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A RELATED WORK

We provided an elaborate treatment of related work.

A.1 ANALYSES AND EXTENSIONS OF NEURAL COLLAPSE

Extensive research has examined the neural collapse from various perspectives, including loss func-
tion (Lu & Steinerberger, 2020; Wojtowytsch et al., 2020), the use of mse loss (Han et al., 2021),
feature normalization (Yaras et al., 2022), label smoothing (Zhou et al., 2022), fine-grained struc-
ture (Yang et al., 2023), generalization (Hui et al., 2022), out-of-distribution with normalization (Haas
et al., 2022), imbalanced learning (Dang et al., 2023; Zhong et al., 2023), transfer learning (Galanti
et al., 2021; Kornblith et al., 2021), federated learning (Li et al., 2023) or complex of them (Xu et al.,
2023). Additionally, some studies have considered extensions of neural collapse such as intermediate
layer collapse (Rangamani et al., 2023), generalized neural collapse (Liu et al., 2023), a novel met-
ric (Xu & Liu, 2023). Naturally, geometric analyses have also arisen (Zhu et al., 2021; Thrampoulidis
et al., 2022; Tirer et al., 2023).

A.2 ADVANTAGES OF ORTHOGONALITY

Orthogonality has also shown advantages in various environments, such as regularization in multi-task
learning (He et al., 2020), vision applications (Cao et al., 2021), features normalization (Lu et al.,
2023), optimization (Chiley et al., 2019; Hu et al., 2020; Wu et al., 2020), regularization-better training
stability- robustness-generalization (Liu et al., 2021; Achour et al., 2022; Xu et al., 2022; Wang et al.,
2020; Li et al., 2019; Ranasinghe et al., 2021; Trockman & Kolter, 2021), explainability (Zhang et al.,
2022a; Yang et al., 2020b), continual learning (Pernici et al., 2021; Hersche et al., 2022), reduction on
computation load (Yang et al., 2020a), quantization (Ma et al., 2023), graph neural networks (Bodnar
et al., 2022; Yang et al., 2022a), transformer (Huang et al., 2022; Kong et al., 2022), representation
learning (Medini et al., 2020; Tiao et al., 2023), continual learning (Chaudhry et al., 2020; Ramasesh
et al., 2021; Saha et al., 2021; Farajtabar et al., 2020), disentanglement (Sarhan et al., 2020; Liu et al.,
2020; Cha & Thiyagalingam, 2023).

B ZERO-MEAN NEURAL COLLAPSE

Class Mean. In the common neural collapse, the trained class mean is as Eq. 1.

µk =
1

Nk

Nk∑
i=1

hi,k (1)

where K is the number of classes and Nk is the number of input samples included in the k-th class.
hi,k ∈ RD means the feature vector of i-th input sample in the k-th class.

The zero class mean µ0
k is calculated in the same way with the trained class mean Eq. 2.

µ0
k = µk (2)

Global Mean. In the common neural collapse, the trained global mean µG is as Eq. 3.

µG =
1

K

K∑
k=1

µk (3)

where µk is the k-th class mean.

This global mean will not be trained and fixed to zero-mean vector like Eq. 4.
µ0

G = 0D (4)
where µ0

G denotes the zero global mean and 0D ∈ RD is the zeros vector.
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Total Covariance. In the common neural collapse, the trained total covariance ΣT ∈ RD×D is as
Eq. 5.

ΣT =
1

K

K∑
k=1

(
1

Nk

Nk∑
i=1

(hi,k − µG) (hi,k − µG)
⊺

)
(5)

This total covariance will be changed like Eq. 6.

Σ0
T =

1

K

K∑
k=1

(
1

Nk

Nk∑
i=1

hi,kh
⊺
i,k

) (
∵ µ0

G = 0D

)
(6)

where Σ0
T ∈ RD×D denotes the total covariance in the zero-mean NC.

Between-class Covariance. In the common neural collapse, the between-class covariance ΣB ∈
RD×D is as Eq. 7.

ΣB =
1

K

K∑
k=1

((µk − µG) (µk − µG)
⊺
) (7)

This between-class covariance will be changed like Eq. 8.

Σ0
B =

1

K

K∑
k=1

µkµ
⊺
k

(
∵ µ0

G = 0D

)
(8)

where Σ0
B ∈ RD×D denotes the between-class covariance in the zero-mean NC.

Within-class Covariance. In the common neural collapse, the within-class covariance ΣW ∈
RD×D is as Eq. 9.

ΣW =
1

K

K∑
k=1

(
1

Nk

Nk∑
i=1

(hi,k − µk) (hi,k − µk)
⊺

)
(9)

The zero within-class covariance Σ0
W is calculated in the same way with the within-class covariance

(Eq. 10.
Σ0

W = ΣW (10)

where Σ0
W ∈ RD×D denotes the within-class covariance in the zero-mean NC.

(NC1) Variability collapse: ΣW → 0D

(ZNC1) Variability collapse: Σ0
W → 0D

(NC2) Convergence to simplex ETF:

|∥µk − µG∥2 − ∥µk′ − µG∥2| → 0 ∀k,k′

⟨µ̃k, µ̃k′⟩ → K

K − 1
δk,k′ − K

K − 1
∀k,k′

where µ̃k = (µk − µG) / ∥µk − µG∥2 denotes the normalized k-th class mean and δk,k′ is the
Kronecker delta symbol.

(ZNC2) Convergence to orthogonal matrix:

|∥µk∥2 − ∥µk′∥2| → 0 ∀k,k′

⟨µ̃k, µ̃k′⟩ → 0 ∀k,k′

where µ̃k = µk/ |µk|2 denotes the normalized k-th class mean.
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Table 1: Test Accuracy (%) at zero error and last epoch.

Arch \ Dataset MNIST Fashion MNIST SVHN CIFAR10 CIFAR100

Zero Last Zero Last Zero Last Zero Last Zero Last

VGG 99.40 99.56 92.92 93.31 93.82 94.53 87.85 88.65 63.03 63.85
ResNet 99.32 99.71 93.29 93.64 94.64 95.70 88.72 89.44 66.19 66.21
DenseNet 99.65 99.70 94.18 94.35 95.87 95.93 91.14 91.19 77.19 76.56

VGG† 99.49 99.56 93.25 93.56 93.91 94.51 87.54 88.44 63.14 63.95
ResNet† 99.52 99.64 93.96 93.77 92.45 95.21 87.49 89.45 66.03 65.11
DenseNet† 99.64 99.61 93.92 94.21 95.21 95.41 88.20 88.43 70.66 70.95

VGG+FNO† 99.49 99.49 92.98 93.31 93.89 94.16 88.14 89.10 62.59 64.17
ResNet+FNO† 99.40 99.67 93.90 94.28 92.30 95.41 87.61 89.59 67.15 66.20
DenseNet+FNO† 99.62 99.60 93.91 94.08 95.11 95.22 88.64 88.76 72.23 72.54

(NC3) Convergence to self-duality:∥∥∥∥∥ W ⊺

∥W ∥F
− Ṁ

∥Ṁ∥F

∥∥∥∥∥
F

→ 0

where Ṁ = [µk − µG, 1 ≤ k ≤ K] ∈ RD×K denotes the matrix obtained by concatenating the
class means into the columns of a matrix.

(ZNC3) Convergence to self-duality:∥∥∥∥∥ W ⊺

∥W ∥F
− Ṁ

∥Ṁ∥F

∥∥∥∥∥
F

→ 0

where Ṁ = [µk, 1 ≤ k ≤ K] ∈ RD×K .

(NC4) Simplification to NCC:
argmax

k′
⟨wk′ ,h⟩+ bk′ → argmin

k′
∥h− µk′∥2

(ZNC4) Simplification to NCC:
argmax

k′
⟨wk′ ,h⟩ → argmin

k′
∥h− µk′∥2

B.1 ZERO-MEAN NEURAL COLLAPSE IN IMAGE CLASSIFICATION BENCHMARKS

Datasets. To reproduce the analyses environment for zero-mean neural collapse, we follow (Papyan
et al., 2020). We utilize the MNIST (Deng, 2012), Fashion MNIST (Xiao et al., 2017), SVHN (Netzer
et al., 2011), CIFAR10, and CIFAR100 datasets (Krizhevsky et al., 2009). To eliminate imbalance
factor in the datasets, we subsamples 5,000 samples per class for MNIST and 4,600 samples per class
for SVHN. The remaining datasets are already balanced: 6,000 examples for Fashion MNIST, 5,000
examples for CIFAR10, and 500 examples for CIFAR100. There was no data augmentation except
normalization.

Architectures and Implementation Details. We train three types of convolutional networks:
VGG (Simonyan & Zisserman, 2014), ResNet (He et al., 2015), and DenseNet (Huang et al., 2017).
Following (Papyan et al., 2020), we minimize the cross-entropy loss using SGD with momentum 0.9
and the weight decay is set to 5e−4. The batch size and the number of epochs are set to 256 and 350,
respectively. The initial learning is set differently for datasets and architectures and it is decayed by
10 at 1/3 and 2/3. We itemize architectures for each dataset with the initial learning rate:

• MNIST: VGG11 (0.06786), ResNet18 (0.013296), and DenseNet40 (0.094015)
• Fashion MNIST: VGG11 (0.009597), ResNet18 (0.13025), and DenseNet250 (0.009597)
• SVHN: VGG11 (0.094015), ResNet18 (0.009597), and DenseNet40 (0.06786)
• CIFAR10: VGG13 (0.048982), ResNet18 (0.06786), and DenseNet40 (0.094015)
• CIFAR100: VGG13 (0.180451), ResNet50 (0.13025), and DenseNet250 (0.13025)
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Results and Analyses. We visualize the observations of various experiments. Best descriptions in
captions of each figure.

Figure 1: Class mean vectors become equinorm. The y-axis in each cell displays the coefficient of
variation of averaged normalization of class means and class weight vectors. The blue lines represent
Stdk (∥µk∥) /Avgk (∥µk∥) where µk, 1 ≤ k ≤ K denotes the class means of the last-layer features
of the training input samples. The orange lines show Stdk (∥wk∥) /Avgk (∥wk∥) where wk is the
class weight vector of the k-th class. As training advances, the coefficients of variation for both class
means and class weight vectors decrease.

Figure 2: Class means converge to equiangularity. The y-axis in each cell displays the standard
deviation of the cosine similarity between pairs of centered class means and class weight vectors
across all pairs of classes k and k′, ∀ k ̸= k′. wk, µk, and µG are as in Figure 1. The blue lines
represent cosµ (k, k′) = (µk − µG) (µk′ − µG)

⊺
/ (∥µk − µG∥2 ∥µk′ − µG∥2) ∀ k ̸= k′. The

orange lines show cosw (k, k′) = wkw
⊺
k′/ (∥wk∥2 ∥wk′∥2) ∀ k ̸= k′. As training advances, the

standard deviations of cosµ (k, k′) and cosw (k, k′) converge to zero, signifying equiangularity.

Figure 3: Class means converge to maximal-angle equiangularity. The y-axis in each cell displays
the average of cosine similarity of between pairs of centered class means and between pairs of
class weight vectors across all pairs of classes k and k′, ∀ k ̸= k′. The blue lines represent
Avgk,k′ cosµ (k, k′) , ∀k ̸= k′. The orange lines show Avgk,k′ cosw (k, k′) , ∀k ̸= k′. This re-
sult represents the maximum separation achievable among globally centered, equiangular vectors.
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Figure 4: Class means approach to class weight vectors. The y-axis in each cell displays the distance
between the class weight vectors and the normalized, centered class means. The lines represent
the quantities of ∥W − M̃∥2F . W is the class weight matrix. M̃ = Ṁ/∥Ṁ∥F where Ṁ =
(µk)1≤k≤K ∈ RD×K is the matrix whose columns consist of the centered class means. This distance
decreases as training advances. This result indicates that the centered class means are proportionally
related to the class weight vectors like a self-dual manner.

Figure 5: Within-class variation collapses. The y-axis in each cell displays the magnitude of the
between-class covariance compared with the within-class covariance of the last-layer features. The
lines represent tr(ΣWΣ‡

B/K), where tr(·) denotes the trace operator, [·]‡ indicates Moore-Penrose
pseudoinverse, and K is the number of classes. ΣW and ΣB are as in Table 1 of the main paper.
This magnitude decreases as training advances. This result indicates that collapse of within-class
variations occurs.

Figure 6: Classifier works in a similar way to NCC. The y-axis in each cell displays the percentage of
input samples in the training set where there is a mismatch between the classifier;s output and the
result that would have been obtained by selecting argmink ∥h− µk∥2 where h is a last-layer feature
and µk, ∀ 1 ≤ k ≤ K are the class means of last-layer features. The proportion of disagreement
decreases as training advances. This result indicates that the classifier’s decision is gradually simplified
to the nearest class mean decision rule.
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C PROOF FOR THEOREM 1

Note that the constraint constrained optimization problem of OLPM is reduced to an entangled
constraint. We consider the k-th (1 ≤ k ≤ K and K ≥ 2) problem as:

min
H

1

N

nk∑
i=1

Lce (hk,i,Q
∗) ,

s.t. ∥hk,i∥2 − 2

K∑
j ̸=k

h⊺
k,iwj ≤ EHW , 1 ≤ i ≤ nk,

(11)

where Q∗ is the fixed non-negative orthogonal classifier. The problem above is convex as the objective
is a sum of affine functions and log-sum-exp functions with convex constraints. We have the Lagrange
function as:

L̃ =
1

N

nk∑
i=1

− log
exp(h⊺

k,iq
∗
k)∑K

j=1 exp(h
⊺
k,iq

∗
j )

+

nk∑
i=1

λi

∥hk,i∥2 − 2

K∑
j ̸=k

h⊺
k,iqj − EHW

 , (12)

where λi is the Langrange multiplier. We have its gradient with respect to hk,i as:

∂L̃

∂hk,i
= − (1− pk)q

∗
k

N
+

1

N

K∑
j ̸=k

pjq
∗
j + 2λi

hk,i −
K∑

j ̸=k

q∗
j

 , 1 ≤ i ≤ nk. (13)

First we consider the case when λi = 0. ∂L̃/∂hk,i = 0 gices the following equation:

(1− pk)q
∗
k

N
=

1

N

K∑
j ̸=k

pjq
∗
j

K∑
j ̸=k

pjq
∗
k =

K∑
j ̸=k

pjq
∗
j .

(14)

Multiplying q∗
k by both sides of the equation, we should have:

K∑
j ̸=k

pj = 0 (∵ q∗
k
⊺q∗

k′ = δk,k′ , ∀k, k′ ∈ [1,K]) , (15)

which contradicts with pj > 0,∀1 ≤ i ≤ K when the ℓ2 norm of hk,i is constrained and Q∗ has a
fixed ℓ2 norm. So we have λi > 0 and according to the KKT condition:

∥hk,i∥2 − 2

K∑
j ̸=k

h⊺
k,iqj = EHW . (16)

Then we have the equation:

∂L̃

∂h∗
k,i

=
1

N

K∑
j ̸=k

pj
(
q∗
j − q∗

k

)
+ 2λi

h∗
k,i −

K∑
j ̸=k

q∗
j

 = 0, (17)

where h∗
k,i is the optimal solution of hk,i. Multiplying q∗

j′ (j
′ ̸= k) by both sides of Eq. 17, we get:

pj′

N
+ 2λi

(
h∗
k,i

⊺q∗
j − 1

)
= 0. (18)

Since pj′ > 0, we have h∗
k,i

⊺q∗
j < 1. Then for any pair j, j′ ̸= k, we have:

pj
pj′

=
exp

(
h∗
k,i

⊺q∗
j

)
exp

(
h∗
k,i

⊺q∗
j′

) =
exp

(
h∗
k,i

⊺q∗
j − 1

)
exp

(
h∗
k,i

⊺q∗
j′ − 1

) =
h∗
k,i

⊺q∗
j − 1

h∗
k,i

⊺q∗
j′ − 1

. (19)
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Considering that the function f(x) = x/ exp(x) is monotonically increasing when x < 0, we have:

h∗
k,i

⊺q∗
j − 1

exp
(
h∗
k,i

⊺q∗
j − 1

) =
h∗
k,i

⊺q∗
j′ − 1

exp
(
h∗
k,i

⊺q∗
j′ − 1

)
h∗
k,i

⊺q∗
j = h∗

k,i
⊺q∗

j′ = C, pj = pj′ = p, ∀j, j′ ̸= k,

(20)

where C amd p are constants. From Eq. 18, we have:

p = −2Nλi(C − 1), (21)

and
1− pk = (K − 1)p = −2Nλi(K − 1)(C − 1). (22)

From Eq. 17, we have:

h∗
k,i =

1

2Nλi

(1− pk)q
∗
k −

K∑
j ̸=k

pjq
∗
j

+

K∑
j ̸=k

q∗
j

=
1

2Nλi

−2Nλi(K − 1)(C − 1)q∗
k + 2Nλi(C − 1)

K∑
j ̸=k

q∗
j

+

K∑
j ̸=k

q∗
j

= −(K − 1)(C − 1)q∗
k + C

K∑
j ̸=k

q∗
j ,

(23)

From the theorem in (Ji et al., 2022), the margin of a single feature h∗
k,i is defined:

Mk,i := h∗
k,i

⊺q∗
k −max

j ̸=k
h∗
k,i

⊺q∗
j . (24)

Multiplying q∗
k by both sides of Eq. 23, we should have:

h∗
k,i

⊺q∗
k = −(K − 1)(C − 1) ≤ K − 1 (∵ 0 ≤ C < 1) , (25)

and
h∗
k,i

⊺q∗
j = h∗

k,i
⊺q∗

j′ = C ≥ 0, ∀j, j′ ̸= k (26)
When the equality holds, we have:

h∗
k,i

⊺q∗
k = K − 1

h∗
k,i

⊺q∗
j = 0, ∀j ̸= k,

(27)

which is equivalent to Eq. 8 of the main paper and concludes the proof.
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D ALGORITHMS FOR SECTION 6.1 AND 6.2

In this section, we provide algorithms that are more detailed and may help with implementation for
masked and weighted softmax with FNO classifier in a task Tt in section 6.1 and for arc-mixup with
FNO classifier and feature masking in a mini-batch B in section 6.2. These algorithms represent
the whole process in training classification models in continual learning and imbalanced learning,
respectively.

Algorithm 1 Masked and Weighted Softmax with FNO classifier in a Task Tt

Input: (Xt,Yt), Q
Output: P ∈ RNt×K

1: H← RELU(fθ(Xt)) # get features from Xt as Eq. 1 of the main paper.
2: K = {ci | ci of Xt} # initialize a set of class labels in the task Tt.
3: M (-∞) = (mi,j)1≤i≤Nt,1≤j≤K , where mi,j = -∞ if j /∈ K otherwise 1 # initialize M (-∞)

4: P =W-SOFTMAX(M (-∞)⊙MATMUL(Q,H)) # get the confidence of H

Algorithm 2 Arc-mixup with FNO classifier and feature masking in a mini-batch B
Input: (X,Y ) ∈ B, Q
Output: P ∈ R|B|×K

1: (X̂, Q̂)← ArcMixup(X,Q) # mixup input samples and class vectors as Eq. 11 of the main
paper

2: K = {ci | ci ∈ B, ∀1 ≤ i ≤ |B|} # initialize a set of class labels in the mini-batch
3: Ĵ =

⋃|B|
i=1 Ji # initialize an index set including all index sets of Q

4: M (0) = (mi,j)1≤i≤|B|,1≤j≤D , where mi,j = 1j∈Ĵ # initialize a zero mask M (0)

5: Ĥ← RELU(fθ(X̂)) # get features from X̂ as Eq. 1 of the main paper.
6: P =MATMUL(Q̂, LAYERNORM(M (0) ⊙ Ĥ)) # get the confidence of Ĥ

E ADDITIONAL IMPLEMENTATION DETAILS FOR EXPERIMENTS IN SECTION 7

E.1 CONTINUAL LEARNING IN SPLIT DATASETS

Dataset Explanation. Following (Hsu et al., 2018; Van de Ven & Tolias, 2019; Buzzega et al.,
2020; Kim et al., 2023), the split datasets of the MNIST, CIFAR10, CIFAR100, and Tiny-ImageNet
are described as:

• S-MNIST, S-CIFAR10: T1(0-1), T2(2-3), T3(4-5), T4(6-7), T5(8-9)

• S-CIFAR100: T1(0-9), T2(10-19), T3(20-29), T4(30-39), T5(40-49), T6(50-59),
T7(60-69), T8(70-79), T9(80-89), T10(90-99)

• S-Tiny-ImageNet: T1(0-9), T2(10-19), T3(20-29), T4(30-39), T5(40-49), T6(50-59),
T7(60-69), T8(70-79), T9(80-89), T10(90-99) T11(100-109), T12(110-119), T13(120-129),
T14(130-139), T15(140-149), T16(150-159), T17(160-169), T18(170-179), T19(180-189),
T20(190-199)

where Tt(i-j) indicates that the t-th task has class labels from i to j and all classes are sequentially
divided to each task. In CIFAR10, for instance, we can convert the class index in each task as below:

• T1(0-1): {airplane, autombile}
• T2(2-3): {bird, cat}
• T3(4-5): {deer, dog}
• T4(6-7): {frog, horse}
• T5(8-9): {ship, truck}
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Table 2: Hyperparameter settings on all experiments in Continual Learning Benchmarks. (Table
credit: (Kim et al., 2023))

Method Buffer S-MNIST S-CIFAR10 S-CIFAR100 S-Tiny-ImageNet

SGD - lr: 0.03 lr: 0.1 lr: 0.03 lr: 0.03

ER
200 lr: 0.01 lr: 0.1 lr: 0.1 lr: 0.1
500 lr: 0.1 lr: 0.1 lr: 0.1 lr: 0.03
5120 lr: 0.1 lr: 0.1 lr: 0.1 lr: 0.1

DER++
200 lr: 0.03 α: 0.2 β: 1.0 lr: 0.03 α: 0.1 β: 0.5 lr: 0.03 α: 0.1 β: 0.5 lr: 0.03 α: 0.1 β: 1.0
500 lr: 0.03 α: 1.0 β: 0.5 lr: 0.03 α: 0.2 β: 0.5 lr: 0.03 α: 0.1 β: 0.5 lr: 0.03 α: 0.2 β: 0.5
5120 lr: 0.1 α: 0.2 β: 0.5 lr: 0.03 α: 0.1 β: 1.0 lr: 0.03 α: 0.1 β: 0.5 lr: 0.03 α: 0.1 β: 0.5

Hyperparameter Settings. We have the same settings to (Buzzega et al., 2020; Kim et al., 2023).
To summarize them, we borrow the table of hyperparameter settings in (Kim et al., 2023) (Please
refer to Table 2).

Task-Incremental Learning (Task-IL) and Class-Incremental Learning (Class-IL. As described
in (Hsu et al., 2018; Van de Ven & Tolias, 2019), the sequence of tasks can be modeled in two ways:
Task-IL and Class-IL. Both divide datasets and train models for tasks in the same way. The only one
difference lies in the evaluation system. To be more specific, Task-IL provides task information the
task information during prediction, so the models classify test samples into the target task’s classes.
In contrast, Class-IL does not provide task information, so the models must predict the test samples as
one of the total classes, regardless of the target task. We trained and validated our models in continual
learning benchmarks using these training strategies.

E.2 IMBALANCED LEARNING IN LONG-TAILED DATASETS

Dataset Explanation. Following (Zhong et al., 2021) and (Zhou et al., 2020), the long-tailed
datasets of CIFAR10, CIFAR100, ImageNet (Russakovsky et al., 2015), and Places365 (Zhou et al.,
2017) are described as:

• CIFAR10-LT comprises ten imbalanced classes, subsampled at an exponentially decreasing
rate from the initial class of CIFAR10 as mentioned in (Zhong et al., 2021).

• CIFAR100-LT includes one hundred imbalanced classes, constructed in the same way as
CIFAR10-LT.

• ImageNet-LT is a long-tailed dataset for large-scale object classification, derived from the
ImageNet. The sampling is based on Pareto distribution with a power value α = 5 and
the classes have varying cardinality from 5 to 1,280. Therefore, it contains 115.8K images
sorted into 1,000 classes.

• Places-LT is an extended version of the large-scale scene classification dataset Places. The
classes differ in their cardinality, ranging from 5 to 4,980, and therefore, it contains 184.5K
images from 365 classes.

Architectures. We utilize a ResNet32 (Zhong et al., 2021) consisting of three residual blocks,
with each output dimensions of 16, 32, and 64, respectively, for the CIFAR10-LT dataset. For the
CIFAR100-LT dataset, each output dimension is twice that of the CIFIAR10-LT dataset. Unlike
the ResNet architecture for ImageNet, the kernel size, stride, and padding are set to 3, 1, and 1,
respectively for the first convolutional layer. ResNet50 and 152 are same to He et al. (2015).

Hyperparameters Settings. We employed ResNet32 for CIFAR10/100-LT and trained the model
with 128 mini-batches, utilizing SGD with momentum of 0.9 and weight decay of 2e-4, for 200
epochs. The learning rate was warmed up from 0.02 to the initial learning rate in a linear fashion,
divided by 0.1 at epochs 160 and 180. For the other datasets, we utilized ResNet50 and 152, trained
the models using SGD with momentum of 0.9 and weight decay of 5e-4, and updated the learning
rate using a cosine annealing scheduler. Additionally, we differently set mixup alpha of mixup and
arc-mixup as the datasets: α = 1.0 for both in CIFAR10/100-LT, α = 0.2 for mixup and α = 5.0 for
arc-mixup in ImageNet, and α = 0.2 for both in Places-LT.
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F ADDITIONAL EXPERIMENTAL RESULTS.

F.1 CONTINUAL LEARNING IN SPLIT DATASETS

Table 3: Classification results for standard continual learning benchmarks including the performance
of commonly used methods in these benchmarks. Best in bold for each buffer setting. (Final Average
Accuracy ↑ (%): meanstd)

Buffer Method S-MNIST S-CIFAR-10 S-Tiny-ImageNet
Class-IL Task-IL Class-IL Task-IL Class-IL Task-IL

- JOINT 95.570.24 99.510.07 92.200.15 98.310.12 59.990.19 82.040.10
SGD 19.600.04 94.942.18 19.620.05 61.023.33 7.920.26 18.310.68

-

oEWC (Schwarz et al., 2018) 20.461.01 98.390.48 19.490.12 68.293.92 7.580.10 19.200.31
SI (Zenke et al., 2017) 19.270.30 96.002.04 19.480.17 68.055.91 6.580.31 36.320.13
LwF (Li & Hoiem, 2017) 19.620.01 94.113.01 19.610.05 63.292.35 8.460.22 15.850.58
PNN (Rusu et al., 2016) 99.230.20 95.130.72 67.840.29

200

ER (Riemer et al., 2018) 80.431.89 97.860.35 44.791.86 91.190.94 8.490.16 38.172.00
GEM (Lopez-Paz & Ranzato, 2017) 80.111.54 97.780.25 25.540.76 90.440.94
A-GEM (Chaudhry et al., 2018) 45.724.26 98.610.24 20.040.34 83.881.49 8.070.08 22.770.03
iCaRL (Rebuffi et al., 2017) 70.510.53 98.280.09 49.023.20 88.992.13 7.530.79 28.191.47
FDR (Benjamin et al., 2018) 79.433.26 97.660.18 30.912.74 91.010.68 8.700.19 40.360.68
GSS (Aljundi et al., 2019) 38.902.49 95.021.85 39.075.59 88.802.89
HAL (Chaudhry et al., 2021) 84.700.87 97.960.21 32.362.70 82.513.20
DER (Buzzega et al., 2020) 84.551.64 98.800.15 61.931.79 91.400.92 11.870.78 40.220.67
DER++ (Buzzega et al., 2020) 85.611.40 98.760.28 64.881.17 91.920.60 10.961.17 40.871.16

ER† 78.271.37 97.730.26 49.382.15 91.540.81 8.580.19 38.390.72
FNOER† 78.591.27 98.030.22 50.561.52 91.790.64 9.210.28 40.461.15
ERMR† 82.981.03 98.130.16 61.756.07 91.392.13 15.470.67 44.110.50
FNOERMR† 84.261.16 98.450.19 63.841.47 92.030.52 17.310.74 44.760.90
DER++† 85.641.02 98.840.11 63.671.01 91.610.73 11.591.07 41.000.88
FNODER++† 83.291.64 97.670.33 64.151.50 92.520.55 13.751.28 45.521.29
DERMR++† 84.450.88 99.030.09 66.351.52 93.170.54 13.210.56 49.750.99
FNODERMR++† 86.270.88 99.110.08 67.531.25 93.980.39 18.440.94 53.060.67

500

ER (Riemer et al., 2018) 86.121.89 99.040.18 57.740.27 93.610.27 9.990.29 48.640.46
GEM (Lopez-Paz & Ranzato, 2017) 85.991.35 98.710.20 26.201.26 92.160.69
A-GEM (Chaudhry et al., 2018) 46.665.85 98.930.21 22.670.57 89.481.45 8.060.04 25.330.49
iCaRL (Rebuffi et al., 2017) 70.101.08 98.320.07 47.553.95 88.222.62 9.381.53 31.553.27
FDR (Benjamin et al., 2018) 85.874.04 97.541.90 28.713.23 93.290.59 10.540.21 49.880.71
GSS (Aljundi et al., 2019) 49.764.73 97.710.53 49.734.78 91.021.57
HAL (Chaudhry et al., 2021) 87.210.49 98.030.22 41.794.46 84.542.36
DER (Buzzega et al., 2020) 90.541.18 98.840.13 70.511.67 93.400.39 17.751.14 51.780.88
DER++ (Buzzega et al., 2020) 91.001.49 98.940.27 72.701.36 93.880.50 19.381.41 51.910.68

ER† 85.991.52 99.140.07 62.381.40 94.120.31 10.120.22 48.060.80
FNOER† 85.921.76 99.100.15 63.411.36 93.990.45 11.070.41 45.770.46
ERMR† 89.350.59 99.200.16 70.641.28 94.220.41 20.430.38 53.210.84
FNOERMR† 89.420.72 99.160.17 71.430.95 94.380.43 22.410.57 52.600.58
DER++† 91.010.46 98.950.07 73.150.80 94.070.39 19.820.87 52.240.94
FNODER++† 90.560.64 98.060.16 72.701.21 94.370.67 19.420.72 53.350.95
DERMR++† 83.101.22 99.080.09 71.853.76 94.281.49 17.710.58 59.861.08
FNODERMR++† 86.750.75 99.000.10 74.770.66 95.560.16 22.450.36 59.871.91

5120

ER (Riemer et al., 2018) 93.401.29 99.330.22 82.470.52 96.980.17 27.400.31 67.290.23
GEM (Lopez-Paz & Ranzato, 2017) 95.110.87 99.440.12 25.263.46 95.550.02
A-GEM (Chaudhry et al., 2018) 54.246.49 98.930.20 21.992.29 90.102.09 7.960.13 26.220.65
iCaRL (Rebuffi et al., 2017) 70.601.03 98.320.11 55.071.55 92.230.84 14.081.92 40.833.11
FDR (Benjamin et al., 2018) 87.473.15 97.791.33 19.700.07 94.320.97 28.970.41 68.010.42
GSS (Aljundi et al., 2019) 89.390.75 98.330.17 67.274.27 94.191.15
HAL (Chaudhry et al., 2021) 89.520.96 98.350.17 59.124.41 88.513.32
DER (Buzzega et al., 2020) 94.900.57 99.290.11 83.810.33 95.430.33 36.730.64 69.500.26
DER++ (Buzzega et al., 2020) 95.301.20 99.470.07 85.240.49 96.120.21 39.020.97 69.840.63

ER† 93.421.08 99.410.15 84.310.38 97.020.26 27.300.51 67.690.33
FNOER† 92.951.57 99.410.10 84.331.47 96.900.49 28.380.46 65.050.81
ERMR† 93.510.60 99.380.12 82.631.34 96.450.27 35.730.41 67.500.53
FNOERMR† 93.980.39 99.470.09 82.881.35 96.790.38 36.900.41 66.860.32
DER++† 95.090.56 99.500.08 85.560.38 96.300.22 39.660.89 69.950.32
FNODER++† 94.990.74 99.400.08 85.830.36 96.680.14 31.721.31 65.760.78
DERMR++† 93.750.23 99.620.05 84.710.65 96.780.16 34.720.46 72.400.25
FNODERMR++† 94.260.24 99.590.05 85.650.38 97.200.13 38.950.71 72.700.27

Evaluation Metrics. (Kumari et al., 2022) Final Average Accuracy (AT ) and Forgetting (AF )
where aj,t denotes the test accuracy on the t-task after the model has trained all task up to j.

AT =
1

T

T∑
t=1

aT,t FT =
1

T − 1

T∑
t=1

max
j∈{1,...T−1}

(aj,t − aT,t)
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Table 4: Classification results for standard CL benchmarks. The experiment on S-Tiny-ImageNet was
conducted using 5 trials with random seeds while other experiments were conducted using 10 trials
with random seeds. Best in bold for each buffer setting. (Final Average Forgetting ↓ (%): meanstd)

Buffer Method S-MNIST S-CIFAR-10
Class-IL Task-IL Class-IL Task-IL

- SGD 99.100.55 5.152.74 96.390.12 46.242.12

-

oEWC (Schwarz et al., 2018) 97.791.24 0.440.16 91.643.07 29.333.84
SI (Zenke et al., 2017) 98.890.86 5.152.74 95.780.64 38.760.89
LwF (Li & Hoiem, 2017) 99.300.11 5.152.74 96.690.25 32.560.56
PNN (Rusu et al., 2016) 0.000.00 0.000.00

200

ER (Riemer et al., 2018) 21.362.46 0.840.41 61.242.62 7.080.64
GEM (Lopez-Paz & Ranzato, 2017) 22.322.04 1.190.38 82.611.60 9.272.07
A-GEM (Chaudhry et al., 2018) 66.156.84 0.960.28 95.730.20 16.390.86
iCaRL (Rebuffi et al., 2017) 11.730.73 0.280.08 28.720.49 2.633.48
FDR (Benjamin et al., 2018) 21.154.18 0.520.18 86.402.67 7.360.03
GSS (Aljundi et al., 2019) 74.103.03 4.302.31 75.254.07 8.561.78
HAL (Chaudhry et al., 2021) 14.541.49 0.530.19 69.114.21 12.260.02
DER (Buzzega et al., 2020) 17.662.10 0.570.18 40.760.42 6.570.20
DER++ (Buzzega et al., 2020) 16.271.73 0.660.28 32.592.32 5.160.21

ER† 24.091.61 0.890.24 58.972.70 6.490.90
FNOER† 24.281.58 0.840.16 57.781.94 6.410.83
ERMR† 10.221.20 0.690.12 26.306.18 6.181.56
FNOERMR† 9.881.79 0.500.16 21.933.75 5.910.69
DER++† 16.341.23 0.530.12 34.801.68 6.451.07
FNODER++† 19.612.07 2.130.43 35.582.18 5.400.81
DERMR++† 4.290.75 0.320.09 23.101.46 4.820.71
FNODERMR++† 5.590.76 0.250.05 27.002.20 3.830.68

500

ER (Riemer et al., 2018) 15.972.46 0.390.20 45.350.07 3.540.35
GEM (Lopez-Paz & Ranzato, 2017) 15.571.77 0.540.15 74.314.62 9.120.21
A-GEM (Chaudhry et al., 2018) 65.847.24 0.640.20 94.011.16 14.264.18
iCaRL (Rebuffi et al., 2017) 11.840.73 0.300.09 25.711.10 2.662.47
FDR (Benjamin et al., 2018) 13.905.19 1.352.40 85.620.36 4.800.00
GSS (Aljundi et al., 2019) 60.356.03 0.890.40 62.882.67 7.733.99
HAL (Chaudhry et al., 2021) 9.971.62 0.350.21 62.214.34 5.411.10
DER (Buzzega et al., 2020) 9.581.52 0.450.13 26.740.15 4.560.45
DER++ (Buzzega et al., 2020) 8.851.86 0.350.15 22.384.41 4.661.15

ER† 16.281.99 0.380.11 42.831.89 3.510.40
FNOER† 16.472.30 0.480.16 41.521.94 3.790.65
ERMR† 7.181.37 0.390.17 17.311.58 3.090.36
FNOERMR† 6.791.80 0.460.20 15.602.61 3.200.48
DER++† 9.000.50 0.410.05 23.121.88 3.560.38
FNODER++† 9.860.84 0.880.17 24.122.00 3.220.82
DERMR++† 2.070.89 0.230.09 16.953.77 3.030.76
FNODERMR++† 3.810.85 0.850.28 17.341.35 1.970.37

5120

ER (Riemer et al., 2018) 6.081.84 0.250.23 13.990.12 0.270.06
GEM (Lopez-Paz & Ranzato, 2017) 4.301.16 0.160.09 75.274.41 6.912.33
A-GEM (Chaudhry et al., 2018) 55.1010.79 0.630.21 84.493.08 11.361.68
iCaRL (Rebuffi et al., 2017) 11.640.72 0.260.06 24.940.14 1.590.57
FDR (Benjamin et al., 2018) 11.583.97 0.951.61 96.640.19 1.930.48
GSS (Aljundi et al., 2019) 7.901.21 0.180.11 58.119.12 7.712.31
HAL (Chaudhry et al., 2021) 6.551.63 0.130.07 27.197.53 5.210.50
DER (Buzzega et al., 2020) 4.530.83 0.320.08 10.120.80 2.590.08
DER++ (Buzzega et al., 2020) 4.191.63 0.230.06 7.270.84 1.180.19

ER† 6.261.56 0.210.10 14.440.65 0.460.21
FNOER† 6.922.32 0.200.11 14.342.02 0.700.63
ERMR† 3.121.10 0.240.10 7.571.31 0.810.28
FNOERMR† 2.440.60 0.160.13 6.161.03 0.560.20
DER++† 4.590.79 0.240.10 7.500.80 1.050.34
FNODER++† 4.720.97 0.320.06 7.680.71 0.790.18
DERMR++† 0.900.18 0.090.06 5.020.69 0.710.27
FNODERMR++† 1.470.25 0.110.04 5.560.37 0.430.13

F.2 IMBALANCED LEARNING IN LONG-TAILED DATASETS

We present the top-1 test accuracy for three class divisions: Head-Many (more than 100 images),
Medium (20 to 100 images), and Tail-Few (less than 20 images). The imbalance factor ω in
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CIFAR10/100-LT datasets means the ratio of the number of a head class nmax to the number
of a tail class nmin, i.e., ω = nmax/nmin.

Table 5: Results of Imbalanced Learning with other methods on CIFAR10/100-LT. Each column
of Method indicates the augmentation method, the type of classifier, and the type of loss function,
respectively. Best in bold. (Accuracy (%): meanstd)

Method Reference CIFAR10-LT CIFAR100-LT

Augmentation Classifier Loss 100 50 10 100 50 10

- FC CE (Yang et al., 2022b) 72.100.30 77.600.30 87.400.30 - - -
- ETF CE (Yang et al., 2022b) 72.900.30 79.500.20 87.200.10 - - -
- ETF DR (Yang et al., 2022b) 73.000.20 78.400.30 86.900.20 - - -

mixup FC CE (Yang et al., 2022b) 73.900.30 79.300.20 87.800.10 43.00 48.10 -
B-mixup FC CE (Zhang et al., 2022b) 78.70 - 89.60 - - -
mixup ETF CE (Yang et al., 2022b) 67.000.40 77.200.30 87.000.20 - - -
mixup ETF DR (Yang et al., 2022b) 76.500.30 81.000.20 87.700.20 45.30 50.40

- FC CE (reproduced.)† 71.860.65 77.580.48 87.420.30 41.650.41 46.890.38 60.480.34
mixup FC CE (reproduced.)† 74.240.44 80.000.54 89.080.32 43.800.42 49.570.37 63.900.33

arc-mixup FNO CE (reproduced.)† 82.590.26 85.130.25 89.500.14 49.262.82 54.442.32 63.143.82

Table 6: Detailed Results of Imbalanced Learning on CIFAR10/100-LT. Best in bold. (Aug: the
augmentation method, Clf: the type of classifier, L: the type of loss function) (Accuracy (%): meanstd)

Method CIFAR10-LT CIFAR100-LT

Aug Clf L Many Median Few All Many Median Few All

im
b

10
0 - FC CE† 91.993.02 71.721.67 51.925.34 71.860.65 68.410.55 40.410.75 9.940.55 41.650.41

mixup FC CE† 94.720.43 75.701.03 51.821.61 74.240.44 73.250.52 42.560.81 8.730.49 43.800.42
arc-mixup FNO CE† 84.600.78 80.190.71 83.790.86 82.590.26 63.463.55 53.042.93 27.052.08 49.262.82

im
b

50 - FC CE† 93.301.26 76.741.00 62.981.91 77.580.48 69.950.61 47.050.41 18.080.63 46.890.38
mixup FC CE† 94.980.30 79.980.70 65.041.58 80.000.54 74.530.42 50.260.75 17.750.66 49.570.37

arc-mixup FNO CE† 86.000.69 82.800.56 87.380.81 85.130.25 64.382.97 57.811.77 38.012.49 54.442.32

im
b

10 - FC CE† 94.000.40 84.770.45 84.370.64 87.420.30 72.530.37 61.120.53 44.730.76 60.480.34
mixup FC CE† 95.370.29 86.810.47 85.800.89 89.080.32 76.890.43 64.650.45 46.880.68 63.900.33

arc-mixup FNO CE† 89.940.55 86.590.53 92.950.38 89.500.14 66.265.32 64.703.06 57.393.07 63.143.82

Table 7: Detailed Results of Imbalanced Learning on Places-LT. All experiments were conducted
using 3 trials with random seeds. Best in bold. (Aug: the augmentation method, Clf: the type of
classifier, L: the type of loss function) (Accuracy (%): meanstd)

Method ResNet152 ResNet152 (FT)

Aug Clf L Many Median Few All Many Median Few All

- FC CE† 40.630.21 17.690.64 2.040.44 22.620.29 40.770.08 19.990.67 4.410.55 24.160.41
mixup FC CE† 42.100.31 15.820.60 0.860.18 22.100.27 43.140.63 20.101.61 3.321.33 24.831.19

arc-mixup FNO CE† 35.820.32 31.740.64 16.890.23 30.070.40 40.310.18 35.310.19 20.890.33 34.060.10
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