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A. Preliminaries
A.l. Video Generation Models

Video Generation Models aim to synthesize temporally consistent video sequences x = {xg, x1, ..., }, where x; indicates
the ¢-th frame. The video is generated by an autoregressive model [36, 55, 69, 74], a diffusion model [30, 53], or a masked
transformer model [9, 82]. With the rise of diffusion models [29, 41, 42, 61, 62], which have now become the mainstream
approach in video generation due to its high-quality generation performance, significant progress has been achieved in this
field [2, 7, 17, 35, 37, 53, 56, 58, 63, 67, 78].

Conditional Video Generation is formulated as p(x|c) and it varies depending on the type of control signal ¢ which
denotes conditions such as text prompts or other control signal. Approaches such as [25, 48, 73] incorporate images as
control signals for the video generator, improving both video quality and temporal relationship modeling. Methods such as
Direct-a-Video [77], MotionCtrl [72], and CameraCtrl [27] use camera embedders to adjust camera poses, enabling control
over camera movements in generated videos. 3DTrajMaster [21] extends this capability by transforming 2D camera signals
into 3D for more advanced control. ReCamMaster [6] re-shoots the source video with novel camera trajectories.

Autoregressive Video Generation Models. Since game videos require variable-length or even infinite-length gen-
eration to enable interactive game experience, autoregressive mechanism is necessary. Autoregressive video generation
refers to a process where new frames are generated based on previously generated frames, which can be expressed as
p(z1, @2, s xn) = [}, p(z;]1, T2, ..., xi—1), Where x; indicates the i-th frame. An intuitive approach is to adopt GPT-like
next-token prediction methods [18, 36, 69]; however, this approach often falls short in terms of generation quality. Relying
on the exceptional performance of diffusion models, Diffusion Forcing [12, 60] implements autoregression by applying dif-
ferent levels of noise to different frames, allowing the denoising of new frames with higher noise levels while conditioning
on previous frames with lower noise levels. Methods [15, 20, 66, 81] leveraging Diffusion Forcing has achieved remarkable
results.

A.2. Al-driven Game Applications

Game Video Generation. Previous works have utilized GANs [33, 34, 43] to generate game videos or used NeRF to
reconstruct 3D scenes to simulate the game process [44, 45], but often fall short in terms of generation quality. Using the
powerful generative capabilities of diffusion models, some works [3, 15, 20, 66, 76] have produced high-quality game videos.
However, the content is typically confined to specific preexisting games. Open-domain Methods [16, 20, 81], by utilizing
multi-stage training or large-scale training datasets, create new content for video games.

Game Design Assistant. Al-powered design assistants offer numerous advantages throughout the creative process, de-
pending on the tool, the type of AI and the creative workflow. These systems can streamline development, reduce costs,
reduce manual effort, improve team collaboration, and even inspire creativity [38]. In the gaming domain, most existing
Al-driven design tools primarily assist by auto-completing an ongoing design [59] or generating multiple design suggestions
for creators to evaluate [10, 39, 47, 64].

Intelligent Game Agent. Reinforcement learning has long been the predominant approach in this domain. Early efforts
explored the use of hierarchical RL [4, 8, 19, 32, 40, 50, 83] in the context of MineRL competitions [26]. However, due to
the absence of guidance from prior knowledge, such approaches often struggle to perform effectively on long-horizon tasks.
With the advancement of LLM [1, 65], leveraging their prior knowledge to plan long-horizon tasks has shown promising
results. Recent advancements in LLM-related research [31, 54, 68, 70, 75, 84] have significantly propelled the progress of
agents in long-horizon tasks.



B. Overview Table for Levels of GGE

In Table A, we demonstrate the overview of different maturity levels for GGE.

Level Name Technical Features Application Examples Category

LO No Manual creation and Super Mario: fixed Traditional

Al-Assisted integration of all game levels; Tetris: fixed Manual Game
Assets assets and logic. rules. Development
Generation
L1 Al-Assisted Al-assisted creation and Cyberpunk 2077:
Assets integration of game Al-generated assets; Al
Generation assets and logic. Dungeon: real-time
NPC dialogues.

L2 Physics- Real-time E.g., Player sets fire to | Next-Gen
Compliant physics-compliant wooden bridges, Al Al-Driven
Interactive video generation with dynamically renders Generative

World user interactions, blazing spans and Game Engine
Generation supported by the rerouted enemy paths
Dynamics module.
L3 Causal- World simulation with E.g., Killing a faction
Reasoning causal reasoning across | leader in Act 1 triggers
World time based on L2, city-wide riots in Act 3.
Simulation incorporating the
Intelligence module.
L4 Self-Evolving Autonomous world E.g. NPCs self-organize
World evolution with governments and trade
Ecosystem emergent behaviors as population increases.
based on L2 and L3,
requiring advanced
Intelligence module.

Table A. Proposed Maturity Levels (LO-L4) of Generative Game Engine. LO-L1 represent traditional manual game development with
limited Al assistance, while L2-1.4 showcase next-generation game engines featuring video-based world generation.

C. Additional Alternative Views

Alternative View #3: The economic costs of GGE appear to be significant. For instance, the computational overhead
is substantial since GGE relies on IGV and LLMs, which are computationally intensive large models. Do these

costs prevent IGV-centered GGE from becoming the next generation of game engines? Are these costs we incur for
implementing GGE justified by the benefits it brings?

Potential Solution #3: Regarding the computational costs, we believe these can be effectively reduced through technolog-
ical advancements. Recent works have demonstrated promising advances in efficient autoregressive video generation. On the
algorithmic front, CausVid [80] achieves real-time frame generation through distribution matching distillation (DMD) [79],
while Cosmos [49] enables real-time generation by combining Medusa speculative decoding, key-value caching, tensor par-
allelism, and low-resolution adaptation. Additionally, hardware optimizations like GPU parallelization, quantization, and
knowledge distillation have significantly accelerated inference speeds for autoregressive models. With ongoing research in
efficient models, we believe autoregressive video generation will eventually achieve real-time performance on commonly
available hardware accessible to game developers.

Beyond computational costs, other economic considerations include:



* Data Collection Costs: These will be mitigated as more open-source datasets like GameGen-X [11] become available.
While initial training incurs costs, trained models reduce future asset production costs, leading to overall savings.

¢ Licensing Costs: Generative models will lower the barrier for developers to create their own new IPs. Building a mutually
beneficial ecosystem between developers and gaming companies is also advantageous.

» Safety Control Costs: While this affects all generative Al, not just IGV, the benefits of incorporating generative Al
outweigh these costs, as demonstrated by successful products like Runway [56], Midjourney [46], and ChatGPT [51].

We believe that these costs will not impede GGE’s development or future potential. The technology is continuously
evolving, with costs decreasing while model capabilities become increasingly powerful, making the benefits more and more
significant. This mirrors the trajectory of large language models. Compared to ChatGPT [51] released in 2022, today’s LLMs
demonstrate stronger performance (like DeepSeek-R1 [22]’s reasoning capabilities and GPT-40’s multimodal generation
abilities [52]) while becoming cheaper and more accessible (open-source models like DeepSeek [22] and Qwen [5] now offer
performance comparable to commercial models).

While GGE currently faces some cost-related concerns in the short term, these challenges are outweighed by its transfor-
mative value. As discussed in Alternative View #2 in Sec. 6, GGE offers significant advantages over traditional game engines,
such as personalized gaming experiences, infinitely generated game content, and lowering the barrier to game development so
that everyone can become a game designer. These compelling benefits, which are unattainable with traditional game engines,
make GGE’s economic costs worthwhile to address and overcome.

D. Ethical Issues

Copyright Issues: How should we determine copyright ownership and protect legitimate copyright interests of all

parties involved in GGE-generated games?

Copyright protection presents a new challenge in generative Al development, including IGV, which requires significant
attention from both technical and legal perspectives. While this is a complex issue, the industry is actively working towards
solutions that can foster the mutual development of Al technology and copyright protection. To address these challenges, we
propose several approaches:

Training data for IGV should prioritize the use of copyright-free or properly licensed data sources to minimize legal
risks. Game developers can build mutually beneficial partnerships with copyright holders to legally obtain data and share
the copyright of the created content. For instance, while noting the Studio Ghibli’s recent copyright concerns with OpenAl,
we observe that Ghibli has successful experiences in collaborating with game companies (e.g., development of game “Ni no
Kuni”). Such examples demonstrate the feasibility and value of proper copyright collaboration.

Technically, research works [23, 24] on dataset copyright protection and detection of unauthorized training data usage are
progressing, which has positive implications for IGV in game development.

Security Issues: What measures can be implemented to prevent the generation of harmful content by generative

models such as IGV?

IGV systems are built upon existing video generation models, thus inheriting their established safety measures. Current
commercial video generation services like Runway and Sora have implemented comprehensive safety systems that filter out
inappropriate content including violence, pornography, hate speech, and other harmful materials. From a technical perspec-
tive, safety measures can be implemented through various approaches: (1) Value alignment [14, 57] through techniques like
RLHF during the model post-training phase would establish fundamental safety boundaries. This alignment with human
preferences and values can effectively constrain the model’s output content; (2) Real-time harmful content detection [28, 71]
using VLMs can quickly analyze generated content, identify potential harmful elements, and block inappropriate content in
real-time, which is particularly crucial in interactive gaming environments.

Creativity Issues: Can IGV serve as a creative tool, allowing for deep human creativity?

We believe IGV can enhance human creativity for the following reasons: (1) Interactive generative video technology
eliminates mechanical and repetitive tasks in game development, such as debugging, writing basic code, and building standard
scenes. By automating these uncreative aspects, developers can channel their energy into creative endeavors, focusing on



innovative gameplay design and unique artistic expressions that truly matter to the gaming experience. (2) IGV breaks down
technical barriers, making game development accessible to creators from professional studios to independent developers.
This democratization enables more diverse voices to enter the gaming industry, each bringing their unique perspectives and
creative visions. Like other AIGC applications, it enables creators to realize their ideas without technical constraints, as
demonstrated by artist Sofia Crespo’s work' that blends technology with organic art, showing how Al amplifies creativity.

Democratization Issues: Does democratizing game creation diminish its value?

We believe that democratizing game creation will not diminish its value, but rather enhance the overall value and creativity
of the entire field. Here is our analysis and examples:

The democratization of gaming won’t diminish creative value. The widespread availability of technology enables more
people to enter this field, generating more diverse creative thinking and innovative designs. Creation value lies in innovation
and personalization, not just technical difficulty. Through this technology, even ordinary users can create games with unique
characteristics and personal style, which holds its own distinctive value. A good example is the opening up of image genera-
tion models, which hasn’t diminished the value of artistic creation. People with varying levels of professional expertise have
shared numerous new artistic works on Civitai [13], which has actually enhanced the creativity in this field and the value of
its works.

Labor Issues: How should we view the potential negative impact of highly automated productivity tools like GGE

on labor in the gaming industry?

We acknowledge the labor impact concern with generative AL. IGV aims to enhance productivity and creativity rather
than replace human workers. We advocate for measures like education and support programs to help industry professionals
leverage Al tools, ensuring positive industry transformation.

E. Workflow Integration with GGE

It is important to emphasize that the introduction of generative game engines (GGE) will not lead to a single, rigid game
development workflow. We provide below a framework example of how GGE can be incorporated into game development
workflows

Phase #1: Pre-production Phase

* Concept Design: Define core game elements (gameplay mechanics, story, target audience, art style) through LLM
consultation and convert to IGV condition prompts.

* Prototype Development: Select suitable base models based on computing power and performance requirements,
and develop prototypes using initial prompts for feasibility testing.

Phase #2: Production Phase

* Asset and Logic Requirements: Create detailed prompts for specific assets and logic requirements (e.g., character
model descriptions, area map sketches, level-up rule systems).

* Training Data Collection and Model Fine-tuning: Fine-tune models with targeted game data (e.g., collecting
copyright-free space movie/game assets for a space exploration game).

| G

Phase #3: Testing Phase

* Functionality Testing: Test prompt-based content generation and screen for harmful content.
¢ Compatibility and Performance Testing: Optimize performance across different devices with necessary algo-
rithm/hardware acceleration.

Inttps://en.wikipedia.org/wiki/Sofia_Crespo
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Phase #4: Post-launch Maintenance

* Content Updates: Update model parameters and prompts for new content (DLCs, characters, events).
» Data Analysis and Optimization: Use player behavior data (with consent) for model fine-tuning and reinforcement
learning.

| G

Feasibility Requirements

The successful implementation of this workflow relies on these key factors:

* (1) Model Capability: Robust base IGV models that support efficient control, fine-tuning, and fast inference.

* (2) Data Accessibility: Well-established data sharing and copyright mechanisms that enable legal and cost-effective
access to high-quality training data.

* (3) Computing Resources: Accessible Al computing infrastructure, either through local hardware resources or
affordable cloud computing services.
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