual
quality, thereby enhancing the interpretability and reliability of
image quality assessments. Compared to other ranking losses, such
as monotonicity loss and PLCC loss, predictions are closer to the
MOS, the predicted score range is not overly dense, the distribution
is more uniform, and the training is more stable. As shown in Fig. 2,
density plot results for four types of loss functions were selected, in-
cluding Mean Squared Error, the loss function we proposed, MONO,
and PLCC. The density plot results demonstrate that the predictive
distribution of the loss function we proposed and MSE are closest to
the Ground Truth. In contrast, the distribution overlap for MONO
and PLCC is poor, with MONO exhibiting a very narrow prediction
range.

Our contributions are as follows:

• We introduce the Dual-Criterion Quality Loss, which en-
hances image quality prediction by integrating numerical
and ordinal relationship constraints.

• Experimental and theoretical analysis have confirmed the
effectiveness of our method, which significantly outperforms
existing approaches.

2 Related Work
2.1 Blind Image Quality Assessment
The realm of Blind/No Reference Image Quality Assessment has
evolved from traditional methods employing hand-engineered fea-
tures like Natural Scene Statistics (NSS) [7, 9, 27–30, 35, 53, 66]
to modern, deep learning-oriented approaches [23, 56–58, 65, 67,
70, 72]. These initial methods mainly excelled on synthetically dis-
torted images but faltered with real-world distortions. The infusion
of deep learning has fostered end-to-end optimization, intertwin-
ing feature extraction and quality regression, thereby advancing
BIQA/NRIQA significantly. This shift instigated exploration into
diverse computational structures like generalized divisive normal-
ization [25], adaptive convolution [38], and objective functions such
as ℓ𝑝 -norm induced metric [40].

Deep learning in BIQA/NRIQA [2–4, 13, 14, 20, 20, 22, 24, 33, 34,
38, 39, 54, 63, 68, 71, 73] has leveraged Convolutional Neural Net-
works (CNNs), often pretrained on extensive datasets like ImageNet,
to develop nuanced approaches. For instance, multi-task networks
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[24] were devised for concurrent distortion identification and qual-
ity prediction. Additionally, innovative frameworks emerged, utiliz-
ing Generative Adversarial Models for hallucinated reference image
generation [20], and meta-learning [73] to harness shared prior
knowledge among different distortion types. The advent of novel
frameworks like Vision-Transformers [59] and Cascaded CNNs [50]
further embodies the dynamic nature of BIQA/NRIQA, promising a
trajectory towards more robust and precise image quality assess-
ment, marking a notable departure from conventional methodolo-
gies.

2.2 Learning to Rank
IQA (Image Quality Assessment) is widely regarded as a ranking
problem [6, 21, 24]. Zhang et al. [68] utilized discrete ranking in-
formation derived from images with identical content but varying
levels of distortion for quality prediction. Subsequently, Zhang et
al. [68, 70] employed continuous ranking information derived from
MOSs (Mean Opinion Scores) and the differences between subjec-
tive scores. Ma et al. [24, 26] extracted binary ranking information
during the training process through NR-IQA methods. However,
due to the employment of reference images, their method is only
applicable to synthetic distortions.

dipIQ [23] and RankIQA [21] have employed siamese networks
with generated data pairs for ranking learning. However, such ap-
proaches, involving paired dataset generation or dual networks, are
complex and less suited for Blind Image Quality Assessment (BIQA)
due to their complexity and lack of convenience. Wu et al. [52]
proposed a regression model for BIQA using rank regularization,
but this model does not consider the specific structures or discrep-
ancies between predicted scores and MOSs, and minimizing mean
error alone may not ensure accurate quality ranking. Alireza et al.
[10] developed a network that integrates feature fusion with Trans-
formers and an attention mechanism, along with relative ranking
and consistency representation. However, this method is computa-
tionally complex and dependent on extreme samples and margin
settings. Li et al. [18] introduced a NIN loss function to improve
BIQA loss, aiming to enhance convergence and performance, but
this also leads to high computational complexity due to numerous
conditional judgments. These methods overlook the inherent rank
information in the original samples.

Moreover, ranking learning, originating from information re-
trieval, includes pointwise, pairwise, and listwise concepts with
representative loss functions like RankNet [5], used in BIQA re-
search. Our proposed DCQ Loss method stands out in this context
for its generality, low computational demand, and ease of integra-
tion into various BIQA frameworks, effectively learning the point-
wise, pairwise, and listwise ranking information without needing
data synthesis.

3 Dual-Criterion Quality Loss
The Dual-Criterion Quality Loss aims to address the lack of infor-
mation on image ranking inherent in the Mean Squared Error loss
function, as well as the current inaccuracies in the prediction range
of Mean Opinion Score by ranking loss. Dual-Criterion Quality Loss
offers a stable, highly effective, and concise form of loss function.

Figure 3: The proposed loss function is integrated with the
architecture of the IQA model. QDC calculates the MSE of
two difference matrices, whereas, in the calculation of QAC,
the difference matrix of the Ground Truth only provides
information about the Sequential.

3.1 Loss Definition
Given a batch of input images 𝑥 and their corresponding ground
truth Mean Opinion Scores 𝑡 , let𝑦 = model(𝑥) denote the predicted
quality scores by the model. The Relative Perception Constraint L,
combining QDC and QAC, is defined as:

L =
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

[ (
Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗

)2 − Δ𝑦𝑖 𝑗 · sgn(Δ𝑡𝑖 𝑗 )
]
, (1)

where Δ𝑦𝑖 𝑗 = 𝑦𝑖 −𝑦 𝑗 represents the difference between predicted
scores, and Δ𝑡𝑖 𝑗 = 𝑡𝑖−𝑡 𝑗 represents the difference between theMean
Opinion Scores. The function sgn(·) denotes the sign function,
which indicates the direction of the difference. Combining RPC
with the MSE of prediction and MOS results in the proposed DCQ
Loss.

The first term inside the summation, (𝑦𝑖 −𝑦 𝑗 − (𝑡𝑖 − 𝑡 𝑗 ))2, repre-
sents the Mean Squared Error between the differences in predicted
scores and actual MOS values for all pairs of images within a batch.
This term penalizes deviations in the magnitude of score differences,
encouraging precise estimation of the score gaps as per the ground
truth.

The second term, −(𝑦𝑖 − 𝑦 𝑗 ) · sign(𝑡𝑖 − 𝑡 𝑗 ), introduces a rank-
ing loss that penalizes incorrect relative ordering of the predicted
scores with respect to the true MOS. By incorporating the sign
of the ground truth differences, this term ensures that the model
is penalized when the predicted ordering contradicts the true or-
dering, hence fostering the model to learn the correct ranking of
image qualities. This harmonizes the dual objectives of precision in
score estimation and adherence to the correct ordinal relationships
among the images.

This proposed loss function thus offers a comprehensive criterion
for training models on image quality assessment tasks, promoting
not just accuracy in quantitative score predictions but also the
correct perception of qualitative score hierarchies.

3.2 Quantitative Discrepancy Constraint
The Quantitative Discrepancy Constraint within the Relative Per-
ception Constraint serves a pivotal role in the domain of image
quality assessment. By design, this term, expressed as (Δ𝑦𝑖 𝑗−Δ𝑡𝑖 𝑗 )2,
aims to minimize the MSE between the differences in predicted
and actual MOS for all pairs of images within a batch. The essence
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of this constraint lies in its ability to quantify the precision of the
model’s predictions relative to the ground truth, thereby ensuring
that the magnitude of score differences is accurately captured. The
QDC can be described by the equation:

L𝑄𝐷 =
1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗 )2, (2)

where Δ𝑦𝑖 𝑗 = 𝑦𝑖 − 𝑦 𝑗 and Δ𝑡𝑖 𝑗 = 𝑡𝑖 − 𝑡 𝑗 denote the differences
between predicted scores and true MOS values, respectively. This
formulation emphasizes the model’s focus on accurately estimating
the disparities in image quality scores, thereby penalizing deviations
from the MOS differences.

The necessity of theQuantitative DiscrepancyConstraint emerges
from its foundational role in establishing a baseline of accuracy for
the predictive model. In the context of image quality assessment,
accurate quantitative predictions are paramount, as they directly
influence the model’s ability to discern subtle variations in image
quality. This constraint ensures that the model is not only adept at
recognizing the presence of quality differences but is also precise
in quantifying the extent of these differences. As a result, it ad-
dresses the critical need for models to mirror the human perceptual
understanding of image quality variations, which is essential for
applications ranging from automated quality control to adaptive
streaming.

Moreover, this constraint fosters a learning environment that en-
courages the model to develop a nuanced understanding of image
quality metrics. By penalizing quantitative inaccuracies, it indi-
rectly promotes the model’s engagement with the intricacies of
image quality features, leading to a more refined and sensitive qual-
ity assessment capability. This is especially beneficial in training
models to deal with the highly subjective and complex nature of
human visual perception, which is at the heart of Mean Opinion
Scores.

In summary, the Quantitative Discrepancy Constraint is indis-
pensable in the pursuit of high-fidelity image quality assessment
models. It anchors the model’s predictions to the ground truth, en-
suring that the quantitative aspects of image quality evaluation are
not only acknowledged but accurately represented. This constraint,
therefore, stands as a testament to the critical balance between pre-
cision and perceptual relevance in the evaluation of image quality.

3.3 Qualitative Alignment Constraint
The Qualitative Alignment Constraint represents the second term in
the Relative Perception Constraint and is a critical component in the
context of image quality assessment models. This term, represented
as −(Δ𝑦𝑖 𝑗 · sgn(Δ𝑡𝑖 𝑗 )), introduces a ranking loss that penalizes the
model when the predicted ordering of image quality scores does
not align with the true Mean Opinion Scores provided as ground
truth. The essence of this constraint is to enforce the preservation
of the qualitative hierarchy among images, as perceived by human
evaluators.

The formal expression of the Qualitative Alignment Constraint
is given by:

L𝑄𝐴 = − 1
𝑁 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

Δ𝑦𝑖 𝑗 · sgn(Δ𝑡𝑖 𝑗 ), (3)

where Δ𝑦𝑖 𝑗 = 𝑦𝑖 − 𝑦 𝑗 and Δ𝑡𝑖 𝑗 = 𝑡𝑖 − 𝑡 𝑗 denote the differences
between predicted scores and actual MOS differences, respectively.
The function sgn(·) indicates the sign of the MOS difference, effec-
tively capturing the directionality of the qualitative assessment.

The necessity of the Qualitative Alignment Constraint arises
from its emphasis on the ordinal relationships between images,
which is a fundamental aspect of human perception of quality. This
constraint ensures that the model not only focuses on accurately
predicting the numerical scores of image quality but also correctly
identifies the relative rankings among a set of images. It addresses
a key challenge in image quality assessment: the alignment of
machine predictions with the nuanced, subjective human judgment
of image quality.

By penalizing misalignments in the predicted ordering of images
relative to their ground truth rankings, the Qualitative Alignment
Constraint encourages the model to learn the subtleties of qualita-
tive differences. This is crucial for applications where the relative
quality of images, rather than their absolute scores, guides decision-
making or user experience. Consequently, this constraint fosters a
deeper understanding of quality assessment beyond mere numeri-
cal accuracy, promoting models that are more aligned with human
perceptual criteria.

In summary, the Qualitative Alignment Constraint is indispens-
able for cultivating models that comprehend both the quantitative
and qualitative nuances of image quality. It ensures that models are
not just number-crunchers but are capable of discerning the quali-
tative hierarchies that mirror human perception, thereby achieving
a holistic approach to image quality assessment.

3.4 THEORETICAL ANALYSIS
In this section, we delve into the crucial properties of our pro-
posed Relative Perception Constraint: Lipschitz continuity and
𝛽-smoothness. Through detailed mathematical proofs, we demon-
strate that the Relative Perception Constraint L not only satisfies
Lipschitz continuity but also possesses 𝛽-smoothness. These char-
acteristics lay a solid foundation for stable training and efficient
optimization of the model, thereby enhancing its performance in
image quality assessment tasks. This analysis not only provides
robust theoretical support for our method but also underscores its
significance and potential impact in improving technology within
the field of image processing.

3.4.1 Theoretical Analysi of the Proposed Relative Perception Con-
straint . Theorem 1: Lipschitz Continuity of the Relative Per-
ception Constraint is good.

Definition (Lipschitz Continuity): A function 𝑓 : R𝑛 → R is said
to be Lipschitz continuous if there exists a constant 𝐿 ≥ 0 (called
the Lipschitz constant) such that for all 𝑥,𝑦 ∈ R𝑛 , it holds that

|𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿∥𝑥 − 𝑦∥2 . (4)

Proof:
Considering the structure of the Relative Perception Constraint

L, which combines the squared difference and the sign-adjusted
difference between the predicted scores and the ground truth MOS,
we delineate that for any pair of predictions Δ𝑦𝑖 𝑗 and corresponding
truths Δ𝑡𝑖 𝑗 , there exist constants 𝜆𝑚𝑠𝑒 and 𝜆𝑡𝑎𝑢 , making the func-
tion satisfy Lipschitz continuity. These constants are determined
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based on the upper bounds of the derivatives of the squared and
sign-adjusted differences, ensuring that:��(Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗 )2 − Δ𝑦𝑖 𝑗 · sgn(Δ𝑡𝑖 𝑗 )

�� ≤ 𝜆mse∥Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗 ∥2
+ 𝜆tau∥Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗 ∥2 .

(5)

Therefore, the Relative Perception Constraint L is also Lipschitz
continuous with a Lipschitz constant 𝐿 = 𝜆𝑚𝑠𝑒 + 𝜆𝑡𝑎𝑢 , where the
values of 𝜆𝑚𝑠𝑒 and 𝜆𝑡𝑎𝑢 depend on the specific characteristics of
the model and the data distribution.

Theorem 2: 𝛽-Smoothness of the Relative Perception Con-
straint is good.

Definition (𝛽-Smoothness): A function 𝑓 : R𝑛 → R is said to be 𝛽-
smooth if it is differentiable and its gradient is Lipschitz continuous,
i.e., there exists a constant 𝛽 ≥ 0 such that for all 𝑥,𝑦 ∈ R𝑛 ,

∥∇𝑓 (𝑥) − ∇𝑓 (𝑦)∥2 ≤ 𝛽 ∥𝑥 − 𝑦∥2 . (6)

Proof:
The quadratic nature of the MSE component and the bounded

variation introduced by the sign-adjusted component in L imply
that the gradient of the loss function with respect to the predictions
∇L(Δ𝑦𝑖 𝑗 ) is subject to bounded variation. This bounded variation
is characterized by constants 𝛽𝑚𝑠𝑒 and 𝛽𝑡𝑎𝑢 , which are chosen
based on the gradient behaviors of both components, ensuring that:

∥∇L(Δ𝑦𝑖 𝑗 ) − ∇L(Δ𝑡𝑖 𝑗 )∥2 ≤ 𝛽mse∥Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗 ∥2
+ 𝛽tau∥Δ𝑦𝑖 𝑗 − Δ𝑡𝑖 𝑗 ∥2 .

(7)

Therefore,L is 𝛽-smoothwith 𝛽 = max(𝛽𝑚𝑠𝑒 , 𝛽𝑡𝑎𝑢 ), where 𝛽𝑚𝑠𝑒

and 𝛽𝑡𝑎𝑢 are determined through analytical or empirical evaluation
of the gradient’s Lipschitz continuity.

This refined proof enhances the rigor of the analysis by specify-
ing the conditions under which the Relative Perception Constraint’s
properties are evaluated, thereby facilitating more stable training
and model convergence.

3.4.2 Comparison between Relative Perception Constraint andMONO.
In this subsection, we present a rigorous mathematical analysis to
compare the Lipschitz continuity and 𝛽-smoothness properties of
two image quality assessment methods: Relative Perception Con-
straint and MONO. Relative Perception Constraint combines QDC
with QAC. In contrast, MONO relies on a modified ranking loss,
incorporating a ReLU function to enforce the monotonicity of pre-
dictions relative to ground truth Mean Opinion Scores.

Definition 1 (Lipschitz Continuity): A function 𝑓 : R𝑛 → R
is Lipschitz continuous if there exists a constant 𝐿 ≥ 0 such that
for any 𝑥1, 𝑥2 ∈ R𝑛 ,

|𝑓 (𝑥1) − 𝑓 (𝑥2) | ≤ 𝐿∥𝑥1 − 𝑥2∥. (8)

Proposition 1: RPC exhibits stronger Lipschitz continuity than
MONO.

Proof: Consider the loss functions LRPC and LMONO, where
RPC combines QDC and QAC, and MONO utilizes a modified rank-
ing loss with ReLU. The gradient of the MSE part within RPC with
respect to the predictions 𝑦 is linear, contributing to a bounded rate
of change, hence satisfying the Lipschitz condition with a constant
𝛽MSE. For the ranking loss component, despite its non-linearity due
to the sign function, its contribution to the overall Lipschitz con-
stant can be bounded due to the finite difference in scores, denoted
as 𝛽Rank.

In contrast, the MONO method, which employs a ReLU function,
can exhibit abrupt changes in the gradient, especially when the
differences in predictions are close to zero. This leads to potential
discontinuities in the gradient, challenging the fulfillment of the
Lipschitz condition with a single constant 𝛽MONO.

Hence, by combining a linearly-bounded MSE (QDC) with the
QAC, RPCmaintains a more stable and predictable rate of change in
response to variations in input, thus asserting a stronger Lipschitz
continuity (𝛽RPC = 𝛽MSE+𝛽rank) compared toMONO, where abrupt
gradient changes due to ReLU can disrupt Lipschitz continuity.

Definition 2 (𝛽-Smoothness): A function 𝑓 : R𝑛 → R is 𝛽-
smooth if its gradient is Lipschitz continuous, meaning there exists
a constant 𝛽 ≥ 0 such that for any 𝑥1, 𝑥2 ∈ R𝑛 ,

∥∇𝑓 (𝑥1) − ∇𝑓 (𝑥2)∥ ≤ 𝛽 ∥𝑥1 − 𝑥2∥ . (9)

Proposition 2: RPC demonstrates superior 𝛽-smoothness over
MONO.

Proof: TheMSE component of RPC contributes to its 𝛽-smoothness
by ensuring that the gradient changes smoothly with respect to
changes in predictions, given its quadratic nature. The added rank-
ing loss QAC, despite introducing non-linearity, does not signif-
icantly affect the overall gradient’s smoothness due to its linear
relation to the score differences. Thus, the combination ensures a
bounded gradient variation, denoted by 𝛽RPC.

For MONO, the use of ReLU in its ranking loss introduces points
of non-differentiability when the argument crosses zero, leading to
potential jumps in the gradient. This behavior makes it challenging
to establish a global 𝛽-smoothness constant, as the gradient’s rate
of change can be unbounded near these points.

Therefore, RPC, with its blend of MSE and a controlled rank-
ing loss, ensures a smoother gradient profile compared to MONO,
thereby exhibiting enhanced 𝛽-smoothness. This property is critical
for the convergence and stability of gradient-based optimization
algorithms, making RPC a more robust and reliable method for
image quality assessment tasks.

4 Experiments
We outline our experimental setup and describe experiments con-
ducted with our proposed DCQ Loss across various advanced Blind
Image Quality Assessment methods. We also compare its perfor-
mance using different Rank and Image Quality Assessment loss
functions under the same BIQA method. Finally, a series of ablation
studies confirm DCQ Loss’s effectiveness.

4.1 Experimental Setups
To broadly validate the effectiveness of the method, for NR (No-
Reference) datasets, we employed four synthetic datasets: TID2013
[32], LIVE [37], VCL [62], and CSIQ [17], along with one real-world
dataset, LIVEC [8]. Our dataset splitting is based on reference im-
ages to avoid content overlap, and the experiments were repeated
10 times with the median values reported. To measure the perfor-
mance of the proposed method, the Pearson Linear Correlation
Coefficient (PLCC) [1] and the Spearman Rank Order Correlation
Coefficient (SRCC) [61] are employed. We train the model by mini-
mizing the objective above. We use Adam as optimizer. The initial
learning rate is set to 5 × 10−5 or 1 × 10−4, scheduled by the cosine
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Table 1: Quantitative comparison with related works on public NR benchmarks, including the traditional LIVE, CSIQ, TID2013,
LIVECandVCLwithMOS labels. The best and second results are colored in red and blue, and “-” indicates the score is not available
or not applicable. * represents the results reported in the original paper on four types of distortion (JP2K,JPEG,WN,BLUR)

Dataset LIVE [36] CSIQ [16] TID2013 [31] LIVEC [8] VCL [62]

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

PQR [63] 0.971 0.965 0.901 0.873 0.864 0.849 0.836 0.808 - -
HFD [51] 0.971 0.951 0.890 0.842 0.681 0.764 - - - -
MetaIQA [73] 0.959 0.960 0.908 0.899 0.868 0.856 0.802 0.835 - -
TIQA [59] 0.965 0.949 0.838 0.825 0.858 0.846 0.861 0.845 - -
WaDIQaM [4] 0.955 0.960 0.844 0.852 0.855 0.835 0.671 0.682 - -
BIECON [15] 0.961 0.958 0.823 0.815 0.762 0.717 0.613 0.613 - -
TReS [10] 0.968 0.969 0.942 0.922 0.883 0.863 0.877 0.846 - -
MANIQA [55] 0.983 0.982 0.968 0.961 0.943 0.937 0.913 0.905 0.977 0.976
HyperIQA [38] 0.966 0.962 0.942 0.923 0.858 0.840 0.882 0.859 - -
DBCNN [69] 0.971 0.968 0.959 0.946 0.865 0.816 0.869 0.851 0.930 0.946
RankIQA+FT [21] - 0.981 - - 0.799 0.780 - - - -
dipIQ* [23] 0.957 0.958 0.949 0.930 0.894 0.877 - - - -
Rank Order [52] 0.966 0.960 - - - - - 0.827 0.642 0.631

DBCNN-DCQ 0.977 0.979 0.969 0.968 0.922 0.912 0.908 0.888 0.980 0.979
MANIQA-DCQ 0.987 0.984 0.983 0.981 0.958 0.949 0.914 0.906 0.977 0.977

Table 2: Ablation experiments on the performance of our proposed model via different methods

Dataset LIVE[36] CSIQ[16] TID2013[31] LIVEC[8] VCL[62]

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

DBCNN [69] 0.971 0.968 0.959 0.946 0.865 0.816 0.869 0.851 0.936 0.957
DBCNN-DCQ 0.977 0.979 0.969 0.968 0.922 0.912 0.908 0.888 0.980 0.979
ResNet-50 [12] 0.911 0.920 0.891 0.868 0.753 0.704 0.831 0.819 0.909 0.920
ResNet-50-DCQ 0.944 0.962 0.912 0.908 0.815 0.835 0.851 0.838 0.931 0.939
HyperIQA [38] 0.966 0.962 0.942 0.923 0.858 0.840 0.882 0.859 0.871 0.901
HyperIQA-DCQ 0.978 0.977 0.967 0.959 0.893 0.901 0.893 0.860 0.912 0.932
MANIQA [55] 0.983 0.982 0.968 0.961 0.943 0.937 0.913 0.905 0.977 0.976
MANIQA-DCQ 0.987 0.984 0.983 0.981 0.958 0.949 0.914 0.906 0.977 0.977

Table 3: Comparison of cross-dataset performance on public
benchmarks.

Train dataset LIVEC

Test dataset LIVE CSIQ VCL

Method PLCC SRCC PLCC SRCC PLCC SRCC

DBCNN 0.736 0.804 0.606 0.579 0.487 0.555
MANIQA 0.761 0.823 0.729 0.713 0.581 0.650

DBCNN-DCQ 0.738 0.819 0.659 0.652 0.547 0.576
MANIQA-DCQ 0.772 0.827 0.739 0.724 0.591 0.658

annealing rule.We optimized the mini-batch size to 16 for 50 epochs.

All experiments are performed on a single NVIDIA GeForce RTX
4090 GPU. We have selected networks such as DBCNN, MANIQA,
HyperIQA, ResNet-50, and VGG to verify the universality of the
proposed loss. The deep learning framework used in the experiment
is PyTorch.

4.2 Comparison with SOTA BIQA Methods
In our study, we integrated DCQ Loss with MANIQA and tested
its effectiveness on five benchmark datasets, comparing it with
established Blind Image Quality Assessment methods. The results,
detailed in Table 1, show our method’s superior accuracy, especially
notable when compared with other widely-used BIQA and Rank-
based methods like RankIQA, dipIQ, and rank order. For example,
on the TID2013 dataset, DCQ Loss with MANIQA improved the
Pearson Linear Correlation Coefficient from 0.943 to 0.958 and the
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Table 4: Quantitative comparison with related works on the loss of NR models.

Backbone DBCNN ResNet-50

Dataset TID2013 CSIQ VCL TID2013 CSIQ VCL

Method PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC

Ori MSE 0.865 0.816 0.959 0.946 0.930 0.946 0.753 0.704 0.891 0.868 0.907 0.920
RankNet [5] 0.868 0.877 0.925 0.945 0.957 0.967 0.793 0.825 0.816 0.897 0.842 0.916
Linear Induced [18] 0.842 0.828 0.949 0.940 0.956 0.954 0.716 0.687 0.901 0.891 0.910 0.916
MONO 0.721 0.679 0.885 0.889 0.892 0.925 0.416 0.381 0.823 0.796 0.763 0.828
PLCC + SRCC 0.869 0.843 0.930 0.917 0.924 0.933 0.722 0.701 0.889 0.866 0.899 0.911
PLCC 0.858 0.833 0.931 0.920 0.939 0.938 0.711 0.678 0.903 0.885 0.889 0.897
NIN Loss [18] 0.862 0.839 0.950 0.942 0.959 0.957 0.751 0.736 0.910 0.905 0.883 0.885

Ours 0.922 0.912 0.969 0.968 0.980 0.979 0.815 0.835 0.912 0.908 0.931 0.939

Table 5: Ablation studies on the proposed models with dif-
ferent batch sizes.

Dataset TID2013 [31] CSIQ [16]

Method PLCC SRCC PLCC SRCC

DBCNN-DCQ 8 0.907 0.890 0.959 0.952
DBCNN-DCQ 16 0.922 0.912 0.969 0.968
DBCNN-DCQ 24 0.916 0.912 0.969 0.966
DBCNN-DCQ 32 0.913 0.910 0.971 0.968
DBCNN-DCQ 40 0.915 0.913 0.972 0.968
DBCNN-DCQ 48 0.921 0.911 0.973 0.969
DBCNN-DCQ 56 0.921 0.909 0.971 0.968
DBCNN-DCQ 64 0.914 0.907 0.971 0.968

Table 6: Ablation studies on the components of proposed
models.

Dataset TID2013 [31] CSIQ [16] VCL [62]

Method PLCC SRCC PLCC SRCC PLCC SRCC

MSE 0.865 0.816 0.959 0.946 0.930 0.946
MONO 0.721 0.679 0.885 0.889 0.892 0.925

w/o MSE 0.907 0.906 0.966 0.963 0.976 0.976
w/o QDC 0.905 0.906 0.959 0.963 0.976 0.977
w/o QAC 0.890 0.866 0.966 0.962 0.977 0.978

Ours 0.922 0.912 0.969 0.968 0.980 0.979

Spearman Rank Order Correlation Coefficient from 0.937 to 0.949.
Similarly, on the CSIQ dataset, we observed significant improve-
ments in both PLCC and SRCC metrics.

Further, we applied DCQ Loss to four different BIQA methods:
HyperIQA, DBCNN, ResNet-50, and MANIQA. The results of this
ablation study, presented in Table 2, compare the performance of
each method with (IQA-DCQ) and without DCQ Loss on various
datasets. The incorporation of DCQ Loss consistently enhanced

performance metrics across all methods. Notably, with HyperIQA
on TID2013, the PLCC increased from 0.858 to 0.893, and the SRCC
from 0.840 to 0.901. DBCNN also showed a marked improvement,
achieving high scores on multiple datasets. Similarly, ResNet-50
and MANIQA exhibited significant gains in both PLCC and SRCC,
particularly on TID2013 and other datasets. These enhancements
across different methods and datasets highlight DCQ Loss’s effec-
tiveness in improving the robustness and precision of BIQA models.

4.3 Cross-Dataset Evaluation
This experiment aimed to assess DCQ Loss’s effectiveness across
various datasets by training on the LIVEC dataset and testing on
others. The results, detailed in Table 3, provide an in-depth analysis
of cross-dataset performance on public benchmarks.

The table compares two prominent Blind Image Quality As-
sessment methods – DBCNN, and MANIQA – with and without
DCQ Loss. It utilizes Pearson Linear Correlation Coefficient and
Spearman Rank Order Correlation Coefficient for evaluating the
correlation between MOS and predicted image quality scores.

Notably, DCQ Loss integration significantly improves the BIQA
methods’ performance. This is especially evident with MANIQA-
DCQ, which shows marked increases in PLCC and SRCC across
all datasets. These enhancements also extend to other datasets
like CSIQ and VCL, demonstrating DCQ Loss’s effectiveness in
enhancing cross-dataset BIQA performance.

4.4 Comparison with different losses
Table 4 demonstrates the performance comparison of related Blind
Image Quality Assessment domain loss functions with the proposed
function under two models, DBCNN and ResNet-50, across three
datasets (TID2013, CSIQ, and VCL). The loss functions selected
for comparison include: 1) The original Mean Squared Error loss
function; 2) RankNet: a classic loss function used by recommen-
dation algorithms, employed as a loss function in dipIQ; 3) Linear
Induced [19]: a loss function proposed by Li et al.; 4) MONO [19]:
another loss function proposed by Li et al.; 5) PLCC: Pearson linear
correlation coefficient used as a loss function; 6) NIN loss [18]: a
loss function proposed by Li et al.
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Figure 4: On TID2013 dataset, scatter plots of the DBCNN
model, normalized and based on MSE and the proposed DCQ,
were created to display the relationship between the ground-
truth mean opinion scores (MOSs) and the predicted scores.

In the DBCNN architecture, DCQ Loss achieved impressive PLCC
and SRCC scores on TID2013, CSIQ, and VCL. Similarly, ResNet-
50 results demonstrated DCQ Loss’s effectiveness across various
architectures. Overall, DCQ Loss’s efficacy and robustness across
different backbones and datasets were clearly highlighted.

4.5 Ablation Studies and Visualization
4.5.1 Ablation with different Bacthsize. As shown in Table 5, the
ablation studies conducted on the proposed DCQ Loss, denoted as
DBCNN-DCQ for its implementation within the DBCNN model,
aimed at exploring the influence of varying batch sizes on the
model’s performance. This investigation was structured around
two renowned datasets, TID2013 and CSIQ.

An in-depth analysis of the results suggests that while batch
size does influence model performance, the impact is relatively
modest. Notably, at a batch size of 16, the algorithm already achieves
near-optimal performance on both datasets, with PLCC and SRCC
scores of 0.922 and 0.912, respectively, for TID2013, and similarly
high scores for CSIQ. This indicates that beyond this point, further
increases in batch size do not result in substantial improvements
in accuracy. Such a trend demonstrates the robustness of the DCQ
loss function to the batch size parameter, suggesting its ability to
maintain high performance levels without the need for extensive
tuning of this particular hyperparameter.

4.5.2 Visual Analysis. As shown in Fig. 4, on the TID2013 dataset,
scatter plots of MOS and predicted results on the test set are ob-
tained for the DBCNN model trained using MSE and DCQ Loss,
respectively, with both axes normalized. The red diagonal line rep-
resents the ideal prediction line. It is evident that the results trained
with DCQ Loss align more closely with the ideal prediction, indi-
cating superior performance.

4.5.3 Ablation with QDC and QAC. To analyze the experimental
results of each component within the proposed DCQ loss func-
tion, we conducted ablation experiments, which included: 1) w/o
MSE, meaning the removal of the original MSE loss from DCQ
Loss; 2) w/o QDC, entailing the removal of QDC constraints from
DCQ Loss; and 3) w/o QAC, involving the elimination of QAC con-
straints from DCQ Loss. As shown in table 6, the experimental
results demonstrated that each component of the proposed loss
function contributed positively to experimental gains. Compared
to the original MSE loss, both QDC and QAC exhibited superior

Figure 5: Ablation with models of different sizes including
CNNIQA, VGG, DBCNN and MANIQA.

performance improvements. Without MSE has a minimal impact
on the performance of our loss function, which suggests that the
QDC and QAC components we introduced can offer effective rank
constraints.

4.5.4 Ablation with models of different sizes. To delve deeper into
the impact of the proposed loss function on models of varying
sizes, we selected VGG, DBCNN, and MANIQA for analysis based
on their results on the TID2013 dataset. Among these, VGG and
DBCNN are comparatively smaller models, while MANIQA is a
larger model based on the Transformer architecture. As shown in
the Fig. 5, for smaller models such as VGG and DBCNN, replac-
ing the loss function with the proposed DCQ Loss significantly
enhances performance. However, for the larger MANIQA model,
the improvement is not as pronounced as it is for DBCNN and
VGG. This is understandable and implies that our loss function
is adept at capturing rank information, especially for smaller net-
works, where the rank information captured using Mean Squared
Error (MSE) is insufficient. Conversely, for more complex models
like MANIQA, which inherently capture more rank information
due to their network structure, the marginal improvement offered
by the loss function is naturally less substantial.

5 Conclusion
In this research, we have developed an innovative approach for
image quality assessment, effectively aligning the model’s predic-
tions with human perceptual standards. Our method integrates
Mean Squared Error loss with a novel RPC to ensure not only ac-
curacy in predicting Mean Opinion Scores but also consistency in
ranking image quality. This approach is distinct in its emphasis on
relative differences and sign consistency, mirroring the nuances
of human perception in assessing image quality. The effectiveness
of our proposed method has been substantiated through extensive
validations on multiple mainstream datasets. These evaluations
have demonstrated its superior performance in accurately discern-
ing and ranking image quality, thus significantly bridging the gap
between computational models and human perception.
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