
Published as a conference paper at ICLR 2025

EFFICIENT AND ROBUST NEURAL COMBINATORIAL
OPTIMIZATION VIA WASSERSTEIN-BASED CORESETS

Xu Wang1 & Fuyou Miao1,2∗& Wenjie Liu1 & Yan Xiong1
1School of Computer Science and Technology, University of Science and Technology of China
2Hefei National Laboratory, University of Science and Technology of China
worm@mail.ustc.edu.cn
mfy@ustc.edu.cn
lwj1217@mail.ustc.edu.cn
yxiong@ustc.edu.cn

ABSTRACT

Combinatorial optimization (CO) is a fundamental tool in many fields. Many
neural combinatorial optimization (NCO) methods have been proposed to solve
CO problems. However, existing NCO methods typically require significant com-
putational and storage resources, and face challenges in maintaining robustness
to distribution shifts between training and test data. To address these issues, we
model CO instances into probability measures, and introduce Wasserstein-based
metrics to quantify the difference between CO instances. We then leverage a pop-
ular data compression technique, coreset, to construct a small-size proxy for the
original large dataset. However, the time complexity of constructing a coreset
is linearly dependent on the size of the dataset. Consequently, it becomes chal-
lenging when datasets are particularly large. Further, we accelerate the coreset
construction by adapting it to the merge-and-reduce framework, enabling parallel
computing. Additionally, we prove that our coreset is a good representation in the-
ory. Subsequently, to speed up the training process for existing NCO methods, we
propose an efficient training framework based on the coreset technique. We train
the model on a small-size coreset rather than on the full dataset, and thus save
substantial computational and storage resources. Inspired by hierarchical Gon-
zalez’s algorithm, our coreset method is designed to capture the diversity of the
dataset, which consequently improves robustness to distribution shifts. Finally,
experimental results demonstrate that our training framework not only enhances
robustness to distribution shifts but also achieves better performance with reduced
resource requirements.

1 INTRODUCTION

Combinatorial optimization (CO) is a fundamental tool in many fields such as transportation (Con-
tardo et al., 2012; Veres & Moussa, 2019), logistics (Laterre et al., 2018) and manufacturing (Froger
et al., 2016; Dolgui et al., 2019; Liu et al., 2017). Numerous traditional exact (David Applegate,
2006; Optimization, 2020) or heuristic solvers (Croes, 1958; Helsgaun, 2017; Lamm et al., 2016)
have been designed by experts to solve these problems. However, the real-world CO problems are
widespread and diverse, and may even undergo rapid changes over time. Moreover, even for a fixed
CO problem, human experts may be hindered by limited domain knowledge and computational diffi-
culty (many of these CO problems are NP-hard). As a result, in many situations, it can be impractical
to rely solely on hand-crafted methods developed by experts.

To address these challenges, numerous Neural Combinatorial Optimization (NCO) methods have
been proposed, such as constructive heuristics methods (Khalil et al., 2017; Kool et al., 2018; Kwon
et al., 2020; Hottung et al., 2020; Kim et al., 2022; Joshi et al., 2019; Fu et al., 2021; Geisler
et al., 2021; Qiu et al., 2022; Sun & Yang, 2023; Luo et al., 2023; Vinyals et al., 2015; Bello et al.,
2016; Nazari et al., 2018; Deudon et al., 2018; Xin et al., 2020; 2021; Kwon et al., 2021; Kim

∗Corresponding author.

1

Published as a conference paper at ICLR 2025

et al., 2021; Cheng et al., 2023; Drakulic et al., 2023) and improvement heuristics methods (Li
et al., 2018; d O Costa et al., 2020; Wu et al., 2021; Chen & Tian, 2019; Li et al., 2023; Chen &
Tian, 2019; Hottung et al., 2020; Joshi & Anand, 2022; Joshi et al., 2019). These methods learn
heuristic solution strategies in a data-driven manner, thus dispensing with laborious manual design
and expert knowledge; moreover, compared with traditional CO solvers, NCO methods can benefit
from accelerated inference speeds by utilizing modern GPU devices.

Despite their advantages, these methods often require large training datasets, which demands sub-
stantial storage space and computational resources. Additionally, when training data and test data
come from different distributions, enhancing the robustness to distribution shift (Liang et al., 2023;
Sun et al., 2020) is also a challenge for existing NCO models. Therefore, training a competitive
model with limited resources while ensuring its robustness to distribution shifts is an important and
worthy problem to address.

To address these issues, we consider constructing a good representation, coreset (Ros & Guillaume,
2020), for the original huge dataset. Coreset is a popular data compression technique, which can
accelerate the training process by reducing dataset size while preserving the value. Roughly speak-
ing, coreset is a small-size proxy of the original dataset Q with respect to an objective; the value of
the objective evaluated on coreset can closely approximate the value evaluated on Q. Therefore, we
can replace Q by coreset in the training phase, and thus save the storage space and computational
resources significantly. Furthermore, our coreset method is inspired by hierarchical Gonzalez’s al-
gorithm (Gonzalez, 1985), and thus can capture the diversity of the dataset. Consequently, benefiting
from its diversity, the model based on our coreset method shows robustness to distribution shift.

The intuition behind our coreset technique can be likened to preparing for an exam. Training neural
networks is similar to practicing exercises for an exam. While the number of available exercises
(i.e., data) might be vast, we cannot be trained for all the exercises with limited time and energy
(i.e., storage and computational resources). Fortunately, the whole exercises are redundant; to get
a high score, doing all the exercises is unnecessary, and we only need to cover all categories of
exercises. Based on the above intuitions, we need a small-size representation (i.e., coreset) for the
whole exercises. To this end, three key steps are required: i) exploring a proper metric to quantify
the difference between CO instances; ii) constructing a coreset for the original dataset; iii) designing
an efficient training framework based on the coreset technique for existing NCO models.

Many CO problems, such as the Traveling Salesperson Problem (TSP) and Maximum Independent
Set (MIS), can inherently induce a graph structure. By employing graph embedding techniques, we
can map these graph structures into a set of points in Euclidean space. Thus, we model CO instances
as probability measures (in section 3.1). Wasserstein distance is commonly used to quantify the
difference between probability measures. However, solutions to CO problems such as TSP remain
invariant under rigid transformations such as translation, rotation, and reflection. In other words, a
CO instance can generate multiple variants through these transformations; but they are inherently
the same instance. Therefore, the distance between such instances should be zero. To capture this
property, we introduce the Wasserstein distance under rigid transformations (RWD) to measure the
difference between two CO instances.

Our contributions:

• First, we model CO instances as probability measures, and introduce RWD to quantify the
difference between two given CO instances.

• Then, based on RWD, we design a coreset algorithm to effectively compress data for train-
ing acceleration; it saves substantial computational and storage resources. However, the
time required to construct the coreset increases linearly with the size of the dataset, making
it computationally expensive for extremely large datasets.

• To further accelerate coreset construction, we adapt our coreset method to merge-and-
reduce framework, enabling parallel computation. Moreover, we demonstrate that our
coreset is a good representation theoretically.

• Next, based on our coreset method, we propose an efficient training framework for acceler-
ating the existing NCO training process. More specifically, we replace the original dataset
with our coreset to accelerate the training process; in the inference phase, test instances are

2

Published as a conference paper at ICLR 2025

aligned along our tree (i.e., T from Algorithm 1 or 2) before predicting their labels using
the trained model.

• The experimental results show that our training framework exhibits better performance and
enhanced robustness to distribution shifts.

1.1 OTHER RELATED WORKS

Here, we introduce several techniques that will be involved later.

Graph embedding technique represents the nodes and edges of a graph in Euclidean space. The
edge information is encoded within the Euclidean distances between points, reducing the need to
handle complex graph structures directly, as point-to-point information suffices. Moreover, it trans-
forms the discrete graph into continuous Euclidean coordinates, which allows many techniques in
Euclidean space to be used. Here are some widely used graph embedding methods. Laplacian Eigen-
maps (Belkin & Niyogi, 2001) embed graph data into a low-dimensional Euclidean space while
preserving local neighborhood relationships. Multidimensional Scaling (MDS) (Borg & Groenen,
2007) focuses on preserving pairwise distances between nodes in the graph. Isomap (Tenenbaum
et al., 2000) extends MDS by incorporating geodesic distances along the manifold, making it espe-
cially useful for graphs with inherent nonlinear structures.

Hierarchical Gonzalez’s algorithm (Murtagh & Contreras, 2012) is a variant of Gonzalez’s k-
center algorithm for addressing hierarchical clustering problem. In this approach, clusters are recur-
sively divided at different levels of granularity, yielding a tree structure for efficient querying. This
algorithm prioritizes selecting new center points that are far apart from the previously chosen ones.
This strategy leads to clusters well-spread across the data, effectively capturing the diversity of the
dataset. This method is commonly used for summarizing large datasets. However, its time complex-
ity exhibits a linear dependence on the size of the dataset, making it potentially time-consuming for
extremely large datasets. To mitigate this issue, we integrate merge-and-reduce (Bentley & Saxe,
1980; Har-Peled & Mazumdar, 2004) technique to construct our coreset in Algorithm 2.

2 PRELIMINARIES

Notations We define [n] := {1, . . . , n} and denote the vector of ones by 1. The ℓ2-norm is
denoted by ∥ · ∥, and |A| denotes the size of set A. Let R+ be the set of non-negative real numbers.
Let P(Rd) be the probability measure space on Euclidean space Rd. Matrices are denoted by bold
capital letters, such as C; Cij is its element in the i-th row and j-th column. Similarly, we denote
vectors by bold lowercase letters, such as a := (a1, . . . , an)

T ∈ Rn; ai is its i-th element.

Wasserstein distance (Peyré et al., 2017) is skilled at capturing the geometric structures of CO prob-
lems, but it is sensitive to rigid transformations. To obtain the invariance property under rigid trans-
formations, we consider the following conception: Wasserstein distance under rigid transformation
(RWD).

Definition 2.1 (RWD). Let µ =
∑n

i=1 aiδxi
, ν =

∑n
j=1 bjδyj

∈ P(Rd), where a,b ∈ Rn
+ are their

weight vectors and {xi}i∈[n] , {yj}j∈[n] ⊂ Rd are their locations. Then, the Wasserstein distance
under rigid transformation between µ and ν is

W(µ, ν) :=

 min
P∈Π(a,b),e∈E(d)

n∑
i=1

n∑
j=1

Pij∥xi − e(yj)∥2
1/2

,

where Π(a,b) :=
{
P ∈ Rn×n

+ | P1 = a,PT1 = b
}

is the coupling set, E(d) is the euclidean
group on Rd, and e : Rd → Rd is the rigid transformation.

Remark 2.2. i) If we fix e as identity transformation, then RWD is degenerated as the Wasserstein
distance; Wasserstein distance is a metric on P(Rd). ii) RWD is a (semi-)metric1 on P(Rd); more
specifically, (P(Rd),W) is a metric space.

1For simplicity, we do not distinguish between metric and semi-metric.

3

Published as a conference paper at ICLR 2025

Next, we formally define our coreset technique. Let
ℓ : Q×Θ → R+, (µ, θ) 7→ ℓ(µ, θ) (1)

be a loss function, where θ ∈ Θ is the model parameter and µ ∈ Q denotes a CO instance. For any
weighted set A ⊂ Q with weight function wA, we define ℓ(A, θ) :=

∑
µ∈A wA(µ) · ℓ(µ, θ).

Definition 2.3 (Coreset). Let 0 < ϵ < 1 and ℓ be a loss function. Let Q ⊂ P(Rd) be a set of
measures with weight function wQ : P(Rd) → R+. Let

∑
µ∈Q wQ(µ) = 1 . Then, a weighted set

S with weight function wS is an ϵ-coreset of Q if
ℓ(S, θ) ∈ (1± ϵ) · ℓ(Q, θ) for all θ ∈ Θ. (2)

Then, we introduce some basic properties that will be used later. Doubling dimension (Chan et al.,
2016) can describe the growth rate of the dataset with respect to some metric dist. Formally, the
doubling dimension of metric space (Q,dist) is the smallest positive integer ddim such that ev-
ery ball in (Q,dist) can be covered by 2ddim balls of half the radius. For example, the doubling
dimension of the Euclidean space Rd is Θ(d).

The Lipschitz constant of a function describes how fast it can change. The loss function is L-
Lipschitz continuous with respect to dist on Q, if |ℓ(µ1, θ)− ℓ(µ2, θ)| ≤ L · dist(µ1, µ2) holds for
all µ1, µ2 ∈ Q, θ ∈ Θ.

3 OUR METHODS

This section introduces our methods. Section 3.1 introduces RWD to quantify the difference between
two CO instances. Section 3.2 constructs a small-size coreset for accelerating the training process.
Section 3.3 accelerates coreset construction process by using merge-and-reduce framework; more-
over, we theoretically demonstrate that our coreset is a good representation. Finally, in Section 3.4,
we present our efficient framework for existing NCO methods.

3.1 METRICS FOR CO INSTANCES

Many CO problems can induce graph structures. We first extract the graph structure induced by the
CO instance and represent it by a graph metric space, where each point in this space reflects node-
specific information, and edge relationships are captured through the corresponding shortest-path
metric. We then apply graph embedding techniques (in Section 1.1) to map this graph metric space
into Euclidean space, aiming to preserve inter-point distances closely. In this embedding, each node
in the original graph is represented as a discrete point in Euclidean space, and edge information
is encoded in Euclidean distances between these points. Ultimately, we represent the graph as a
discrete set of points in Euclidean space. Henceforth, we focus on the point set data in Euclidean
space.

Given two CO instances, we represent the nodes of their corresponding graph structure as X =
{xi}i∈[n] , Y = {yj}j∈[n] ⊆ Rd. Then, the CO instances are modeled as two probability measures
µ =

∑n
i=1 aiδxi

and ν =
∑n

j=1 bjδyj
(with ai = bj = 1

n to represent equal node importance).
Then, we can quantify the difference between µ and ν with metric RWD; that is, W(µ, ν), where the
ground distance between x ∈ X and y ∈ Y is ∥x− y∥ as in Definition 2.1.
Remark 3.1. i) By graph embedding technique, the nodes and edges of a graph structure are de-
scribed by the locations and their ground distances in Euclidean space. ii) These CO problems are
usually invariant after imposing rigid transformations on their nodes, and RWD can capture this
characteristic well. In essence, the complexity of data space is reduced under RWD metric. More
specifically, we regard two CO instances as the same instance if their distance is zero. iii) The com-
plete graph in Rd can be represented directly by a point set, without the need for graph embedding
techniques. iv) If we fixed the outer iteration number and the dimension d of data space as constants,
our RWD can be solved within Õ(n2) time by using the heuristic method in Algorithm 3.

3.2 CORESET

Intuitively, our coreset aims to cover all the data by using relatively fewer and smaller balls, where
all the balls have the same radius. This strategy can be likened to preparing for an exam, where

4

Published as a conference paper at ICLR 2025

we need to cover as many categories of exercises as possible with limited time and energy. For
simplicity, we take RWD as an example to illustrate our methods. The metric RWD can also be
replaced by Wasserstein distance, or some other proper metrics on P(Rd).

𝑣.cluster

𝑣.buffer
𝑟

𝑣.center

𝑣.ball

𝑣!.buffer

⋯ ⋯ ⋯ ⋯⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯⋯ ⋯

node 𝑣

root node 𝑣!

Figure 1: Grow nodes from root v0 with ddim = 1.
The red dots denote probability measures in dataset
Q, and the solid red dot is the center of the ball v.ball.

𝒬"" 𝒬#" ⋯𝒬$" 𝒬%" 𝒬&"
"𝒬∗" ⋯

𝒬"# 𝒬## 𝒬∗# 𝒬&#
#⋯ ⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

coreset method

coreset method

Figure 2: Accelerate the coreset construc-
tion by using merge-and-reduce framework.

Coreset construction Our algorithm is inspired by the hierarchical structure in (Ding et al., 2021;
Krauthgamer & Lee, 2004; Har-Peled & Mendel, 2005; Beygelzimer et al., 2006). Given a set Q of
probability measures, we aim at clustering similar measures into small balls of radius r, and take the
cluster centers to form our coreset. The coreset is finally reserved in the tree T as shown in Figure 1.

To construct such a coreset, we first initialize an empty tree T , and set its root node as v0. The root
node has only one attribute buffer, and is initialized as v0.buffer = Q. Our (non-root) node has four
attributes: cluster, center, buffer and ball as shown in Figure 1. The nodes grow in an up-bottom
manner recursively. Given a current node v, if v.buffer is an empty set, then v is a leaf node, and
we stop adding children to it. If v.buffer is a nonempty set, we add k = min{|v.buffer|, 22·ddim}
children node

{
v′j
}
j∈[k]

to the current node v; more specifically, we run Gonzalez’s algorithm k

rounds on v.buffer. By this, we obtain k cluster centers v′j .center and their corresponding clusters
v′j .cluster. All the v′j .cluster form a partition of v.buffer; each v′j .cluster consists of points that
are relatively close to its center v′j .center. For each set v′j .cluster, we partition it into two sets
v′j .ball, v′j .buffer, where v′j .ball is a RWD-based ball of radius r centered at measure v′j .center;
formally, we can formulate them as

v′j .ball =
{
µ ∈ v′j .cluster | W(µ, v′j .center) ≤ r

}
(3)

and
v′j .buffer = v′j .cluster − v′j .ball. (4)

Finally, we obtain a tree T . The coreset S consists of all the center points v.center with weight
|v.ball|. We show the coreset construction process in a more intuitive and comprehensible manner
in Figure 1. The detailed descriptions are in Algorithm 1.

Time complexity and coreset size From (Ding et al., 2021), we know that the radius of the clusters
will be halved after carrying out at most 22·ddim rounds of Gonzalez’s algorithm. Let R be the
radius of dataset Q; that is, W(µ, ν) ≤ 2R for any µ, ν ∈ Q. Thus, the height of the tree in
Algorithm 1 is at most O(log R

r). Let T (n) be the time for computing the distance (i.e., RWD)
between two measures, where n is the size of the locations of measures. Since constructing every
layer takes O(22·ddim) · |Q| computations of RWD, the total time complexity for Algorithm 1 is
O(22·ddim) · |Q| · T (n) · log R

r . Its time complexity increases linearly with the size of the dataset,
making it computationally expensive for large datasets. The coreset is maintained in the tee T . The
tree has O((22·ddim)log

R
r) nodes, thus the coreset size is O((Rr)

2·ddim).
Remark 3.2. i) The output of Algorithm 1 contains a tree T and coreset S . The S is a representation
of the original measure set Q, which is used for speeding up the training process for existing NCO
methods; while the tree T is prepared for aligning CO instances at the inference phase. ii) It is
often not necessary to know the exact value of the doubling dimension in advance. Typically, we

5

Published as a conference paper at ICLR 2025

Algorithm 1 Algorithm for constructing coresets
Input: a set Q := {µi}i∈[N] ⊂ P(Rd) of measures, doubling dimension ddim of Q, radius r

1: Initialize an empty tree T , and set its root node as v0;
2: Set v0.buffer = Q;

▷ The root node v0 only has an attribute buffer, and it is not associated with any node.
3: Construct the nodes of T recursively as follows: ▷ v is the current node.
4: if v.buffer is ∅ then
5: The current node v is a leaf node, and we stop adding children to it;
6: else
7: Set k = min{|v.buffer|, 22·ddim} and add k children node

{
v′j
}
j∈[k]

to the current node v;
8: Run Gonzalez’s algorithm k rounds on v.buffer. For each children node v′j , we set its

attributions cluster, center,ball,buffer according to Equation (3) and Equation (4);
9: end if

10: Set S = {v.center | v is a node of T } and set the weight as wS(µ) = |v.ball|;
Output:T ,S

begin by experimenting with relatively small values, as demonstrated in our study where we set the
low doubling dimension as ddim = 1. In practice, even if we cannot rigorously prove that the data
satisfies low doubling dimension assumption, this generally does not impact the effectiveness of our
experimental results. iii) All the v.ball consist of a partition of Q.

3.3 ACCELERATE THE CORESET CONSTRUCTION PROCESS

In this subsection, we adapt our coreset method to merge-and-reduce framework (Bentley & Saxe,
1980; Har-Peled & Mazumdar, 2004; Wang et al., 2021); by this, we offer a technique to accelerate
our coreset construction process by achieving parallel computing; moreover, it can also be used to
tackle streaming data.

Algorithm 2 is a combination of our coreset method and the merge-and-reduce framework as shown
in Figure 2. We first set s = O((Rr)

2·ddim), H = log τ
s

|Q|
s and r′ = r

H . The height of the tree in
Figure 2 is at most H , and it is generated in a bottom-up manner.

We perform reduce and merge procedures alternatively in each epoch. More specifically, reduce
means data compression; that is, we run Algorithm 1 by taking (Qh

i ,ddim, r′) as input, and obtain
the corresponding coreset Sh

i ; merge means putting together the coresets Sh
i ; that is, Qh+1 =

∪i∈[mh]Sh
i . After H epochs, we obtain the coreset S = QH+1 and its corresponding tree T =

T H+1.

Algorithm 2 Algorithm for accelerating the coreset construction process
Input: a set Q := {µi}i∈[N] ⊂ P(Rd) of measures, doubling dimension ddim of Q, radius r

1: Set s = O((Rr)
2·ddim), H = log τ

s

|Q|
s and r′ = r

H , Q0 = Q;
2: for h = 1, . . . ,H do
3: ▷ reduce procedure

Partition Qh as Qh = ⊔i∈[mh]Qh
i with

∣∣Qh
i

∣∣ = O(τ) and mh = ⌈ |Q
h|
τ ⌉;

For every Qh
i , we run Algorithm 1 by taking (Qh

i ,ddim, r′) as input, and output (T h
i ,Sh

i);
4: ▷ merge procedure
5: Qh+1 = ∪i∈[mh]Sh

i ;
6: end for
7: Set S = QH+1 and T = T H+1;

Output:T ,S

Time complexity Given that the input size of Algorithm 1 is O(τ), and its output size is s. Then,
the tree induced by the merge-and-reduce framework has at most H = log τ

s

|Q|
s layers.

6

Published as a conference paper at ICLR 2025

Each layer of Algorithm 2 performs multiple computations of Algorithm 1 in parallel. Hence, the
time complexity of per layer is Õ(22·ddim ·τ ·T (n))·log R

r . Consequently, the overall time complexity
of Algorithm 2 is Õ(22·ddim · τ · T (n) · log R

r · log τ
s

|Q|
s), which is independent on the dataset size.

Communication complexity Our coreset is a subset of the original dataset, allowing us to transmit
only the indexes of the CO instance items rather than the data items themselves. This significantly
reduces transmission costs. As a result, the additional transfer complexity introduced by our merge-
and-reduce framework in Algorithm 2 is, in practice, minimal and unlikely to pose a substantial
overhead.

Moreover, the coreset size of Algorithm 2 remains consistent with that in Algorithm 1, it is sufficient
to retain only the tree structure of the final layer in practice.

A good representation Next, we show that the coreset S is a good representation of the original
huge dataset Q in the following theorem.

Theorem 3.3. Assume ℓ is L-Lipschitz continuous on (Q,RWD) and there exists γ ∈ R+ such that
ℓ(Q, θ) ≥ γ for all θ ∈ Θ. Let ddim be the doubling dimension of Q with respect to RWD, and
R be the radius of Q. Then, by setting r = ϵγ

L , both Algorithm 1 and Algorithm 2 can generate
an O((Rr)

2·ddim) size ϵ-coreset S for the dataset Q; that is, for every θ, it holds that ℓ(S, θ) ∈
(1± ϵ) · ℓ(Q, θ).

It shows that for every parameter θ ∈ Θ, the value of the loss function ℓ evaluated on small-size
coreset S can approximate the value on the original dataset Q within O(ϵ) relative error. Therefore,
Theorem 3.3 demonstrates that our small-size coreset S is a good representation for the original
huge dataset Q with respect to the objective ℓ.

Proof. Due to limited space, we only give the proof sketch here. More details are in Appendix.
First, we prove that by taking (Q,ddim, r) as input, the coreset constructed by Algorithm 2 can
cover the dataset Q by small balls of radius r by using mathematical induction. Then, we obtain
that the value difference of the loss function between the data itself and its representation is small
by Lipschitz continuous property. Third, by setting some parameters properly, we turn the additive
error into a relative error and obtain an ϵ-coreset S.

3.4 AN EFFICIENT FRAMEWORK

Here, we introduce an efficient framework to train a comparative model by using limited resources
for existing NCO methods. We first feed the original dataset Q into Algorithm 1 or Algorithm 2,
and obtain the coreset S and tree T . The original dataset Q is replaced by small-size coreset S in the
training phase. Thus, it saves the storage and computing resources significantly in the training phase.
The probability measure µ in our coreset S has its own weight wS(µ), which helps it represent the
original dataset well. However, to capture the diversity better, we usually regard these data as equally
important; that is, to improve the robustness to distribution shifts in experiments, we set their weights
as wS = 1

|S| .

Figure 3: An efficient framework for accelerating existing NCO methods. The Algorithm 1 can be
replaced by Algorithm 2, and Algorithm 4 is in Appendix.

7

Published as a conference paper at ICLR 2025

Meanwhile, in the inference phase, we first align the test instances µ along our tree T , which aims
to find a rigid transformation such that

min
e,ν∈S

W (e(µ), ν), (5)

where W (·, ·) is the Wasserstein distance and e(µ) :=
∑

i∈[n] aiδe(xi) for any ν =
∑

j∈[n] bjδyj .
We offer a heuristic method (i.e., Algorithm 4 in Appendix) for the alignment as described in Equa-
tion (5). Thanks to the tree structure maintained by T , we can finish the alignment for a test instance
within O(k · log(|S|) · T (n)) time. This is particularly efficient in practice since k is usually small.
Without this tree structure, we would potentially need to align the test instance with every training
data, which could be significantly more time-consuming.
Remark 3.4. By combining our coreset technique in the training phase and the alignment process
in the test phase, we essentially reduce the complexity of data. Intuitively, if the model can solve an
instance well, then it can solve similar instances well under metric RWD. Furthermore, our frame-
work can be applied to other problems that inherently involve a graph structure. This demonstrates
its general applicability across various domains where graph-based analysis is pertinent.

Remark 3.5. i) Our coreset only needs to be computed once, after which it can be used repeatedly
to train different models and fine-tune parameters. ii) Even if the coreset computation is time-
consuming, it is still valuable as it helps save storage space. iii) Our alignment process serves as an
optional enhancement to improve performance rather than a mandatory step.

Table 1: Comparison of uniform sampling and our coreset method using TSP100-2D-N (0, 1) as the
training dataset on test data TSP100-2D from different distributions.

Sample size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

128000 Org
N (0, 1) 20.39 386 18.61 384
N (0, 42) 76.41 374 67.39 388
U(0, 10) 89.29 372 79.82 385

4003

US
N (0, 1) 22.34 378 18.92 387
N (0, 42) 101.95 379 69.28 395
U(0, 10) 119.78 380 82.59 395

CS
N (0, 1) 22.21 372 18.87 379
N (0, 42) 80.63 372 67.92 379
U(0, 10) 94.73 373 80.64 377

CS-aligned
N (0, 1) 22.18 359 18.88 363
N (0, 42) 80.66 362 67.91 358
U(0, 10) 94.94 361 80.53 360

8245

US
N (0, 1) 22.12 377 18.87 388
N (0, 42) 83.17 377 68.13 378
U(0, 10) 97.31 377 80.80 387

CS
N (0, 1) 21.79 366 18.84 383
N (0, 42) 78.72 372 67.79 378
U(0, 10) 92.99 374 80.35 377

CS-aligned
N (0, 1) 21.80 360 18.86 359
N (0, 42) 78.50 361 67.82 358
U(0, 10) 93.04 355 80.42 361

12951

US
N (0, 1) 21.99 390 18.87 377
N (0, 42) 80.78 384 67.94 379
U(0, 10) 95.01 369 80.60 379

CS
N (0, 1) 21.57 372 18.81 382
N (0, 42) 77.80 369 67.58 379
U(0, 10) 92.01 378 80.23 375

CS-aligned
N (0, 1) 21.50 361 18.79 358
N (0, 42) 77.67 362 67.57 357
U(0, 10) 92.01 358 80.21 359

8

Published as a conference paper at ICLR 2025

4 EXPERIMENTS WITH TSP

We take TSP100 as an example to show the advantages of our coreset method. All experiments
are conducted on an NVIDIA L20 GPU. Due to limited space, further experiments (including TSP
training on uniformly sampled data (Kool et al., 2018), the MIS problem (Ahn et al., 2020)) and
Capacitated Vehicle Routing Problem (CVRP) (Nazari et al., 2018) are presented in the Appendix 2.

Table 2: Comparison of uniform sampling and our coreset method using TSP100-2D-N (0, 1) as the
training dataset on test data of varying sizes. We fix the sample size as 12951.

TSP size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

TSP200

US
N (0, 1) 33.69 109 27.14 112
N (0, 42) 125.99 108 96.70 112
U(0, 10) 145.41 109 113.39 112

CS
N (0, 1) 30.75 107 26.69 110
N (0, 42) 110.48 109 94.84 111
U(0, 10) 129.77 107 111.47 109

CS-aligned
N (0, 1) 30.77 77 26.68 79
N (0, 42) 110.99 78 94.59 79
U(0, 10) 129.28 76 111.49 78

TSP500

US
N (0, 1) 59.81 1012 43.41 1020
N (0, 42) 237.72 1012 154.28 1022
U(0, 10) 263.66 1015 180.75 1022

CS
N (0, 1) 49.11 1012 42.25 1016
N (0, 42) 178.56 1010 149.50 1016
U(0, 10) 208.36 1011 174.93 1016

CS-aligned
N (0, 1) 49.38 680 42.26 683
N (0, 42) 178.88 679 149.63 682
U(0, 10) 208.77 678 175.03 682

TSP1000

US
N (0, 1) 94.71 2823 61.72 2848
N (0, 42) 382.77 4224 219.16 2847
U(0, 10) 426.61 4215 255.95 4254

CS
N (0, 1) 69.76 2823 59.59 2833
N (0, 42) 252.92 4224 210.71 2832
U(0, 10) 299.80 4215 246.57 4234

CS-aligned
N (0, 1) 69.96 2825 59.57 2832
N (0, 42) 253.63 2821 210.81 2830
U(0, 10) 300.03 2812 246.61 2827

Dataset We apply our method on TSP100-2D/3D Euclidean instances. The labels of TSP100-2D
instances are obtained by using the LKH-3 heuristic solver (Helsgaun, 2017); each coordinate of the
nodes in a TSP instance is generated by x%10, where x is randomly sampled either from a normal
distribution N (0, σ2) or uniform sampling U(0, 10). Our training data, TSP100-2D-N (0, 1) and
TSP100-3D-N (0, 1), consists of 125,000 instances generated by the normal distribution N (0, 1)
and 3000 instances by the uniform distribution U(0, 10). Indeed, the distribution of the training
dataset is very close to the normal distribution N (0, 1). Hence, we regard the test data sampled
from distribution N (0, 1) as having no distribution shift. The test data are sampled from a single
distribution, either a normal distribution or uniform distribution. Specifically, we sample 1280 test
data items for TSP100, and 128 test data items for other cases. Obviously, the uniform distribution
has the highest entropy and thus the highest diversity. For these Gaussian distributions, the larger
the variance, the larger the diversity.

As for the TSP100-3D dataset, we can directly extend the 2D instances to 3D instances by appending
a third coordinate with a value of zero. Let X = {xi}i∈[n] ⊂ R3 are the nodes of an instance. We
apply random rotation transformation e on X; that is, e(X) := {e(xi)}i∈[n].

2Code can be found at Coreset2025.

9

https://github.com/little-worm/coreset_CO_ICLR2025

Published as a conference paper at ICLR 2025

Setting We use the DIFUSCO (Sun & Yang, 2023) as our NCO solver. The detailed parameter
settings are in Appendix. To quantify the performance of different methods, we use two criteria: the
average tour length (Length) and the total runtime (Time). The term “Greedy” refers to the greedy
decoding method of DIFUSCO, and “2-opt” is a post-processing used to improve solutions. The
terms US,CS and CS-aligned represent uniform sampling, our coreset without alignment, and our
coreset with alignment, respectively. We take the model trained on the full dataset with 128000 data
items as baseline.

Table 3: Comparison of uniform sampling and our coreset method using TSP100-2D-N (0, 1) as the
training dataset on test data TSPLIB(Reinelt, 1991).

Sample size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

128000 Org N (0, 1) 129.35 108 112.23 106

4003
US N (0, 1) 190.79 109 115.87 108
CS N (0, 1) 153.08 107 113.56 108
CS-aligned N (0, 1) 152.70 103 113.71 105

8245
US N (0, 1) 166.40 106 114.47 108
CS N (0, 1) 140.49 107 113.04 106
CS-aligned N (0, 1) 140.18 104 112.91 104

12951
US N (0, 1) 162.19 107 114.31 107
CS N (0, 1) 133.63 106 112.45 105
CS-aligned N (0, 1) 133.14 103 112.52 110

Results of TSP100-2D Tables 1 to 3 present the results on training dataset TSP100-2D-N (0, 1).
The training datasets are generated by the uniform sampling and our coreset technique respectively.
The results show that both our method and uniform sampling method perform better as the sample
size increases. Meanwhile, as the sample size decreases, the advantage of our methods compared to
uniform sampling becomes increasingly evident.

Moreover, Tables 1 and 2 demonstrate that our method is robust to distribution shift. Specifically,
the training data is sampled from a normal distribution N (0, 1), while the test data are sampled from
normal distributions N (0, 1), N (0, 42) and a uniform distribution U(0, 10). The test distributions
N (0, 42) and U(0, 10) are significantly different from the training distribution N (0, 1), which rep-
resent substantial distribution shifts. The results in Tables 1 and 2 show that our method consistently
outperforms the baselines, demonstrating its robustness to distribution shifts.

Furthermore, Table 2 shows that models trained on our coreset can generalize better to larger prob-
lem sizes such as TSP200, TSP500 and TSP1000. Moreover, Table 3 confirms that our method
outperforms other approaches on the TSPLIB dataset.

Results of TSP100-3D Tables 8 to 10 show the results on training dataset TSP100-3D-N (0, 1).
For the test data without distribution shift (i.e., N (0, 1)), our method has comparable performance;
for the test data occurring distribution shift (i.e., N (0, 42) and U(0, 10)), our method has better
performance. Moreover, our coreset with alignment version performs better in the TSP-3D case.
From Tables 1 to 3, 9 and 10, alignment can perform better for higher dimension dataset (i.e., TSP-
3D). Thus, the alignment version is promising for tackling high-dimensional data. (The details are
in Appendix.)

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce an efficient training framework for NCO problems based on our coreset
method. More specifically, we replace the original huge dataset with our coreset during the training
phase. In the test phase, we first align the test instances with the data in our coreset, and then feed
them into existing NCO models. Our framework enables the development of comparable models
with limited computational and storage resources; additionally, it exhibits robustness to distribution
shifts. Moreover, in future work, we will extend our method to other situations that can induce graph
structures.

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to ChatGPT for assisting in refining the language and
clarity of this paper. I am also deeply grateful for the support from Innovation Program for Quan-
tum Science and Technology (2021ZD0302902), Hi-tech project(231-08-01) and Anhui Province
University Natural Science Research Project (2023AH051102).

REFERENCES

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International Conference on Machine Learning, pp. 134–144. PMLR, 2020.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps and spectral techniques for embedding and
clustering. Advances in neural information processing systems, 14, 2001.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Jon Louis Bentley and James B Saxe. Decomposable searching problems i. static-to-dynamic trans-
formation. Journal of Algorithms, 1(4):301–358, 1980.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In Pro-
ceedings of the 23rd international conference on Machine learning, pp. 97–104, 2006.

Ingwer Borg and Patrick JF Groenen. Modern multidimensional scaling: Theory and applications.
Springer Science & Business Media, 2007.

Vladimir Braverman, Vincent Cohen-Addad, H-C Shaofeng Jiang, Robert Krauthgamer, Chris
Schwiegelshohn, Mads Bech Toftrup, and Xuan Wu. The power of uniform sampling for core-
sets. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pp.
462–473. IEEE Computer Society, 2022.

T-H Hubert Chan, Anupam Gupta, Bruce M Maggs, and Shuheng Zhou. On hierarchical routing in
doubling metrics. ACM Transactions on Algorithms (TALG), 12(4):1–22, 2016.

Ke Chen. On coresets for k-median and k-means clustering in metric and euclidean spaces and their
applications. SIAM Journal on Computing, 39(3):923–947, 2009.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 32, 2019.

Hanni Cheng, Haosi Zheng, Ya Cong, Weihao Jiang, and Shiliang Pu. Select and optimize: Learn-
ing to aolve large-scale tsp instances. In International Conference on Artificial Intelligence and
Statistics, pp. 1219–1231. PMLR, 2023.

Claudio Contardo, Catherine Morency, and Louis-Martin Rousseau. Balancing a dynamic public
bike-sharing system, volume 4. Cirrelt Montreal, 2012.

Georges A Croes. A method for solving traveling-salesman problems. Operations research, 6(6):
791–812, 1958.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

Paulo R d O Costa, Jason Rhuggenaath, Yingqian Zhang, and Alp Akcay. Learning 2-opt heuristics
for the traveling salesman problem via deep reinforcement learning. In Asian conference on
machine learning, pp. 465–480. PMLR, 2020.

Vasek Chvátal William Cook David Applegate, Robert Bixby. Concorde tsp solver. https://
www.math.uwaterloo.ca/tsp/concorde/index.html, 2006.

11

https://www.math.uwaterloo.ca/tsp/concorde/index.html
https://www.math.uwaterloo.ca/tsp/concorde/index.html

Published as a conference paper at ICLR 2025

Michel Deudon, Pierre Cournut, Alexandre Lacoste, Yossiri Adulyasak, and Louis-Martin
Rousseau. Learning heuristics for the tsp by policy gradient. In Integration of Constraint
Programming, Artificial Intelligence, and Operations Research: 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June 26–29, 2018, Proceedings 15, pp. 170–181. Springer,
2018.

Hu Ding, Tan Chen, Fan Yang, and Mingyue Wang. A data-dependent algorithm for querying earth
mover’s distance with low doubling dimensions. In Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM), pp. 630–638. SIAM, 2021.

Alexandre Dolgui, Dmitry Ivanov, Suresh P Sethi, and Boris Sokolov. Scheduling in production,
supply chain and industry 4.0 systems by optimal control: fundamentals, state-of-the-art and
applications. International journal of production research, 57(2):411–432, 2019.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for efficient neural combinatorial optimization. In Thirty-seventh Con-
ference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=BRqlkTDvvm.

Pavel Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational optimal transport:
Complexity by accelerated gradient descent is better than by sinkhorn’s algorithm. In Interna-
tional conference on machine learning, pp. 1367–1376. PMLR, 2018.

Paul Erd6s and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci, 5:17–61, 1960.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data.
In Proceedings of the forty-third annual ACM symposium on Theory of computing, pp. 569–578,
2011.

Aurélien Froger, Michel Gendreau, Jorge E Mendoza, Éric Pinson, and Louis-Martin Rousseau.
Maintenance scheduling in the electricity industry: A literature review. European Journal of
Operational Research, 251(3):695–706, 2016.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Simon Geisler, Johanna Sommer, Jan Schuchardt, Aleksandar Bojchevski, and Stephan Günnemann.
Generalization of neural combinatorial solvers through the lens of adversarial robustness. In
International Conference on Learning Representations, 2021.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical com-
puter science, 38:293–306, 1985.

John C Gower and Garmt B Dijksterhuis. Procrustes problems, volume 30. OUP Oxford, 2004.

Sergey Guminov, Pavel Dvurechensky, and Alexander Gasnikov. On accelerated alternating mini-
mization. 2020.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics, and their
applications. In Proceedings of the twenty-first annual symposium on Computational geometry,
pp. 150–158, 2005.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12, 2017.

André Hottung, Bhanu Bhandari, and Kevin Tierney. Learning a latent search space for routing prob-
lems using variational autoencoders. In International Conference on Learning Representations,
2020.

12

https://openreview.net/forum?id=BRqlkTDvvm
https://openreview.net/forum?id=BRqlkTDvvm

Published as a conference paper at ICLR 2025

Jiawei Huang, Ruomin Huang, Wenjie Liu, Nikolaos Freris, and Hu Ding. A novel sequential coreset
method for gradient descent algorithms. In International Conference on Machine Learning, pp.
4412–4422. PMLR, 2021.

Lingxiao Huang, Shaofeng H-C Jiang, Jianing Lou, and Xuan Wu. Near-optimal coresets for robust
clustering. In The Eleventh International Conference on Learning Representations, 2022.

Arun Jambulapati, Aaron Sidford, and Kevin Tian. A direct tilde {O}(1/epsilon) iteration parallel
algorithm for optimal transport. Advances in Neural Information Processing Systems, 32, 2019.

Chaitanya K. Joshi and Rishabh Anand. Recent advances in deep learning for rout-
ing problems. In ICLR Blog Track, 2022. URL https://iclr-blog-track.
github.io/2022/03/25/deep-learning-for-routing-problems/. https://iclr-
blog-track.github.io/2022/03/25/deep-learning-for-routing-problems/.

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Minsu Kim, Jinkyoo Park, et al. Learning collaborative policies to solve np-hard routing problems.
Advances in Neural Information Processing Systems, 34:10418–10430, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

Robert Krauthgamer and James R Lee. Navigating nets: simple algorithms for proximity search. In
SODA, volume 4, pp. 798–807, 2004.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck. Finding
near-optimal independent sets at scale. In 2016 Proceedings of the Eighteenth Workshop on
Algorithm Engineering and Experiments (ALENEX), pp. 138–150. SIAM, 2016.

A Laterre, Y Fu, MK Jabri, AS Cohen, D Kas, K Hajjar, TS Dahl, A Kerkeni, and K Beguir. Ranked
reward: Enabling self-play reinforcement learning for combinatorial optimization. Advances in
Neural Information Processing Systems 31 (NeurIPS 2018), 2018.

Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear pro-
gramming. In 2015 IEEE 56th annual symposium on foundations of computer science, pp. 230–
249. IEEE, 2015.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. T2t: From distribution learning in training to
gradient search in testing for combinatorial optimization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Jian Liang, Ran He, and Tieniu Tan. A comprehensive survey on test-time adaptation under distri-
bution shifts. arXiv preprint arXiv:2303.15361, 2023.

13

https://iclr-blog-track.github.io/2022/03/25/deep-learning-for-routing-problems/
https://iclr-blog-track.github.io/2022/03/25/deep-learning-for-routing-problems/

Published as a conference paper at ICLR 2025

Tianyi Lin, Nhat Ho, and Michael Jordan. On efficient optimal transport: An analysis of greedy
and accelerated mirror descent algorithms. In International Conference on Machine Learning,
pp. 3982–3991. PMLR, 2019.

Ruiwu Liu, Xiaocen Li, and Kit S Lam. Combinatorial chemistry in drug discovery. Current opinion
in chemical biology, 38:117–126, 2017.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In Thirty-seventh Conference on Neural
Information Processing Systems, 2023.

Konstantin Makarychev, Yury Makarychev, and Ilya Razenshteyn. Performance of johnson–
lindenstrauss transform for k-means and k-medians clustering. SIAM Journal on Computing,
(0):STOC19–269, 2022.

Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an overview. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(1):86–97, 2012.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Gurobi Optimization. Gurobi optimizer reference manual. https://www.gurobi.com/, 2020.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport. Center for Research in Eco-
nomics and Statistics Working Papers, (2017-86), 2017.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

Gerhard Reinelt. Tsplib—a traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Frédéric Ros and Serge Guillaume. Sampling techniques for supervised or unsupervised tasks.
Springer, 2020.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algo-
rithms. Cambridge university press, 2014.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time train-
ing with self-supervision for generalization under distribution shifts. In International conference
on machine learning, pp. 9229–9248. PMLR, 2020.

Zhiqing Sun and Yiming Yang. DIFUSCO: Graph-based diffusion solvers for combinatorial opti-
mization. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=JV8Ff0lgVV.

Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric framework for
nonlinear dimensionality reduction. science, 290(5500):2319–2323, 2000.

Murad Tukan, Alaa Maalouf, and Dan Feldman. Coresets for near-convex functions. Advances in
Neural Information Processing Systems, 33:997–1009, 2020.

Matthew Veres and Medhat Moussa. Deep learning for intelligent transportation systems: A survey
of emerging trends. IEEE Transactions on Intelligent transportation systems, 21(8):3152–3168,
2019.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Zixiu Wang, Yiwen Guo, and Hu Ding. Robust and fully-dynamic coreset for continuous-and-
bounded learning (with outliers) problems. Advances in Neural Information Processing Systems,
34:14319–14331, 2021.

14

https://www.gurobi.com/
https://openreview.net/forum?id=JV8Ff0lgVV

Published as a conference paper at ICLR 2025

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Step-wise deep learning models for solving
routing problems. IEEE Transactions on Industrial Informatics, 17(7):4861–4871, 2020.

Liang Xin, Wen Song, Zhiguang Cao, and Jie Zhang. Multi-decoder attention model with embedding
glimpse for solving vehicle routing problems. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pp. 12042–12049, 2021.

15

Published as a conference paper at ICLR 2025

A OTHER PRELIMINARIES

Lemma A.1 (Generalized triangle inequalities(Makarychev et al., 2022)). Given three points a, b, c,
the following inequalities hold for any 0 < t ≤ 1:

• dist2(a, b) ≤ (1 + t) · dist2(a, c) + (1 + 1
t) · dist

2(b, c);

•
∣∣dist2(a, c)− dist2(b, c)

∣∣ ≤ t · dist2(a, c) + 6
t · dist

2(a, b).

Definition A.2 (Wasserstein distance (Peyré et al., 2017)). Let µ =
∑n

i=1 aiδxi
, ν =

∑n
j=1 bjδyj

∈
P(Rd), where a,b ∈ Rn

+ are their weights and {xi}i∈[n] , {yj}j∈[n] ⊂ Rd are their locations.
Given a cost matrix C ∈ Rn×n

+ with Cij = ∥xi− yj∥2, the Wasserstein distance between µ and ν is

W (µ, ν) :=

(
min

P∈Π(a,b)
⟨P,C⟩

)1/2

,

where Π(a,b) :=
{
P ∈ Rn×n

+ | P1 = a,PT1 = b
}

is the coupling set and 1 is the vector of ones.

A.1 OTHER RELATED WORKS

NCO The existing NCO methods can be categorized into two types: constructive heuristics (Khalil
et al., 2017; Kool et al., 2018; Kwon et al., 2020; Hottung et al., 2020; Kim et al., 2022; Joshi et al.,
2019; Fu et al., 2021; Geisler et al., 2021; Qiu et al., 2022; Sun & Yang, 2023; Luo et al., 2023;
Vinyals et al., 2015; Bello et al., 2016; Nazari et al., 2018; Deudon et al., 2018; Xin et al., 2020;
2021; Kwon et al., 2021; Kim et al., 2021; Cheng et al., 2023; Drakulic et al., 2023) and improvement
heuristics (Li et al., 2018; d O Costa et al., 2020; Wu et al., 2021; Chen & Tian, 2019; Li et al.,
2023; Chen & Tian, 2019; Hottung et al., 2020; Joshi & Anand, 2022; Joshi et al., 2019) methods;
the former can be further divided into two subtypes: autoregressive methods and non-autoregressive
methods. The autoregressive methods grow a partial solution to a complete solution incrementally,
and the non-autoregressive methods directly predict a heatmap. The improvement heuristic methods
often work by iteratively improving a feasible initial solution.

Coreset Coreset is a popular data compression technique for clustering Chen (2009); Feldman &
Langberg (2011); Braverman et al. (2022), regression Tukan et al. (2020) and optimization Huang
et al. (2022); Wang et al. (2021). More relevant, Huang et al. Huang et al. (2021) proposed a sequen-
tial coreset for optimization problems with the Lipschitz smoothness property. Wang et al. (Wang
et al., 2021) designed a coreset method for continuous-and-bounded learning (Shalev-Shwartz &
Ben-David, 2014). However, these methods cannot offer an efficient method for aligning CO in-
stances with training data in the inference phase.

Optimal transportation (OT) Discrete Wasserstein distance is a special case of OT, thus it can be
computed by standard OT solvers. In recent years, a lot of algorithms have been proposed to solve
OT problem. For example, interior point method can compute an ϵ+-approximation value for OT
with Õ(n3) time in practice (Peyré et al., 2017) or Õ(n2.5) in theory (Lee & Sidford, 2015). To ob-
tain an ϵ+-approximation solution of OT, Sinkhorn algorithm takes Õ(n2/ϵ2+) time (Dvurechensky
et al., 2018; Lin et al., 2019) by solving the entropic regularization OT (Cuturi, 2013); the accel-
erated version of Sinkhorn algorithm yields Õ(n2.5/ϵ+) time (Guminov et al., 2020); especially,
based on area-convexity and dual extrapolation, Jambulapati et al. (2019) achieved Õ(n2/ϵ+) time
complexity.

B OTHER ALGORITHMS

Algorithm for computing RWD We define two discrete probability measures

α =

n∑
i=1

aiδxi
, β =

n∑
j=1

bjδyj
∈ P(Rd), (6)

16

Published as a conference paper at ICLR 2025

where a,b ∈ Rn
+ are their weights and {xi}i∈[n] , {yj}j∈[n] ⊆ Rd their locations; δ is the Dirac

delta function. We denote the Wasserstein distance between α and β by W (α, β).

The aim of Algorithm 3 is to find a rigid transformation e such that W(α, β) = W (e ◦ α, β).
We initialize α̃ = α. We solve W(α, β) by updating the coupling P and rigid transformation e
alternatively. Specifically, we first obtain coupling P by computing W (α̃, β) according to the
method in (Jambulapati et al., 2019). Then, we fix P, and compute argmine WP(e ◦ α, β).

We partition the rigid transformation e into translation transformation e1 and orthogonal trans-
formation e2; that is, e = e2 ◦ e1. The translation transformation can be updated as e1 =∑n

i=1

∑n
j=1 Pijyj −

∑n
i=1

∑n
j=1 Pijxi. For fixed e1,P, computing the optimal orthogonal trans-

formation e2 is an orthogonal Procrustes problem (Gower & Dijksterhuis, 2004). More specifically,
we first obtain M =

∑
ij Pijxiy

T
j , and apply singular value decomposition M = UDVT; then, we

have
e2 = UVT . (7)

Algorithm 3 Algorithm for RWD
Input:α, β

1: t = 0, α̃ = α ;
2: for t < Talign do
3: t = t +1;
4: ▷ update coupling P

Obtain coupling P by computing W (α̃, β) according to the method in (Jambulapati et al.,
2019);

5: ▷ update translation transformation e1 and orthogonal transformation e2
Compute e1 =

∑n
i=1

∑n
j=1 Pijyj −

∑n
i=1

∑n
j=1 Pijxi;

Compute e2 = UVT according to Equation (7), and set e = e2 ◦ e1;
α̃ =

∑n
i=1 aiδ(e◦xi).

6: end for
Output:P, e

Time complexity of Algorithm 3 We compute the RWD by alternating between optimizing the
coupling matrix and the rigid transformation, which is a heuristic method. We assuming that the
point dimension d and the number of iterations Talign are constants. For computing the coupling
matrix, we solve an OT problem within Õ(n2) time (Jambulapati et al., 2019). The rigid transfor-
mation is obtained by solving an orthogonal Procrustes problem, which has a time complexity of
O(n2d+ nd2 + d3). Thus, the overall complexity of this heuristic method remains Õ(n2).

Algorithm for alignment Here, we introduce our alignment algorithm. We first initialize the
current node v as the root node v0. Then, we walk from the root node to a leaf node by selecting the
most similar measure with the test instance µ.

Algorithm 4 Algorithm for alignment
Input: the tree T , CO instance µ

1: v = v0 ▷ The current node v is initialized as root node v0.
2: Initialize target by any measure in coreset S.

▷ S is the corresponding coreset maintained in tree T .
3: Select the child v′ that is closest to µ under metric RWD.
4: Set v = v′.
5: if W(µ, v′.center) ≤ W(µ, target) then
6: target = v′.center;
7: end if
8: If v is not a leaf, jump to Line 3.

Output:target

17

Published as a conference paper at ICLR 2025

𝜈!𝜈"
𝜈# 𝜈$ 𝜈% ⋯ ⋯

Figure 4: The illustration for error.

C OMITED PROOFS

Proof of Theorem 3.3. The proof sketch is listed here. First, we prove that by taking (Q,ddim, r)
as input, the coreset constructed by Algorithm 2 can cover the dataset Q by small balls of radius
r by using mathematical induction. Then, we obtain that the value difference of the loss function
between the data itself and its representation is small by Lipschitz continuous property. Third, by
setting some parameters properly, we turn the additive error into a relative error, and obtain an
ϵ-coreset S.

Given a probability measure µ ∈ Q, we assume that its corresponding ball center in the h-th epoch
is νh.

Claim C.1. W2(µ, νh) ≤ h2 · r2

H2 .

Proof. The error is grown in a manner illustrated in Figure 4. Next, we prove this claim by using
mathematical induction.
Base Case: For the case h = 1, in the 1-st epoch, we have W2(µ, ν1) ≤ r2

H2 .

Induction step: For the case h = m, in the m-th epoch, we assume that

W2(µ, νm) ≤ m2 · r2

H2
. (8)

Then, according to the generalized triangle inequalities in Lemma A.1, we have

W2(µ, νm+1) ≤ (1 + t) · W2(µ, νm) + (1 +
1

t
) · W2(νm, νm+1). (9)

Since the radius of small ball in Figure 4 is at most r
H , we have W2(νm, νm+1) < r2

H2 . By using
the the induction hypothesis and setting t = 1

m , we have

W2(µ, νm+1) ≤ (1 +
1

m
) ·m2 · r2

H2
+ (1 +m) · r2

H2
= (m+ 1)2

r2

H2
. (10)

Till now, we prove the case h = m+ 1.

Let ν := νH be the representation of µ in Algorithm 2. According to Claim C.1, we have
W2(µ, ν) ≤ r2.

Next, since loss function is L-Lipschitz continuous with respect to RWD on Q, we have

|ℓ(µ, θ)− ℓ(ν, θ)| ≤ L · W(ν, µ) ≤ L · r. (11)

|ℓ(Q, θ)− ℓ(S, θ)| ≤
∑
µ∈Q

wQ(µ) · |ℓ(µ, θ)− ℓ(ν, θ)| ≤
∑
µ∈Q

wQ(µ) · L · r = L · r, (12)

where ν ∈ S is the corresponding representation of µ ∈ Q, and we have wQ(Q) :=
∑

µ wQ(µ) = 1
according to Definition 2.1.

18

Published as a conference paper at ICLR 2025

Finally, we have |ℓ(Q, θ)| ≥ γ, by setting r = ϵγ
L , we obtain the coreset property

|ℓ(Q, θ)− ℓ(S, θ)| ≤ ϵγ ≤ ϵ · |ℓ(Q, θ)| . (13)

D FULL EXPERIMENTS WITH TSP

We take TSP100 as an example to show the advantages of our coreset method. All experiments are
conducted on an NVIDIA L20 GPU. We take the NCO Sun & Yang (2023) as our backbone solver,
and set its training epoch as 20.

Dataset We apply our method on TSP100-2D/3D Euclidean instances. The labels of TSP100-2D
instances are obtained by using the LKH-3 heuristic solver (Helsgaun, 2017); each coordinate of the
nodes in a TSP instance is generated by x%10, where x is randomly sampled either from a normal
distribution N (0, σ2) or uniform sampling U(0, 10). Our training data, TSP100-2D-N (0, 1) and
TSP100-3D-N (0, 1), consists of 125,000 instances generated by the normal distribution N (0, 1)
and 3000 instances by the uniform distribution U(0, 10). While the training dataset TSP100-2D-
U(0, 10) consists of 128000 instances generated by uniform distribution U(0, 10).
Indeed, the distributions of the training dataset TSP100-2D-N (0, 1) and TSP100-3D-N (0, 1) are
very close to the normal distribution N (0, 1). Hence, we regard the test data sampled from distri-
bution N (0, 1) as having no distribution shift. The test data are sampled from a single distribution,
either a normal distribution or uniform distribution. Specifically, we sample 1280 test data for
TSP100, and 128 test data for other cases. Obviously, the uniform distribution has the highest en-
tropy and thus the highest diversity. For these Gaussian distributions, the larger the variance, the
larger the diversity.

As for the TSP100-3D dataset, we can directly extend the 2D instances to 3D instances by appending
a third coordinate with a value of zero. Let X = {xi}i∈[n] ⊂ R3 are the nodes of an instance.
We apply random rotation transformation e on X; that is, e(X) := {e(xi)}i∈[n]. Intuitively, this
TSP100-3D dataset has the same intrinsic complexity under metric RWD, which is the low doubling
dimension in our assumption.

Table 4: Time statistics for different phases of training on TSP100-2D-N (0, 1).
Method Sample size Labeling time Coreset Time Training Time Total time

Org 128000 4709 - 28563 33272

US
4003 147 - 1894 2041
8245 304 - 2862 3166
12951 475 - 4014 4489

CS
4003 145 691 1731 2567
8245 305 1086 2747 4138
12951 474 1283 3751 5508

Setting We use the DIFUSCO (Sun & Yang, 2023) as our NCO solver. The model DIFUSCO
with Greedy decoding solves TSP instances in an end-to-end manner. We set the learning rate
as 0.0002 and the batch size as 64. The diffusion step is performed 50 times in inference phase.
We use the cosine schedule described in (Sun & Yang, 2023). To quantify the performance of
different methods, we use two criteria: the average tour length (Length) and the total runtime (Time).
The term “Greedy” refers to the greedy decoding method of DIFUSCO, and “2-opt” is a post-
processing used to improve solutions. The terms US,CS and CS-aligned represent uniform sampling,
our coreset without alignment, and our coreset with alignment, respectively. We use the results on
the full dataset with 128000 data as a baseline. In experiments, we first construct a coreset S, and
then take |S| samples by uniform sampling as training datasets.

Results of TSP100-2D Tables 4 to 7 present the results on training dataset TSP100-2D-N (0, 1).
The training datasets are generated by the uniform sampling and our coreset technique respectively.

19

Published as a conference paper at ICLR 2025

Table 5: Comparison of uniform sampling and our coreset method using TSP100-2D-N (0, 1) as
the training dataset on test data TSP100-2D from different distributions.

Sample size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

128000 Org

N (0, 1) 20.39 386 18.61 384
N (0, 22) 42.41 381 37.47 387
N (0, 42) 76.41 374 67.39 388
N (0, 82) 87.18 379 77.86 388
U(0, 10) 89.29 372 79.82 385

4003

US

N (0, 1) 22.34 378 18.92 387
N (0, 22) 51.59 376 38.25 388
N (0, 42) 101.95 379 69.28 395
N (0, 82) 118.83 379 80.38 402
U(0, 10) 119.78 380 82.59 395

CS

N (0, 1) 22.21 372 18.87 379
N (0, 22) 44.94 379 37.80 378
N (0, 42) 80.63 372 67.92 379
N (0, 82) 92.63 367 78.47 378
U(0, 10) 94.73 373 80.64 377

CS-aligned

N (0, 1) 22.18 359 18.88 363
N (0, 22) 45.00 357 37.80 362
N (0, 42) 80.66 362 67.91 358
N (0, 82) 92.59 362 78.41 358
U(0, 10) 94.94 361 80.53 360

8245

US

N (0, 1) 22.12 377 18.87 388
N (0, 22) 45.59 381 37.86 389
N (0, 42) 83.17 377 68.13 378
N (0, 82) 95.16 380 78.81 385
U(0, 10) 97.31 377 80.80 387

CS

N (0, 1) 21.79 366 18.84 383
N (0, 22) 43.72 373 37.73 378
N (0, 42) 78.72 372 67.79 378
N (0, 82) 90.44 371 78.36 380
U(0, 10) 92.99 374 80.35 377

CS-aligned

N (0, 1) 21.80 360 18.86 359
N (0, 22) 43.77 354 37.73 356
N (0, 42) 78.50 361 67.82 358
N (0, 82) 90.54 350 78.32 359
U(0, 10) 93.04 355 80.42 361

12951

US

N (0, 1) 21.99 390 18.87 377
N (0, 22) 44.77 376 37.81 384
N (0, 42) 80.78 384 67.94 379
N (0, 82) 93.16 373 78.52 381
U(0, 10) 95.01 369 80.60 379

CS

N (0, 1) 21.57 372 18.81 382
N (0, 22) 43.14 371 37.66 388
N (0, 42) 77.80 369 67.58 379
N (0, 82) 89.63 371 78.18 408
U(0, 10) 92.01 378 80.23 375

CS-aligned

N (0, 1) 21.50 361 18.79 358
N (0, 22) 43.18 361 37.66 364
N (0, 42) 77.67 362 67.57 357
N (0, 82) 89.60 357 78.18 361
U(0, 10) 92.01 358 80.21 359

20

Published as a conference paper at ICLR 2025

The results show that both our method and uniform sampling method perform better as the sample
size increases. Meanwhile, as the sample size decreases, the advantage of our methods compared to
uniform sampling becomes increasingly evident.

Moreover, Tables 5 and 6 demonstrate that our method is robust to distribution shift. Specifically,
the training data is sampled from a normal distribution N (0, 1), while the test data is sampled from
normal distributions N (0, 1), N (0, 42) and a uniform distribution U(0, 10). The test distributions
N (0, 42) and U(0, 10) are significantly different from the training distribution N (0, 1), which rep-
resent substantial distribution shifts. The results in Tables 5 and 6 show that our method consistently
outperforms the baselines, demonstrating its robustness to distribution shifts.

Furthermore, Table 6 shows that models trained on our coreset can generalize better to larger prob-
lem sizes such as TSP200, TSP500 and TSP1000. Moreover, Table 7 confirms that our method
outperforms other approaches on the TSPLIB dataset. Table 4 shows the time efficiency of our
coreset method.

Table 6: Comparison of uniform sampling and our coreset method using
TSP100-2D-N (0, 1) as the training dataset on test data of varying sizes.
We fix the sample size as 12951.

TSP size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

TSP-200 Org

N (0, 1) 29.85 107 26.61 111
N (0, 22) 60.87 109 53.38 110
N (0, 42) 109.70 110 94.90 111
N (0, 82) 123.39 110 108.41 110
U(0, 10) 126.99 107 111.50 111

TSP-500 Org

N (0, 1) 50.55 1012 42.38 1018
N (0, 22) 102.65 1012 84.89 1018
N (0, 42) 184.40 1012 150.47 1018
N (0, 82) 204.53 1010 171.14 1014
U(0, 10) 210.70 1012 175.41 1016

TSP-1000 Org

N (0, 1) 77.15 2826 60.56 2840
N (0, 22) 157.12 2826 121.45 2839
N (0, 42) 281.64 4224 214.55 2833
N (0, 82) 310.94 4218 243.77 4242
U(0, 10) 317.55 4218 249.28 4236

TSP-200

US

N (0, 1) 33.69 109 27.14 112
N (0, 22) 69.77 109 54.28 112
N (0, 42) 125.99 108 96.70 112
N (0, 82) 143.76 109 110.64 113
U(0, 10) 145.41 109 113.39 112

CS

N (0, 1) 30.75 107 26.69 110
N (0, 22) 62.08 109 53.36 112
N (0, 42) 110.48 109 94.84 111
N (0, 82) 127.06 107 108.76 111
U(0, 10) 129.77 107 111.47 109

CS-aligned

N (0, 1) 30.77 77 26.68 79
N (0, 22) 61.87 76 53.38 79
N (0, 42) 110.99 78 94.59 79
N (0, 82) 126.69 76 108.42 79
U(0, 10) 129.28 76 111.49 78

TSP-500

US

N (0, 1) 59.81 1012 43.41 1020
N (0, 22) 126.00 1013 86.76 1022
N (0, 42) 237.72 1012 154.28 1022
N (0, 82) 261.79 1013 176.13 1022
U(0, 10) 263.66 1015 180.75 1022

Continued on next page

21

Published as a conference paper at ICLR 2025

111111111111 – continued from previous page

TSP size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

CS

N (0, 1) 49.11 1012 42.25 1016
N (0, 22) 99.58 1012 84.60 1019
N (0, 42) 178.56 1010 149.50 1016
N (0, 82) 205.86 1012 170.54 1016
U(0, 10) 208.36 1011 174.93 1016

CS-aligned

N (0, 1) 49.38 680 42.26 683
N (0, 22) 99.66 680 84.52 684
N (0, 42) 178.88 679 149.63 682
N (0, 82) 204.42 678 170.62 682
U(0, 10) 208.77 678 175.03 682

TSP-1000

US

N (0, 1) 94.71 2823 61.72 2848
N (0, 22) 199.22 2825 123.56 2849
N (0, 42) 382.77 4224 219.16 2847
N (0, 82) 421.29 4218 249.08 4258
U(0, 10) 426.61 4215 255.95 4254

CS

N (0, 1) 69.76 2823 59.59 2833
N (0, 22) 141.06 2825 119.64 2832
N (0, 42) 252.92 4224 210.71 2832
N (0, 82) 293.49 4218 240.42 4236
U(0, 10) 299.80 4215 246.57 4234

CS-aligned

N (0, 1) 69.96 2825 59.57 2832
N (0, 22) 140.95 2822 119.39 2833
N (0, 42) 253.63 2821 210.81 2830
N (0, 82) 293.82 2815 240.11 2826
U(0, 10) 300.03 2812 246.61 2827

Table 7: Comparison of uniform sampling and our coreset method using TSP100-2D-N (0, 1) as
the training dataset on test data TSPLIB(Reinelt, 1991).

Sample size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

128000 Org N (0, 1) 129.35 108 112.23 106

4003
US N (0, 1) 190.79 109 115.87 108
CS N (0, 1) 153.08 107 113.56 108
CS-aligned N (0, 1) 152.70 103 113.71 105

8245
US N (0, 1) 166.40 106 114.47 108
CS N (0, 1) 140.49 107 113.04 106
CS-aligned N (0, 1) 140.18 104 112.91 104

12951
US N (0, 1) 162.19 107 114.31 107
CS N (0, 1) 133.63 106 112.45 105
CS-aligned N (0, 1) 133.14 103 112.52 110

Results of TSP100-3D-N (0, 1) Tables 8 to 10 show the results of TSP100-3D-N (0, 1). Table 8
illustrates the overall acceleration improvement. For the test data without distribution shift, our
method has comparable performance; for the test data occurring distribution shift, our method has
better performance. Moreover, our coreset with alignment version performs better in the TSP-3D
case. From Tables 9 and 10, alignment can perform better for higher dimension dataset (i.e., TSP-
3D). Thus, the alignment version is promising for tackling high-dimensional data.

22

Published as a conference paper at ICLR 2025

Table 8: Time statistics for different phases of training on TSP100-3D-N (0, 1).
Method Sample size Labeling time Coreset Time Training Time Total time

Org 128000 4940 - 30671 35611

US
4103 160 - 2102 2262
7960 307 - 2729 3036
12058 466 - 3514 3980

CS
4103 159 1012 2080 1379
7960 309 1177 2712 4198
12058 463 1675 3493 5631

Table 10: Comparison of uniform sampling and our coreset method with
training dataset TSP100-3D-N (0, 1) on test data of varying sizes. We fix
the sample size as 12058.

TSP size Method Test distribution Greedy Alignment time (↓)Length (↓) Time (↓)

TSP-200 Org

N (0, 1) 30.02 77 -
N (0, 22) 61.03 76 -
N (0, 42) 109.78 77 -
N (0, 82) 126.15 76 -
U(0, 10) 128.35 77 -

TSP-500 Org

N (0, 1) 48.66 682 -
N (0, 22) 101.71 682 -
N (0, 42) 184.94 682 -
N (0, 82) 210.36 680 -
U(0, 10) 212.62 683 -

TSP-1000 Org

N (0, 1) 69.08 2828 -
N (0, 22) 144.10 2826 -
N (0, 42) 264.58 2824 -
N (0, 82) 303.02 2821 -
U(0, 10) 313.23 2818 -

TSP-200

US

N (0, 1) 32.30 76 -
N (0, 22) 67.81 77 -
N (0, 42) 130.76 77 -
N (0, 82) 152.74 77 -
U(0, 10) 153.90 77 -

CS

N (0, 1) 32.72 76 -
N (0, 22) 66.08 76 -
N (0, 42) 120.64 78 -
N (0, 82) 139.91 77 -
U(0, 10) 142.84 77 -

CS-aligned

N (0, 1) 33.25 76 2
N (0, 22) 69.79 75 5
N (0, 42) 118.44 77 7
N (0, 82) 135.90 77 10
U(0, 10) 138.27 76 12

TSP-500

US

N (0, 1) 58.45 682 -
N (0, 22) 127.53 681 -
N (0, 42) 264.93 682 -
N (0, 82) 316.73 681 -
U(0, 10) 318.39 680 -

CS

N (0, 1) 59.69 682 -
Continued on next page

23

Published as a conference paper at ICLR 2025

111111111111 – continued from previous page

TSP size Method Test distribution Greedy
Length (↓) Time (↓)

N (0, 22) 122.24 681 -
N (0, 42) 231.96 682 -
N (0, 82) 266.08 677 -
U(0, 10) 268.75 680 -

CS-aligned

N (0, 1) 56.47 682 16
N (0, 22) 121.33 681 19
N (0, 42) 205.45 682 23
N (0, 82) 238.14 681 26
U(0, 10) 245.01 681 30

TSP-1000

US

N (0, 1) 86.01 2828 -
N (0, 22) 191.39 2828 -
N (0, 42) 397.40 2825 -
N (0, 82) 470.55 2820 -
U(0, 10) 550.11 2819 -

CS

N (0, 1) 86.57 2826 -
N (0, 22) 181.84 2827 -
N (0, 42) 342.64 2822 -
N (0, 82) 395.66 2820 -
U(0, 10) 441.82 2818 -

CS-aligned

N (0, 1) 86.87 2828 236
N (0, 22) 186.88 2823 433
N (0, 42) 320.68 2825 624
N (0, 82) 372.34 2820 861
U(0, 10) 383.92 2819 980

Then, we take TSP-3D as an example to compare the performance of the random heuristic alignment
method (CS-rand-aligned) with our proposed alignment method (CS-aligned).

As shown in Table 11, the results demonstrate that the CS-rand-aligned method performs similarly
to the unaligned approach, providing little improvement. In contrast, our alignment method signifi-
cantly enhances performance, confirming its practical effectiveness.

Table 11: Comparison of rand alignment (CS-rand-aligned) and
our alignment (CS-aligned) method with training dataset TSP100-3D-
N (0, 1) on test data of varying sizes. We fix the sample size as 12058.

TSP size Method Test distribution Greedy Alignment time (↓)Length (↓) Time (↓)

TSP-100

US U(0, 10) 100.41 37 -
CS U(0, 10) 95.27 36 -
CS-aligned U(0, 10) 94.13 37 3
CS-rand-aligned U(0, 10) 95.62 37 11

TSP-200

US U(0, 10) 153.90 77 -
CS U(0, 10) 142.84 77 -
CS-aligned U(0, 10) 138.27 76 12
CS-rand-aligned U(0, 10) 144.84 75 17

TSP-500

US U(0, 10) 318.39 680 -
CS U(0, 10) 268.75 680 -
CS-aligned U(0, 10) 245.01 681 30
CS-rand-aligned U(0, 10) 255.92 674 23

TSP-1000

US U(0, 10) 550.11 2819 -
CS U(0, 10) 441.82 2826 -
CS-aligned U(0, 10) 383.92 2818 980

Continued on next page

24

Published as a conference paper at ICLR 2025

111111111111 – continued from previous page

TSP size Method Test distribution Greedy
Length (↓) Time (↓)

CS-rand-aligned U(0, 10) 429.90 2817 493

Results of TSP100-2D-U(0, 10) Tables 12 to 15 present the results on training dataset TSP100-
2D-U(0, 10). The training datasets are generated by the uniform sampling and our coreset technique
respectively. Table 12 clearly demonstrates the overall acceleration improvement. All the results
show that both our method and uniform sampling method perform better as the sample size increases.
For both the test data with distribution shift and without distribution shift, our method consistently
shows better performance. Table 14 further illustrates that our method can generalize to large-
scale TSP problems better. Table 15 confirms that our method outperforms other approaches on the
TSPLIB dataset.

Results of TSP100-3D-U(0, 10) Tables 16 and 17 present the results on training dataset TSP100-
2D-U(0, 10).

E FULL EXPERIMENTS WITH MIS

Dataset For Maximal Independent Set (MIS), we train our model on ER-[90-100] dataset (Erd6s
& Rényi, 1960), where ER-[n-N] means that the graph contains n to N nodes. We set the connection
probability as 0.15 as in (Sun & Yang, 2023). The labels of our MIS datasets are obtained by using
the KaMIS2 solver. Our training dataset of MIS consists of 128000 ER-[90-100] instances. We
evaluate our method on ER-[90-100], ER-[400-500], ER-[900-1000] and SATLIB.

Setting We use the DIFUSCO (Sun & Yang, 2023) as our NCO solver. To quantify the perfor-
mance of different methods, we use two criteria: the average size of the independent set (Size) and
the total runtime (Time). The term “Greedy” refers to the greedy decoding method of DIFUSCO,
and “Sampling” is the sampling decoding. The terms US and CS represent uniform sampling and our
coreset method, respectively. We use the results on the full dataset with 128000 data as a baseline.

Results of MIS Tables 18, 20 and 27 present the results on training dataset ER-[90-100]. The
training datasets are generated by the uniform sampling and our coreset technique respectively.
Table 18 clearly demonstrates the overall acceleration improvement. All the results show that both
our method and uniform sampling method perform better as the sample size increases. Table 27
demonstrates that our method can generalize to large-scale ER problems better. Table 20 show that
the performance of our method and uniform sampling method is similar on SATLIB.

F FULL EXPERIMENTS WITH CVRP

In this section, we take CVRP100 as an example to show the advantages of our coreset method. All
experiments of CVRP are conducted on NVIDIA GeForce RTX 3090 GPU. We take the NCO (Luo
et al., 2023) as our backbone solver, and set its training epoch as 20.

Dataset We apply our method on CVRP100 Euclidean instances. The labels of CVRP100 in-
stances are obtained by using the LKH-3 heuristic solver (Helsgaun, 2017); each coordinate of the
nodes in a CVRP instance is generated by x%1, where x is randomly sampled either from a normal
distribution N (0, σ2) or uniform sampling U(0, 1). Our training data CVRP100-N (0, 0.12) con-
sists of 125,000 instances generated by the normal distribution N (0, 0.12) and 3000 instances by
the uniform distribution U(0, 1). While the training dataset CVRP100-U(0, 1) consists of 128000
instances generated by uniform distribution U(0, 1).
Indeed, the distributions of the training dataset CVRP100-N (0, 0.12) is very close to the normal
distribution N (0, 0.12). Hence, we regard the test data sampled from distribution N (0, 0.12) as
having no distribution shift. The test data are sampled from a single distribution, either a normal
distribution or uniform distribution. Specifically, we sample 1280 test data for CVRP100, and 128

25

Published as a conference paper at ICLR 2025

Table 9: Comparison of uniform sampling and our coreset method using TSP100-3D-N (0, 1) as
the training dataset on test data TSP100-3D from different distributions.

Sample size Method Test distribution Greedy Alignment time (↓)Length (↓) Time (↓)

128000 Org

N (0, 1) 20.80 364 -
N (0, 22) 42.25 366 -
N (0, 42) 76.57 362 -
N (0, 82) 88.45 360 -
U(0, 10) 90.55 358 -

4103

US

N (0, 1) 24.92 480 -
N (0, 22) 49.96 482 -
N (0, 42) 96.60 483 -
N (0, 82) 116.65 482 -
U(0, 10) 119.78 481 -

CS

N (0, 1) 24.89 364 -
N (0, 22) 50.46 384 -
N (0, 42) 106.35 360 -
N (0, 82) 109.12 360 -
U(0, 10) 111.63 353 -

CS-aligned

N (0, 1) 23.36 479 2
N (0, 22) 47.00 480 4
N (0, 42) 91.94 479 7
N (0, 82) 106.50 482 9
U(0, 10) 108.81 483 11

7960

US

N (0, 1) 23.62 477 -
N (0, 22) 48.32 477 -
N (0, 42) 92.92 484 -
N (0, 82) 111.98 479 -
U(0, 10) 115.62 481 -

CS

N (0, 1) 23.41 362 -
N (0, 22) 47.10 361 -
N (0, 42) 86.20 362 -
N (0, 82) 99.50 365 -
U(0, 10) 101.25 359 -

CS-aligned

N (0, 1) 22.83 476 12
N (0, 22) 46.06 474 14
N (0, 42) 85.71 483 16
N (0, 82) 97.61 480 17
U(0, 10) 99.10 481 19

12058

US

N (0, 1) 22.10 360 -
N (0, 22) 45.52 368 -
N (0, 42) 84.28 368 -
N (0, 82) 98.57 372 -
U(0, 10) 100.40 367 -

CS

N (0, 1) 22.10 371 -
N (0, 22) 44.40 362 -
N (0, 42) 80.47 361 -
N (0, 82) 93.00 361 -
U(0, 10) 95.25 362 -

CS-aligned

N (0, 1) 22.30 396 21
N (0, 22) 44.80 371 22
N (0, 42) 79.96 388 23
N (0, 82) 92.28 377 25
U(0, 10) 94.13 366 26

26

Published as a conference paper at ICLR 2025

Table 12: Time statistics for different phases of training on TSP100-2D-U(0, 10).
Method Sample size Labeling time Coreset Time Training Time Total time

Org 128000 4883 - 27686 32569

US
4003 153 - 2387 2540
8245 315 - 3217 3532
12951 495 - 3578 4073

CS
4003 154 859 2331 3344
8245 315 841 3217 4373
12951 493 1293 3516 5302

Table 13: Comparison of uniform sampling and our coreset method using TSP100-2D-U(0, 10) as
the training dataset on test data TSP100-2D from different distributions.

Sample size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

128000 Org U(0, 10) 86.77 358 79.53 353

4003
US U(0, 10) 100.62 355 80.97 375
CS U(0, 10) 97.69 461 80.94 383
CS-aligned U(0, 10) 97.71 363 80.95 369

8245
US U(0, 10) 92.66 352 80.33 365
CS U(0, 10) 93.12 381 80.38 372
CS-aligned U(0, 10) 93.27 351 80.41 354

12951
US U(0, 10) 91.98 362 80.34 367
CS U(0, 10) 92.33 354 80.23 356
CS-aligned U(0, 10) 92.39 360 80.28 367

Table 14: Comparison of uniform sampling and our coreset method using TSP100-2D-U(0, 10) as
the training dataset on test data of varying sizes. We fix the sample size as 12951.

TSP size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

TSP-200 Org U(0, 10) 125.06 72 110.89 73

TSP-500 Org U(0, 10) 195.68 675 172.19 677

TSP-1000 Org U(0, 10) 276.69 2815 241.59 2824

TSP-200
US U(0, 10) 130.05 76 111.71 81
CS U(0, 10) 129.52 75 111.31 81
CS-aligned U(0, 10) 129.95 77 111.35 76

TSP-500
US U(0, 10) 238.46 677 177.30 682
CS U(0, 10) 221.76 677 175.94 682
CS-aligned U(0, 10) 221.72 675 175.89 683

TSP-1000
US U(0, 10) 434.16 2811 254.37 2837
CS U(0, 10) 346.71 2811 251.40 2831
CS-aligned U(0, 10) 347.46 2813 251.35 2833

27

Published as a conference paper at ICLR 2025

Table 15: Comparison of uniform sampling and our coreset method using TSP100-2D-U(0, 10) as
the training dataset on test data TSPLIB(Reinelt, 1991).

Sample size Method Test distribution Greedy Greedy+2-opt
Length (↓) Time (↓) Length (↓) Time (↓)

128000 Org N (0, 1) 125.39 102 110.90 104

4003
US U(0, 10) 183.71 104 115.21 110
CS U(0, 10) 164.81 106 114.50 108
CS-aligned U(0, 10) 166.04 105 114.41 103

8245
US U(0, 10) 161.75 107 113.69 107
CS U(0, 10) 132.06 103 111.52 111
CS-aligned U(0, 10) 145.90 103 112.86 103

12951
US U(0, 10) 157.10 104 113.98 105
CS U(0, 10) 140.97 104 112.96 106
CS-aligned U(0, 10) 141.81 501 112.81 110

Table 16: Comparison of uniform sampling and our coreset method using TSP100-3D-U(0, 10) as
the training dataset on test data TSP100-3D from different distributions.

Sample size Method Test distribution Greedy
Length (↓) Time (↓)

128000 Org U(0, 10) 87.84 350

4122
US U(0, 10) 108.74 350
CS U(0, 10) 108.45 352
CS-aligned U(0, 10) 106.11 381

8245
US U(0, 10) 95.78 360
CS U(0, 10) 98.53 347
CS-aligned U(0, 10) 97.89 358

12951
US U(0, 10) 93.38 364
CS U(0, 10) 93.15 348
CS-aligned U(0, 10) 92.91 354

Table 17: Comparison of uniform sampling and our coreset method using TSP100-3D-U(0, 10) as
the training dataset on test data of varying sizes. We fix the sample size as 12951.

TSP size Method Test distribution Greedy
Length (↓) Time (↓)

TSP-200 Org U(0, 10) 125.98 73

TSP-500 Org U(0, 10) 210.15 674

TSP-1000 Org U(0, 10) 313.00 2818

TSP-200
US U(0, 10) 145.67 78
CS U(0, 10) 144.27 76
CS-aligned U(0, 10) 143.46 75

TSP-500
US U(0, 10) 302.16 674
CS U(0, 10) 244.63 676
CS-aligned U(0, 10) 236.33 689

TSP-1000
US U(0, 10) 535.90 2815
CS U(0, 10) 367.04 2812
CS-aligned U(0, 10) 308.71 2816

28

Published as a conference paper at ICLR 2025

Table 18: Time statistics for different phases of MIS.
Method Sample size Labeling time Coreset Time Training Time Total time

Org 128000 102600 - 16762 119362

US
3973 3184 - 1726 4910
8001 6413 - 2503 8916
12417 9953 - 3400 13353

CS
3973 4007 2263 3227 9497
8001 7322 2424 5031 14777
12417 11032 2511 7011 20554

Table 19: Comparison of uniform sampling and our coreset method with training dataset ER-[90-
100] on test data from different distributions.

Sample size Method Test distribution Greedy Sampling
Size (↑) Time (↓) Size (↑) Time (↓)

128000 Org
ER-[v90-100] 22.34 64 23.27 70
ER-[400-500] 34.66 134 36.69 551
ER-[700-800] 37.51 393 40.06 1463

3973

US
ER-[v90-100] 19.57 64 21.34 319
ER-[400-500] 27.84 134 29.48 552
ER-[700-800] 30.30 391 32.23 1469

CS
ER-[v90-100] 19.77 63 21.49 72
ER-[400-500] 27.99 135 29.85 558
ER-[700-800] 30.61 392 32.38 1524

8001

US
ER-[v90-100] 20.38 64 22.33 70
ER-[400-500] 28.81 135 30.59 554
ER-[700-800] 31.28 393 32.77 1471

CS
ER-[v90-100] 20.25 64 22.27 73
ER-[400-500] 29.59 134 31.91 549
ER-[700-800] 32.23 393 33.93 1460

12417

US
ER-[v90-100] 20.80 63 22.30 71
ER-[400-500] 30.36 135 32.55 549
ER-[700-800] 32.30 393 34.25 1458

CS
ER-[v90-100] 21.04 63 22.55 70
ER-[400-500] 31.00 135 33.11 548
ER-[700-800] 32.96 393 35.59 1462

Table 20: Comparison of uniform sampling and our coreset method with training dataset ER-[90-
100] on test data SATLIB.

Sample size Method Test distribution Greedy Sampling
Size (↑) Time (↓) Size (↑) Time (↓)

128000 Org ER-[v90-100] 22.34 64 23.27 70

3973 US SATLIB 1015.64 120 1022.81 490
CS SATLIB 1015.31 122 1021.24 518

8245 US SATLIB 410.61 296 413.49 898
CS SATLIB 409.87 299 413.34 902

12417 US SATLIB 410.32 304 413.55 906
CS SATLIB 410.83 297 414.04 900

29

Published as a conference paper at ICLR 2025

Table 21: Comparison of uniform sampling and our coreset method with training dataset CVRP100-
N (0, 0.12) on test data from different distributions.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

128000 Org CVRP100

0 17.64 6.34% 3
50 16.58 -0.02% 45

100 16.43 -0.96% 86
200 16.30 -1.70% 162
500 16.18 -2.43% 397

4437

US

0 19.56 17.91% 3
50 17.85 7.64% 45

CVRP100 100 17.57 5.96% 86
200 17.30 4.28% 162
500 17.03 2.71% 397

CS

0 19.16 15.51% 3
50 17.65 6.41% 45

CVRP100 100 17.38 4.78% 86
200 17.15 3.38% 163
500 16.91 2.01% 400

8082

US

0 18.77 13.18% 3
50 17.35 4.62% 47

CVRP100 100 17.13 3.27% 91
200 16.92 2.01% 172
500 16.71 0.75% 423

CS

0 18.49 11.51% 3
50 17.19 3.66% 45

CVRP100 100 16.98 2.38% 88
200 16.78 1.19% 168
500 16.60 0.06% 413

12175

US

0 18.65 12.47% 3
50 17.24 3.95% 47

CVRP100 100 17.01 2.59% 90
200 16.82 1.43% 170
500 16.63 0.25% 415

CS

0 18.53 11.72% 3
50 17.18 3.56% 47

CVRP100 100 16.96 2.23% 90
200 16.77 1.13% 170
500 16.58 -0.01% 415

30

Published as a conference paper at ICLR 2025

test data for other cases. Obviously, the uniform distribution has the highest entropy and thus the
highest diversity. For these Gaussian distributions, the larger the variance, the larger the diversity.

Results of CVRP100 Tables 21 to 23 present the results on training dataset CVRP100-N (0, 0.12).
The training datasets are generated by the uniform sampling and our coreset technique respectively.
The results show that both our method and uniform sampling method perform better as the sample
size increases. For both the test data with distribution shift and without distribution shift, our method
consistently shows better performance. Table 22 further illustrates that our method can generalize
to large-scale CVRP problems better. Table 23 shows the performance on the CVRPLIB dataset.

Tables 24 to 26 present the results on training dataset CVRP100-U(0, 1). The training datasets
are generated by the uniform sampling and our coreset technique respectively. The results show
that both our method and uniform sampling method perform better as the sample size increases.
For both the test data with distribution shift and without distribution shift, our method consistently
shows better performance. Table 25 further illustrates that our method can generalize to large-scale
CVRP problems better. Table 26 shows the performance on the CVRPLIB dataset.

Table 22: Comparison of uniform sampling and our coreset method with
training dataset CVRP100-N (0, 0.12) on test data of varying sizes. We
fix the sample size as 12175.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

128000 Org

CVRP200

0 22.70 12.52% 2
50 21.50 6.60% 26

100 21.34 5.77% 49
200 21.16 4.90% 105
500 20.96 3.88% 256

CVRP500

0 41.68 11.95% 2
50 40.23 8.06% 179

100 39.91 7.20% 298
200 39.64 6.48% 604
500 39.32 5.62% 1628

CVRP1000

0 44.62 20.29% 73
50 42.74 15.25% 895

100 42.36 14.22% 1810
200 41.81 12.72% 3672
500 41.19 11.04% 9108

12175

US CVRP200

0 24.17 19.80 % 2
50 22.79 12.97% 26

100 22.52 11.61% 50
200 22.24 10.27% 108
500 21.89 8.52% 263

CS CVRP200

0 24.00 18.97% 2
50 22.60 12.03% 25

100 22.36 10.83% 48
200 22.13 9.71% 105
500 21.75 7.84% 256

12175

US CVRP500

0 45.23 21.50% 2
50 43.40 16.58% 173

100 42.84 15.06% 288
200 42.39 13.85% 584
500 41.82 12.32% 1579

CS CVRP500

0 45.10 21.15% 2
50 43.19 16.00% 173

100 42.73 14.78% 287
200 42.28 13.56% 583
500 41.64 11.85% 1576

Continued on next page

31

Published as a conference paper at ICLR 2025

Table 22: Comparison of uniform sampling and our coreset method with
training dataset CVRP100-N (0, 0.12) on test data of varying sizes. We
fix the sample size as 12175.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

12175

US CVRP1000

0 53.01 42.91% 74
50 49.42 33.23% 897

100 48.81 31.60% 1819
200 47.95 29.28% 3708
500 46.91 26.48% 9180

CS CVRP1000

0 51.88 39.88% 73
50 48.24 30.06% 892

100 47.71 28.64% 1805
200 47.00 26.71% 3672
500 46.12 24.34% 9108

Table 23: Comparison of uniform sampling and our coreset method with training dataset CVRP100-
N (0, 0.12) on test data CVRPLib.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

128000 Org CVRPLib

0 913.17 16.48% 1
50 787.20 0.41% 4

100 787.20 0.41% 7
200 787.20 0.41% 12
500 787.20 0.41% 29

4437

US

0 927.95 18.36% 1
50 868.66 10.80% 4

CVRPLib 100 864.51 10.27% 7
200 844.59 7.73% 14
500 844.59 7.73% 33

CS

0 950.06 21.18% 1
50 841.93 7.39% 4

CVRPLib 100 837.50 6.82% 7
200 837.50 6.82% 14
500 834.28 6.41% 32

8082

US

0 971.82 23.96% 1
50 867.72 10.68% 4

CVRPLib 100 796.05 1.54% 7
200 796.05 1.54% 13
500 787.81 0.49% 30

CS

0 917.07 16.97% 1
50 829.60 5.82% 4

CVRPLib 100 829.60 5.82% 7
200 823.85 5.08% 13
500 791.81 1.00% 30

12175

US

0 1016.27 29.63 % 1
50 865.31 10.37% 4

CVRPLib 100 865.31 10.37% 7
200 858.44 9.49% 13
500 858.44 9.49% 30

CS

0 917.09 16.98% 1
50 811.18 3.47% 4

CVRPLib 100 810.27 3.35% 7
200 806.12 2.82% 13
500 806.12 2.82% 30

32

Published as a conference paper at ICLR 2025

Table 24: Comparison of uniform sampling and our coreset method with training dataset CVRP100-
U(0, 1) on test data from different distributions.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

128000 Org CVRP100

0 17.35 4.64% 3
50 16.36 -1.38% 47

100 16.22 -2.18% 90
200 16.13 -2.75% 170
500 16.02 -3.40% 418

4697

US

0 18.48 11.43 % 3
50 17.15 3.39% 44

CVRP100 100 16.93 2.08% 85
200 16.74 0.93% 161
500 16.57 -0.10% 396

CS

0 18.44 11.20% 3
50 17.10 3.10% 44

CVRP100 100 16.89 1.85% 85
200 16.70 0.69% 161
500 16.53 -0.34%

7694

US

0 18.22 9.83% 3
50 16.91 1.96% 44

CVRP100 100 16.71 0.78% 83
200 16.55 -0.21% 158
500 16.39 -1.17% 389

CS

0 18.16 9.52% 3
50 16.91 1.97% 45

CVRP100 100 16.72 0.82% 86
200 16.56 -0.18% 162
500 16.40 -1.10% 400

12033

US

0 18.03 8.70% 3
50 16.82 1.41% 45

CVRP100 100 16.64 0.34% 86
200 16.50 -0.54% 162
500 16.35 -1.43% 395

CS

0 18.01 8.59% 3
50 16.81 1.36% 44

CVRP100 100 16.62 0.21% 84
200 16.48 -0.64% 160
500 16.34 -1.55% 39

Table 25: Comparison of uniform sampling and our coreset method with
training dataset CVRP100-U(0, 1) on test data of varying sizes. We fix
the sample size as 12033.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

128000 Org

CVRP200

0 22.41 11.08% 2
50 21.20 5.08% 36

100 21.05 4.36% 68
200 20.93 3.76% 145
500 20.75 2.88% 353

CVRP500

0 41.01 10.16% 1
50 39.69 6.61% 190

100 39.42 5.87% 319
200 39.16 5.20% 645
500 38.91 4.51% 1730

CVRP1000

0 43.09 16.19% 73
Continued on next page

33

Published as a conference paper at ICLR 2025

Table 25: Comparison of uniform sampling and our coreset method with
training dataset CVRP100-U(0, 1) on test data of varying sizes. We fix
the sample size as 12033.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)
50 37.09 11.85% 904

100 41.17 11.00% 1828
200 40.76 9.90% 3708
500 40.29 8.63% 9216

12033

US CVRP200

0 23.29 15.45% 2
50 21.98 8.94% 28

100 21.75 7.82% 54
200 21.57 6.91% 115
500 21.33 5.72% 281

CS CVRP200

0 20.17 14.97% 2
50 21.93 8.70% 29

100 21.75 7.83% 54
200 21.59 7.04% 116
500 21.30 5.50% 282

12033

US CVRP500

0 37.23 16.76% 2
50 41.77 12.19% 177

100 41.38 11.15% 296
200 41.02 10.18% 598
500 40.51 8.82% 1620

CS CVRP500

0 43.19 16.02% 2
50 41.66 11.89% 176

100 41.25 10.81% 295
200 40.88 9.80% 597
500 40.40 8.52% 1609

12033

US CVRP1000

0 48.20 29.96% 73
50 46.12 24.33% 907

100 45.67 23.14% 1847
200 45.04 21.43% 3816
500 44.29 19.42% 9324

CS CVRP1000

0 48.24 30.05% 73
50 45.89 23.73% 899

100 45.50 22.66% 1820
200 44.87 21.02% 3672
500 44.07 18.82% 9180

34

Published as a conference paper at ICLR 2025

Table 26: Comparison of uniform sampling and our coreset method with training dataset CVRP100-
U(0, 1) on test data CVRPLib.

Sample size Method Test distribution RRC-budget (↓) Length (↓) Gap (↓) Time (↓)

128000 Org CVRPLib

0 856.40 9.24% 1
50 797.45 1.72% 6

100 797.45 1.72% 10
200 797.45 1.72% 20
500 797.45 1.72% 47

4697

US

0 902.29 15.09% 1
50 846.35 7.95% 5

CVRPLib 100 838.10 6.90% 7
200 838.10 6.90% 14
500 838.10 6.90% 32

CS

0 1020.05 30.10% 1
50 809.93 3.30% 4

CVRPLib 100 797.45 1.72% 7
200 797.45 1.72% 14
500 797.45 1.72% 32

8082

US

0 1096.32 39.84% 1
50 846.93 8.03% 4

CVRPLib 100 846.93 8.03% 7
200 846.93 8.03% 13
500 846.93 8.03% 32

CS

0 866.09 10.47% 1
50 789.79 0.74% 4

CVRPLib 100 789.79 0.74% 7
200 789.79 0.74% 13
500 789.79 0.74% 31

12033

US

0 864.85 10.31% 1
50 830.51 5.93% 4

CVRPLib 100 797.45 1.72% 7
200 797.45 1.72% 14
500 797.45 1.72% 32

CS

0 965.89 23.20% 1
50 816.14 4.10% 4

CVRPLib 100 809.71 3.28% 7
200 799.16 1.93% 13
500 787.20 0.41% 32

Table 27: Comparison of uniform sampling and our coreset method with different graph embedding
techniques on test data from different distributions. CS-spring is the embedding technique based
on force-directed representation; CS-spectral is the spectral embedding technique; CS-MDS is the
embedding technique based on multidimensional scaling.

Sample size Method Test distribution Size (↑) Time (↓)

4010 US
ER-[400-500] 27.40 133
ER-[700-800] 30.36 392
ER-[1400-1500] 34.05 1361

3973 CS-spring
ER-[400-500] 28.46 135
ER-[700-800] 30.89 389
ER-[1400-1500] 34.25 1361

8001 CS-spectral
ER-[400-500] 27.68 132
ER-[700-800] 30.43 391
ER-[1400-1500] 34.14 1362

12417 CS-MDS
ER-[400-500] 28.43 132
ER-[700-800] 31.10 389
ER-[1400-1500] 34.52 1361

35

	Introduction
	Other related works

	Preliminaries
	Our methods
	Metrics for CO instances
	Coreset
	Accelerate the coreset construction process
	An efficient framework

	Experiments with TSP
	Conclusion and future work
	ACKNOWLEDGEMENTS
	Other preliminaries
	Other related works

	Other algorithms
	Omited proofs
	Full Experiments with TSP
	Full Experiments with MIS
	Full Experiments with CVRP

