
Under review as a conference paper at ICLR 2024

A NOTATION

• ha, bi =
Pd

i=1 aibi for a, b 2 Rd – a scalar product.

• kak =
p
ha, ai for a 2 Rd – a norm.

• Tr(A) =
Pd

i=1 aii for a matrix A =
⇥
aij

⇤d,d
i=1,j=1

.

• A(t), B(t), C(t), . . . – stochastic processes indexed by time t � 0.
• Ai, Bi, Ci, . . . – approximations to those processes.
• a, b, c – other variables.
• A,B,C, . . . – quantum observables, e.g., X(t) – result of quantum measurement of the

coordinate of the particle at moment t.
• ⇢A(x, t) – density probability of a process A(t) at time t.
• (x, t) – a wave function.
• 0 = (x, 0) – an initial wave function.

• ⇢(x, t) =
�� (x, t)

��2 – a quantum density.

• ⇢0(x) = ⇢(x, 0) – an initial probability distribution.

• (x, t) =
p
⇢(x, t)eiS(x,t) where S(x, t) – a single-valued representative of the phase of

the wave function.

• r =
⇣

@
@x1

·, . . . , @
@xd

·
⌘

– a gradient operator. If f : Rd ! Rm, then rf(x) 2 Rd⇥m is the
Jacobian of f , in the case of m = 1 we call it a gradient of f .

• r2 =
h

@2

@xi@xj

id,d
i=1,j=1

– the Hessian operator.

• r2 ·A =
h

@2

@xi@xj
aij

id,d
i=1,j=1

for A =
⇥
aij(x)

⇤d,d
i=1,j=1

.

• hr, ·i – a divergence operator, e.g., for f : Rd ! Rd we have hr, f(x)i =
Pd

i=1
@

@xi
fi(x).

• � = Tr(r2) – the Laplace operator.
• m – a mass tensor (or a scalar mass).
• ~ – the reduced Planck’s constant.
• @y = @

@y – a short-hand notation for a partial derivative operator.

•
⇥
A,B

⇤
= AB �BA – a commutator of two operators. If one of the arguments is a scalar

function, we consider a scalar function as a point-wise multiplication operator.

• |z| =
p
x2 + y2 for a complex number z = x+ iy 2 C, x, y 2 R.

• N (µ,C) – a Gaussian distribution with mean µ 2 Rd and covariance C 2 Rd⇥d.
• A ⇠ ⇢ means that A is a random variable with distribution ⇢. We do not differentiate

between ”sample from” and ”distributed as”, but it is evident from context when we consider
samples from distribution versus when we say that something has such distribution.

• �x – delta-distribution concentrated at x. It is a generalized function corresponding to the
”density” of a distribution with a singular support {x}.

B DSM ALGORITHM

We present detailed versions of our method: Algorithm 2 for batch generation and Algorithm 3 for
training. During inference, distributions of Xi converge to ⇢ = | |2 and thus we obtain the desired
outcome. Furthermore, solving (8a) on points generated by the current best approximations of u, v,
the method exhibits self-adaptation behavior: the method obtains its current belief where X(t) is
concentrated, updates its belief and iterates accordingly. With each iteration of the inference, the
method focuses more on high-concentration regions of ⇢.

14

Under review as a conference paper at ICLR 2024

Algorithm 2 GenerateBatch(u, v, ⇢0, ⌫, T, B,N) – sample trajectories
Physical hyperparams: T – time horizon, 0 – initial wave-function.
Hyperparams: ⌫ � 0 – diffusion constant, B � 1 – batch size, N � 1 – time grid size.
ti = iT/N for 0 i N

sample X0j ⇠
�� 0

��2 for 1 jB

for 1 i N do
sample ⇠j ⇠ N (0, Id) for 1 j B

Xij = X(i�1)j +
T
N

�
v✓(X(i�1)j , ti�1) + ⌫u✓(X(i�1)j , ti�1)

�
+

q
⌫~T
mN ⇠j for 1 j B

end for
output

n�
Xij

 B

j=1

oN

i=0

Algorithm 3 A training algorithm

Physical hyperparams: m > 0 – mass, ~ > 0 – reduced Planck constant, T – a time horizon, 0 : Rd
! C

– an initial wave function, V : Rd
⇥ [0, T] ! R – potential.

Hyperparams: ⌘ > 0 – learning rate for backprop, ⌫ > 0 – diffusion constant, B � 1 – batch size, M � 1

– optimization steps, N � 1 – time grid size, wu, wv, w0 > 0 – weights of losses.
Instructions:
ti = iT/N for 0 i N

for 1 ⌧ M do
X = GenerateBatch(u✓⌧�1 , v✓⌧�1 , 0, ⌫, T, B,N)

define L
u
⌧ (✓) =

1
(N+1)B

PN
i=0

PB
j=1

��@tu✓(Xij , ti)�Du[u✓, v✓, Xij , ti]
��2

define L
v
⌧ (✓) =

1
(N+1)B

PN
i=0

PB
j=1

��@tv✓(Xij , ti)�Dv[u✓, v✓, Xij , ti]
��2

define L
0
⌧ (✓) =

1
B

PB
j=1

⇣��u✓(X0j , t0)� u0(X0j)
��2

+
��v✓(X0j , t0)� v0(X0j , t0)

��2
⌘

define L⌧ (✓) = wuL
u
⌧ (✓) + wvL

v
⌧ (✓) + w0L

0
⌧ (✓)

✓⌧ = OptimizationStep(✓⌧�1,r✓L⌧ (✓⌧�1), ⌘)

end for
output u✓M , v✓M

15

Under review as a conference paper at ICLR 2024

C EXPERIMENTAL SETUP DETAILS

In our experiments, we set m = 1, ~ = 10�25, �2 = 10�1. For the harmonic oscillator model,
N = 1000 and the batch size B = 100; for the singular initial condition problem, N = 100 and
B = 100. For evaluation, our method samples 10 000 points per time step, and the observables are
estimated from these samples; we run the model this way ten times.

C.1 A NUMERICAL SOLUTION

1d harmonic oscillator with S0(x) ⌘ 0: To evaluate our method’s performance, we use a nu-
merical solver that integrates the corresponding differential equation given the initial condition. We
use SciPy library (Virtanen et al., 2020). The solution domain is x 2 [�2, 2] and t 2 [0, 1], where
x is split into 566 points and t into 1001 time steps. This solution can be repeated d times for the
d-dimensional harmonic oscillator problem.

1d harmonic oscillator with S0(x) = �5x: We use the same numerical solver as for the S0(x) ⌘ 0
case. The solution domain is x 2 [�2, 2] and t 2 [0, 1], where x is split into 2829 points and t is split
into 1001 time steps.

C.2 ARCHITECTURE AND TRAINING DETAILS

A basic NN architecture for our approach and the PINN is a feed-forward NN with one hidden layer
with hyperbolic tangent activation functions. We represent the velocities u and v using the basic NN
architecture with 200 neurons in the case of the singular initial condition. The training process takes
about 7 mins. For d = 1 harmonic oscillator with zero initial phase problem, there are 200 neurons
for our method and 400 for the PINN; for d = 3 and more dimensions, we use 400 neurons. This rule
holds for the experiments measuring total training time in Section 5.4. In a d = 1 harmonic oscillator
with a non-zero initial phase problem, we use 300 hidden neurons in our models. In the experiments
devoted to measuring time per epoch (from Section 5.4), the number of hidden neurons is fixed to
200 for all dimensions. We use the Adam optimizer (Kingma & Ba, 2014) with a learning rate 10�4.
In our experiments, we set wu = 1, wv = 0.8, w0 = 1. For PINN evaluation, the test sets are the
same as the grid for the numerical solver. In our experiments, we usually use a single NVIDIA A40
GPU. For the results reported in Section 5.4, we use an NVIDIA A100 GPU.

C.3 ON OPTIMIZATION

We use Adam optimizer (Kingma & Ba, 2014) in our experiments. Since the operators (9) are not
linear, we may not be able to claim convergence to the global optima of such methods as SGD or
Adam in the Neural Tangent Kernel (NTK) (Jacot et al., 2018) limit. Such proof exists for PINNs in
Wang et al. (2022) due to the linearity of the Schrödinger equation (1). It is possible that non-linearity
in the loss (15) requires non-convex methods to achieve theoretical guarantees on convergence to
the global optima (Raginsky et al., 2017; Muzellec et al., 2020). Further research into NTK and
non-linear PDEs is needed (Wang et al., 2022).

The only noise source in our loss (15) comes from trajectory sampling. This fact contrasts sharply
with generative diffusion models relying on score matching (Yang et al., 2022). In these models, the
loss has O(✏�1) variance as it implicitly attempts to numerically estimate the stochastic differential
X(t+✏)�X(t)

✏ which leads to 1p
✏

contribution from increments of the Wiener process. In our loss, the
stochastic differentials are evaluated analytically in Equation (9) avoiding such contributions; for
details, see Nelson (1966; 2005). This leads O(1) variance of the gradient and, thus, allows us to
achieve fast convergence with smaller batches.

5The value of the reduced Plank constant depends on the metric system that we use and, thus, for our
evaluations we are free to choose any value.

16

Under review as a conference paper at ICLR 2024

D EXPERIMENTS

D.1 SINGULAR INITIAL CONDITIONS

As a proof of concept, we consider a case of one particle x 2 R1 with V (x) ⌘ 0 and 0 = �0,
t 2 [0, 1]. Since �-function is a generalized function, we must take a �-sequence for the training.
The most straightforward approach is to take f 0 = 1

(2⇡↵)
1
4
e�

x2

4↵ with ↵! 0+. In our experiments

we take ↵ = ~2

m2 , yielding v0(x) ⌘ 0 and u0(x) = � ~x
2m↵ . Since 0 is singular, we must set ⌫ = 1

during sampling. The analytical solution is given as (x, t) = 1

(2⇡t)
1
4
e�

x2

4t . So, we expect the

standard deviation of X(t) to grow as
p
t, and the mean value of X(t) to be zero.

We do not compare our approach with PINNs since it is a simple proof of concept, and the analytical
solution is known. Figure 5 summarizes the results of our experiment. Specifically, the left panel of
the figure shows the magnitude of the density obtained with our approach alongside the true density.
The right panel of Figure 5 shows statistics of Xt, such as mean and variance, and the corresponding
error bars. The resulting prediction errors are calculated against the truth data for this problem and are
measured at 0.008± 0.007 in the L2-norm for the averaged mean and 0.011± 0.007 in the relative
L2-norm for the averaged variance of Xt. Our approach can accurately capture the behavior of the
Schrödinger equation in the singular initial condition case.

Xi Xi

ti ti

Figure 5: Results for the singular initial condition case. DSM corresponds to our method.

D.2 3D HARMONIC OSCILLATOR

We further explore our approach by considering the harmonic oscillator model with S0(x) ⌘ 0 with
three non-interacting particles. This setting can be viewed as a 3d problem, where the solution is a 1d
solution repeated three times. Due to computational resource limitations, we are unable to execute
the PINN model. The number of collocation points should grow exponentially with the problem
dimension so that the PINN model converges. We have about 512 GB of memory but cannot store
600003 points. We conduct experiments comparing two versions of the proposed algorithm: the
Nelsonian one and our version. Table 2 provides the quantitative results of these experiments. Our
version demonstrates slightly better performance compared to the Nelsonian version, although the
difference is not statistically significant. Empirically, our version requires more steps to converge
compared to the Nelsonian version: 7000 vs. 9000 epochs correspondingly. However, the training
time of the Nelsonian approach is about 20 mins longer than our approach’s time.

Figure 6 demonstrates the obtained statistics with the proposed algorithm’s two versions (Nelsonian
and Gradient Divergence) for every dimension. Figure 7 compares the density function for every
dimension for these two versions. Table 3 summarizes the error rates per dimension. The results
suggest no significant difference in the performance of these two versions of our algorithm. As
mentioned in the main text, the Gradient Divergence version tends to require more steps to converge,
but it has linear time complexity in contrast to the quadratic complexity of the Nelsonian version.

D.3 NAIVE SAMPLING

Figure 8 shows performance of Gaussian sampling approach applied to the harmonic oscillator and
the singular initial condition setting. Table 4 compares results of all methods. Our approach converges

17

Under review as a conference paper at ICLR 2024

XiXi

titi

(a) The Nelsonian version.

Xi Xi

ti ti

(b) The Gradient Divergence version.

Figure 6: The obtained statistics for 3d harmonic oscillator using two versions of the proposed
approach.

(a) The Nelsonian version. (b) The Gradient Divergence version.

Figure 7: The density function for 3d harmonic oscillator using two versions of the proposed approach.

to the ground truth while naive sampling does not. Figure 8 illustrates performance of Gaussian
sampling.

D.4 COMPUTATIONAL COMPLEXITY

Proposition 4.1. Computing a forward pass of u✓, v✓ scales as O(d) by their design. What we need
is to prove that the loss function (15) can be computed in O(d). we have two kind of operators appear
there hr·, ·i and rhr, ·i.
The first one is pure Jacobian-vector product, thus, there is an algorithm to estimate it with linear
complexity (assuming the forward pass has linear complexity), see (Griewank & Walther, 2008).

18

Under review as a conference paper at ICLR 2024

Table 3: The results for 3d harmonic oscillator with S0(x) ⌘ 0 using two versions of the proposed
approach: the Nelsonian one uses the Laplacian operator in the training loss, the Gradient Divergence
version is our modification that replaces Laplacian with gradient of divergence.

Model Em(X
(1)
i) # Em(X

(2)
i) # Em(X

(3)
i) # Em(Xi) #

DSM (Nelsonian) 0.170 ± 0.081 0.056 ± 0.030 0.073 ± 0.072 0.100 ± 0.061
DSM (Gradient Divergence) 0.038 ± 0.023 0.100 ± 0.060 0.082 ± 0.060 0.073 ± 0.048

Model Ev(X
(1)
i) # Ev(X

(2)
i) # Ev(X

(3)
i) # Ev(Xi) #

DSM (Nelsonian) 0.012 ± 0.009 0.012 ± 0.009 0.011 ± 0.008 0.012 ± 0.009
DSM (Gradient Divergence) 0.012 ± 0.010 0.009 ± 0.005 0.011 ± 0.010 0.011 ± 0.008

Model E(v
(1)

) # E(v
(2)

) # E(v
(3)

) # E(v)) #

DSM (Nelsonian) 0.00013 0.00012 0.00012 0.00012
DSM (Gradient Divergence) 4.346⇥ 10�5 4.401⇥ 10�5 4.700⇥ 10�5 4.482⇥ 10�5

Model E(u
(1)

) # E(v
(2)

) # E(v
(3)

) # E(v) #

DSM (Nelsonian) 4.441⇥ 10�5 2.721⇥ 10�5
2.810⇥ 10

�5 3.324⇥ 10�5

DSM (Gradient Divergence) 6.648⇥ 10
�5

4.405⇥ 10
�5 1.915⇥ 10�5

4.333⇥ 10
�5

Table 4: Error rates for different problem settings using two sampling schemes: our (DSM) and
Gaussian sampling. Gaussian sampling replaces all measures in the expectations with Gaussian noise
in Equation (15). The best result is in bold. These results demonstrate that our approach work better
than the naı̈ve sampling scheme.

Problem Model Em(Xi) # Ev(Xi) # E(v) # E(u) #

Singular IC Gaussian sampling 0.043 ± 0.042 0.146 ± 0.013 1.262 0.035
DSM 0.008 ± 0.007 0.011 ± 0.007 0.524 0.008

Harm osc 1d,
S0(x) ⌘ 0

Gaussian sampling 0.294 ± 0.152 0.488 ± 0.018 3.19762 1.18540
DSM 0.077 ± 0.052 0.011 ± 0.006 0.00011 2.811⇥ 10�5

Harm osc 1d,
S0(x) = �5x

Gaussian sampling 0.836 ± 0.296 0.086 ± 0.007 77.57819 24.15156
DSM 0.223 ± 0.207 0.009 ± 0.008 1.645⇥ 10�5 2.168⇥ 10�5

Harm osc 3d,
S0(x) ⌘ 0

Gaussian sampling 0.459 ± 0.126 5.101 ± 0.201 13.453 5.063
DSM 0.073 ± 0.048 0.011 ± 0.008 4.482⇥ 10�5 4.333⇥ 10�5

For the second type, we observe that rhr, ·i = hrhr·, 1di, 1di. Thus, this is a composition of two
Jacobian-vector products and by applying the same result twice we obtain that its complexity scales
as a constant multiply of the forward pass complexity.

We empirically estimate memory allocation on a GPU (NVIDIA A100) when training two versions of
the proposed algorithm. In addition, we estimate the number of epochs until the training loss function
is less than 10�2 for different problem dimensions. The results are visualized in Figure 9(a) proves
the memory usage of the Gradient Divergence version grows linearly with the dimension while it
grows quadratically in the Nelsonian version. We also empirically access the convergence speed of
two versions of our approach. Figure 9(b) shows how many epochs are needed to make the training
loss less than 1⇥ 10�2. Usually, the Gradient Divergence version requires slightly more epochs to
converge to this threshold than the Nelsonian one. The number of epochs is averaged across five runs.
In both experiments, the setup is the same as we describe in Section 5.4.

Also, we provide more details on the experiment measuring the total training time per dimensions
d = 1, 3, 5, 7, 9. This experiment is described in Section 5.4, and the training time grows linearly
with the problem dimension. Table 5 presents the error rates and train time. The results show that the
proposed approach can perform well for every dimension while the train time scales linearly with the
problem dimension.

19

Under review as a conference paper at ICLR 2024

(b) The harmonic oscillator with S(x) � 0

(c) The harmonic oscillator with S(x) = � 5x

(d) The harmonic oscillator with in 3d S(x) = 0
co

or
di

na
te

 1
 v

al
ue

co
or

di
na

te
 2

 v
al

ue
co

or
di

na
te

 3
 v

al
ue

(a) Singular IC

(a) The harmonic oscillator with S(x) � 0 (b) The harmonic oscillator with S(x) = � 5x

Xi Xi

(a) Harmonic oscillator with S(x) = 0 (b) Harmonic oscillator with S(x) = � 5x(a) Harmonic oscillator with S(x) = 0 (b) Harmonic oscillator with S(x) = � 5x

Figure 8: An illustration of produced trajectories using the naı̈ve Gaussian sampling scheme as a
comparison with the proposed approach. The obtained trajectories do not match the solution, while
the results in our paper suggest that the proposed DSM approach converges better. Compare with
Figures 5, 2, 6.

(a) GPU memory usage. (b) Number of epochs until the training loss
< 10

�2.

Figure 9: Empirical complexity evaluation of two versions of the proposed method: memory usage
and the number of epochs until the loss is less than the threshold.

D.5 INTERACTING SYSTEM

As a numerical solver, we use the qmsolve library 6. The solution domain is x 2 [�1.5, 1.5]
and t 2 [0, 1], where x is split into 100 points and t into 1001 time steps. The PINN inputs are
N0 = 10000, Nb = 1000 data points, and Nf = 1000000 collocation points. Figure 10 shows
performance of both methods for the interacting particles problem.

6https://github.com/quantum-visualizations/qmsolve

20

Under review as a conference paper at ICLR 2024

Table 5: Training time and test errors for the harmonic oscillator model for different d.

d Em(Xi) # Ev(Xi) # E(v) # E(u) # Train time
1 0.074 ± 0.052 0.009 ± 0.007 0.00012 2.809e-05 46m 20s
3 0.073 ± 0.048 0.010 ± 0.008 4.479e-05 3.946e-05 2h 18m
5 0.081 ± 0.057 0.009 ± 0.008 4.956e-05 4.000e-05 3h 10m
7 0.085 ± 0.060 0.011 ± 0.009 5.877e-05 4.971e-05 3h 40m
9 0.096 ± 0.081 0.011 ± 0.009 7.011e-05 6.123e-05 4h 46m

Permutation invariance. As the system is symmetric (we have two bosons), we enforce symmetry
for both DSM and PINNs. In particular, the neural network inputs x are sorted, ensuring that the
models are permutation invariant. On one hand, such approach helps with physical property of system
being satisfied. One the other hand, sorting x increases computational time, and it might be preferable
to avoid in higher dimensions. For the two interacting particles system, the performance difference
between a regular and permutation invariant architectures is not so significant, though.

Architecture of the neural network. Instead of a multi-layer perceptron as used in Raissi et al.
(2019), we followed the design choice of Jiang & Willett (2022) to use residual connection blocks. In
our experiments, we used the Tanh as the activation function, set the hidden dimension to be 300,
and used the same architecture for both DSM and PINN. Empirically, we found out that this design
choice would lead to faster convergence in terms of the training time.

(a) DSM.

(b) PINN.

Figure 10: DSM and PINN results for two interacting particles.

21

Under review as a conference paper at ICLR 2024

D.5.1 SCALING EXPERIMENTS

This section investigates scaling capabilities of our DSM approach in the case of interacting bosons
in the harmonic oscillator. We compare performance of our algorithm with a numerical solver based
on the Crank–Nicolson method method (we modified qmsolve library to work for d > 2). Table 7
shows training time, time per epoch and memory usage for our method. Table 6 reports time and
memory usage of the Crank–Nicolson method solver.

Memory: In particular, DSM memory usage and time per epoch grow linearly in d (according to our
theory and evident in our numerical results) in contrast to the Crank-Nikolson solver, whose memory
usage grows exponentially since discretization matrices are of size Nd ⇥ Nd. We cannot run the
Crank-Nikolson method for d > 4 with the amount of memory available in our computer system.
The results show that our method is far more memory efficient for larger d.

Compute time: While our DSM total compute times (including training time) are longer than
Crank-Nikolson compute times for small d, the trend as d increases suggests the computational
efficiency of our DSM method scales much better with d than the Crank-Nikolson method.

Figure 11 shows generated density functions. Note that while we don’t have the baseline for d = 5,
we believe DSM predictions are still reasonable. We assume that the simulation results are reliable
for N = 60 in d = 4.

Table 6: Time (in seconds) to get a solution and memory usage (in Gb) of the Crank-Nicolson method
for different problem dimensions.

d = 2 d = 3 d = 4

Time 0.75 35.61 2363
Memory usage 7.4 10.6 214

Table 7: Training time (in minutes), time per epoch (in seconds/epoch) and memory usage (in Gb) of
our method for different problem dimensions.

d = 2 d = 3 d = 4 d = 5

Training time 29.5 60.3 97.5 154
Time per epoch 0.52 1.09 1.16 1.24
Memory usage 17.0 22.5 28.0 33.5

As for the DSM implementation details, we fix hyperparameters and only change d: for example the
neural networks size is 500, batch size is 100. We train our method until the average training loss
becomes lower than a particular threshold (0.007). These numbers are reported for a GPU A40. The
Crank-Nikolson method is run on CPU.

E STOCHASTIC MECHANICS

First, we will show how the equations of stochastic mechanics are derived from the Schrödinger one.
For full derivation and proof of equivalence, see Nelson (1966).

E.1 STOCHASTIC MECHANICS EQUATIONS

Let’s consider the polar decomposition once again =
p
⇢eiS . Observe for @ 2 {@t, @xi} that:

@ = (@
p
⇢)eiS + (i@S) =

@⇢

2
p
⇢
eiS + (i@S) =

1

2

@⇢

⇢

p
⇢eiS + (i@S) =

�1
2
@ log ⇢+ i@S

�
 ,

@2 = @
⇣�1

2
@ log ⇢+ i@S

�

⌘
=
⇣1
2
@2 log ⇢+ i@2S +

�1
2
@ log ⇢+ i@S

�2⌘

Substituting it into the Schrödinger equation:

i~
�1
2
@t log ⇢+ i@tS

�
 = � ~2

2m

⇣1
2
� log ⇢+ i�S +

��1
2
r log ⇢+ irS

��2
⌘
 + V (18)

22

Under review as a conference paper at ICLR 2024

a) Three particles

b) Four particles

c) Five particles

Figure 11: Examples of the obtained density for different number of interacting particles d. For five
particles, our computer system does not allow to run the Crank-Nicolson solver.

Dividing by 7 and separating real and imaginary parts, we obtain:

�~@tS = � ~2
2m

⇣1
2
� log ⇢+

1

4
k log ⇢k2 � krSk2

⌘
+ V, (19)

~
2
@t log ⇢ = � ~2

2m

�
�S + hlog ⇢,rSi

�
. (20)

Noting that � = hr,r·i and substituting v = ~
mrS, u = ~

2m log ⇢ to simplify we obtain:

m
~
m
@tS =

~
2m

hr, ui+ 1

2
kuk2 � 1

2
kvk2 � V, (21)

~
2m

@t log ⇢ = � ~
2m

hr, vi � hu, vi. (22)

Finally, by taking r from both parts, noting that
⇥
r, @t

⇤
= 0 for scalar functions and again

substituting u, v, we arrive at:

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
rhr, ui (23)

@tu = �rhv, ui � ~
2m

rhr, vi. (24)

7Here, we assume 6= 0. Even though it may seem a restriction, in our method, we will solve equations
only on X(t) which satisfy P

�
 (X(t), t) = 0

�
= 0, thus, we are allowed to assume this safely without loss of

generality. The same cannot be said if we considered the PINN over a grid to solve our equations.

23

Under review as a conference paper at ICLR 2024

To get the initial conditions on the velocities of the process v0 = v(x, 0) and u0 = u(x, 0), we can
refer to the equations that we used in the derivation

v(x, t) =
~
m
rS(x, t), (25)

u(x, t) =
~
2m

r log ⇢(x, t) (26)

Substituting t = 0 we can get our initial conditions on v0(x) =
~
mrS(x, 0), u0(x) = ⌫r log ⇢0(x)

where ⇢0(x) = ⇢(x, 0).

For more detailed derivation and proof of equivalence of those two equations to the Schrödinger
one, see Nelson (1966; 2005); Guerra (1995). Moreover, this equivalence holds for manifolds M
with trivial second cohomology group as noted in Alvarez (1986); Prieto & Vitolo (2014); Wallstrom
(1989).

E.2 NOVEL EQUATIONS OF STOCHASTIC MECHANICS

We note that our equations differ from Nelson (1966); Guerra (1995). In Nelson (1966), we see

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
�u, (27)

@tu = �rhv, ui � ~
2m

rhr, vi; (28)

and in Guerra (1995), we see

@tv = � 1

m
rV + hu,riu� hv,riv + ~

2m
�u, (29)

@tu = �rhv, ui � ~
2m

�v. (30)

The discrepancy seems to occur because the work by Nelson (2005) covers the case of the multi-
valued S and thus does not assume that

⇥
�,r

⇤
= 0 to transform rhr,rSi into �(rS) to make

the equations work for the case of a non-trivial cohomology group of M. So, Nelson (2005) does
not transform rhr,rSi into �(rS), but Guerra (1995) uses �(rS). Computing � with autograd
tools requires O(d2) operations as it requires computing the full Hessian r2. Instead, we treat
log ⇢ as it can be multi-valued not because we want more generality but because we want to have
O(d) computational time in the dimension as computing rhr, ·i is much easier with autograd tools.
Generally, we cannot swap � with rhr, ·i unless the solutions of the equation can be represented as
full gradients of some function, which is the case for stochastic mechanical equations but not for the
Shrödinger one. For some reason, it is not discussed in Nelson (2005; 1966); Guerra (1995), but it is
the reason why the equations in Nelson (1966); Guerra (1995) are different.

We derive equations different from both works and provide insights into why there are four different
equivalent sets of equations (by changing � with rhr, ·i in both equations independently). From
a numerical perspective, it is more beneficial to avoid Laplacian calculations. However, we notice
that inference using equations from Nelson (1966) converges faster by iterations to the true u, v
compared to our version. It comes at the cost of a severe slowdown in each iteration for d � 1, which
diminishes the benefit since the overall training time to get comparable results decreases significantly.

E.3 DIFFUSION PROCESSES OF STOCHASTIC MECHANICS

Let’s consider arbitrary Ito diffusion process:

dX(t) = b(X(t), t)dt+ �(X(t), t)d
!
W, (31)

X(0) ⇠ ⇢0, (32)

where W (t) 2 Rd is the standard Wiener process, b : Rd ⇥ [0, T] ! Rd is the drift function, and
� : Rd ⇥ [0, T] ! Rd⇥d is a symmetric positive definite matrix-valued function called a diffusion
coefficient. Essentially, X(t) samples from ⇢X = Law(X(t)) for each t 2 [0, T]. Thus, we may
wonder how to define b and � to ensure ⇢X = | |2.

24

Under review as a conference paper at ICLR 2024

There is the forward Kolmogorov equation for the density ⇢X associated with this diffusion process:

@t⇢X = hr, b⇢Xi+ 1

2
Tr
�
r2 · (��T ⇢X)

�
. (33)

Moreover, the diffusion process is time reversible. This leads to the backward Kolmogorov equation:

@t⇢X = hr, b⇤⇢Xi � 1

2
Tr
�
r2 · (��T ⇢X)

�
, (34)

where b⇤i = bi � ⇢�1X hr,��T ei⇢Xi with eij = �ij for j 2 {1, . . . , d}. Summing up those two
equations, we obtain the following:

@t⇢X = hr, v⇢Xi, (35)

where v =
b+ b⇤

2
is so called probability current. This is the continuity equation for the Ito diffusion

process from Equation (31). We refer to Anderson (1982) for details. We note that the same
Equation (35) can be obtained with arbitrary non-singular �(x, t) as long as v = v(x, t) remains
fixed.
Proposition E.1. Consider arbitrary ⌫ > 0, denote ⇢ = | |2 and consider decomposition =p
⇢eiS . Then the following process X(t):

dX(t) =
�
rS(X(t), t) +

⌫~
2m

r log ⇢(X(t), t)
�
dt+

r
⌫~
m

d
!
W, (36)

X(0) ⇠ | 0|2, (37)

satisfies Law(X(t)) = | |2 for any t > 0.

Proof. We want to show that by choosing appropriately b, b⇤, we can ensure that ⇢X = | |2. Let’s
consider the Schrödinger equation once again:

i~@t = (� ~2
2m

�+ V) , (38)

 (·, 0) = 0 (39)

where � = Tr(r2) =
Pd

i=1
@2

@x2
i

is the Laplace operator. The second cohomology is trivial in this
case. So, we can assume that =

p
⇢eiS with S(x, t) is a single-valued function.

By defining the drift v =
~
m
rS, we can derive quantum mechanics continuity equation on density ⇢:

@t⇢ = hr, v⇢i, (40)

⇢(·, 0) =
�� 0

��2. (41)

This immediately tells us what should be initial distribution ⇢0 and b+b⇤

2 for the Ito diffusion process
(31).

For now, the only missing parts for obtaining the diffusion process from the quantum mechanics
continuity equation are to identify the term b�b⇤

2 and the diffusion coefficient �. Both of them should
be related as (b � b⇤)i = ⇢�1hr,��T ei⇢i. Thus, we can pick � / Id to simplify the equations.
Nevertheless, our results can be extended to any non-trivial diffusion coefficient. Therefore, by

defining u(x, t) =
~
2m

r log ⇢(x, t) and using arbitrary ⌫ > 0 we derive

@t⇢ = hr, (v + ⌫u)⇢i+ ⌫~
2m

�⇢. (42)

Thus, we can sample from ⇢X(x, t) ⌘ ⇢(x, t) using the diffusion process with b(x, t) = v(x, t) +
⌫u(x, t) and �(x, t) ⌘ ⌫~

m Id:

dX(t) = (v(X(t), t) + ⌫u(X(t), t))dt+

r
⌫~
m

d
!
W, (43)

X(0) ⇠
�� 0

��2. (44)

25

Under review as a conference paper at ICLR 2024

To obtain numerical samples from the diffusion, one can use any numerical integrator, for example,
the Euler-Maryama integrator (Kloeden & Platen, 1992):

Xi+1 = Xi + (v(Xi, ti) + ⌫u(Xi, ti))✏+

r
⌫~
m
✏N (0, Id), (45)

X0 ⇠
�� 0

��2, (46)
where ✏ > 0 is a step size, 0 i < T

✏ . We consider this type of integrator in our work. However,
integrators of higher order, e.g., Runge-Kutta family of integrators (Kloeden & Platen, 1992), can
achieve the same integration error with larger ✏ > 0; this approach is out of the scope of our work.

E.4 INTERPOLATION BETWEEN BOHMIAN AND NELSONIAN PICTURES

We also differ from Nelson (1966) since we define u without ⌫. We bring it into the picture separately
as a multiplicative factor:

dX(t) = (v(X(t), t) + ⌫u(X(t), t))dt+

r
⌫~
m

d
!
W, (47)

X(0) ⇠
�� 0

��2 (48)
This trick allows us to recover Nelson’s diffusion when ⌫ = 1:

dX(t) = (v(X(t), t) + u(X(t), t))dt+

r
~
m
d
!
W, (49)

X(0) ⇠
�� 0

��2 (50)

For cases of | 0|2 > 0 everywhere, e.g., if the initial conditions are gaussian but not singular like �x0 ,
we can actually set ⌫ = 0 to obtain deterministic flow:

dX(t) = v(X(t), t)dt, (51)

X(0) ⇠
�� 0

��2 (52)
This is the guiding equation in Bohr’s pilot-wave theory (Bohm, 1952). The major drawback of
using Bohr’s interpretation is that ⇢X may not equal ⇢ = | |2, a phenomenon known as quantum
non-equilibrium (Colin & Struyve, 2010). Though, under certain mild conditions (Boffi & Vanden-
Eijnden, 2023) (one of which is | 0|2 > 0 everywhere) time marginals of such deterministic process
X(t) will satisfy Law(X(t)) = ⇢ for each t 2 [0, T]. As with the SDE case, it is unlikely that
those trajectories are ”true” trajectories. It only matters that their time marginals coincide with true
quantum mechanical densities.

F ON STRONG CONVERGENCE

Let’s consider a standard Wiener processes
!

WX ,
!
WY in Rd and define

!
Ft as a filtration generated byn� !

WX(t0),
!
WY (t)

�
: t0 t

o
. Let

Ft be a filtration generated by all events

n� !
WX(t0),

!
WY (t)

�
:

t0 � t
o

.

Assume that u, v, eu, ev 2 C2,1(Rd ⇥ [0, T];Rd) \ C1,0
b (Rd ⇥ [0, T];Rd), where Cp,k

b is a class of
continuously differentiable functions with uniformly bounded p-th derivative in a coordinate x
and k-th continuously differentiable in t, Cp,k analogously but without requiring bounded deriva-
tive. For f : Rd ⇥ [0, T] ! Rk define kfk1 = ess supt2[0,T],x2Rdkf(x, t)k and krfk1 =
ess supt2[0,T],x2Rdkrf(x, t)kop where k · kop denotes operator norm.

dX(t) = (ev(X(t), t) + eu(X(t), t)
�
dt+

r
~
m
d
!

WX(t), (53)

dY (t) = (v(Y (t), t) + u(Y (t), t)
�
dt+

r
~
m
d
!
WY (t), (54)

X(0) ⇠ | 0|2, (55)
Y (0) = X(0), (56)

26

Under review as a conference paper at ICLR 2024

where u, v are true solutions to equations (27). We have that pY (·, t) =
�� (·, t)

��2 8t where pY is
density of the process Y (t). We have not specified yet quadratic covariation of those two processes
d
⇥ !
WX ,

!
WY

⇤
t

dt = limdt!0+ E
⇣� !

WX(t+dt)�
!

WX(t)
�� !

WY (t+dt)�
!

WY (t)
�

dt

���
!
Ft

⌘
. We will though specify it

as d
⇥ !
WX ,

!
WY

⇤
t
= Iddt as we will see it will allow to cancel some terms appearing in the equations.

As for now we will derive all results in most general setting.

Let’s define our loss functions:

L1(ev, eu) =
Z T

0
EX

��@teu(X(t), t)�Du[ev, eu, x, t]
��2dt, (57)

L2(ev, eu) =
Z T

0
EX

��@tev(X(t), t)�Dv[ev, eu,X(t), t]
��2dt, (58)

L3(eu, ev) = EXkeu(X(0), 0)� u(X(0), 0)k2 (59)
L4(eu, ev) = EXkev(X(0), 0)� v(X(0), 0)k2 (60)

Our goal is to show that for some constants wi > 0, there is natural bound sup0tT EkX(t) �
Y (t)k2

P
wiLi(ev, eu).

F.1 STOCHASTIC PROCESSES

Consider a general Itô SDE defined using a drift process F (t) and a covariance process G(t), both

predictable with respect to forward and backward flirtations

Ft and

!
Ft:

dZ(t) = F (t)dt+G(t)d
!
W, (61)

Z(0) ⇠ ⇢0.

Moreover, assume
⇥
Z(t), Z(t)

⇤
t
= E

Z t

0
GTG(t)dt < 1 , E

Z t

0
kF (t)k2dt < 1. We denote by

PZ
t = P(Z(t) 2 ·) a law of the process Z(t). Let’s define a (extended) forward generate of the

process as the linear operator satisfying
!
Mf (t) = f(Z(t), t)� f(Z(0), 0)�

Z t

0

!
LXf(Z(t), t) is

!
Ft-martingale. (62)

Such an operator is uniquely defined and is called a forward generator associated with the process Zt.

Similarly, we define a (extended) backward generator

LX as linear operator satisfying:

Mf (t) = f(Z(t), t)� f(Z(0), 0)�

Z t

0

LXf(Z(t), t) is

Ft-martingale (63)

For more information on properties of generators we refer to (Baldi & Baldi, 2017).
Lemma F.1. (Itô Lemma, Baldi & Baldi (2017))

!
LZf(x, t) = @tf(x, t) + hrf(x, t), F (t)i+ ~

2m
Tr
�
GT (t)r2f(x, s)G(t)

�
. (64)

Lemma F.2. Let pZ(x, t) =
dPZ

t
dx be the density of the process with respect to standard Lebesgue

measure on Rd. Then

LZf(x, t) = @tf(x, t) + hrf(x, t), F (t)� ~

m
r log pZ(x, t)i �

1

2
Tr
�
GT (t)r2f(x, s)G(t)

�
.

(65)

Proof. We have the following operator identities:

LZ =

� !
LZ

�⇤
= p�1Z

� !
LX

�†
pZ

where A⇤ is adjoint operator in L2(Rd⇥[0, T],PZ⌦dt) and A† is adjoint in L2(Rd⇥[0, T], dx⌦dt).
Using Itô lemma F.1 and grouping all terms yields the statement.

27

Under review as a conference paper at ICLR 2024

Lemma F.3. The following identity holds for any process Z(t):
!
LZ

LZx =

LZ

!
LZx. (66)

Proof. One needs to recognize that (35) is the difference between two types of generators, we
automatically have the following identity that holds for any process Z.

Lemma F.4. (Nelson Lemma, Nelson (2020))

EZ
⇣
f(Z(t), t)g(Z(t), t)� f(Z(0), t)g(Z(0), t)

⌘
(67)

= EZ

Z t

0

⇣ !
LZf(Z(s), t)g(Z(s), t) + f(Z(s), t)

LZg(Z(s), s)

⌘
ds (68)

Lemma F.5. It holds that:

EZ
⇣
kZ(t)k2 � kZ(0)k2

⌘
(69)

=

Z t

0
EZ

⇣
2h

LZZ(0), Z(s)i+ 2

Z s

0
h

LZ

!
LZZ(z), Z(s)idz

⌘
ds+

⇥
Z(t), Z(t)

⇤
t

(70)

Proof. By using Itô Lemma F.1 for f(x) = kxk2 and noting that
!
LZZ(t) = F (t) we immediately

obtain:

EZ(kZ(t)k2 � kZ(0)k2) =
Z t

0
E
⇣
2h
!
LZZ(s), Z(s)i+Tr

�
GTG(t)

�⌘
ds

Let’s deal with the term
R t
0 h
!
LZZ(s), Z(s)ids. We have the following observation:

!
MF (z) =

LZZ(s)�

LZZ(0)�

R s
0

LZ

!
LZZ(z)dz is

Fs-martingale, thus

Z t

0
h
!
LZZ(s), Z(s)ids =

Z t

0
h

LZZ(0) +

Z s

0

�
LZ

!
LZZ(z) +

MF (z)

�
dz, Z(s)ids,

The process
!
A(s0, s) =

R s
s0h

MF (z), Z(s)idz is again F s0 -martingale for s0 s, which implies that

EZ
!
A(0, s) = 0. Noting that EZ

R t
0 Tr

�
GT (t)G(t)

�
dt =

⇥
Z(t), Z(t)

⇤
t

yields the lemma.

F.2 ADJOINT PROCESSES

Consider process X 0(t) defined through time-reversed SDE:

dX 0(t) = (ev(X 0(t), t) + eu(X 0(t), t)
�
dt+

r
~
2m

d

WX(t). (71)

We call such process as adjoint to the process X . Lemma F.3 can be generalized to the pair of adjoint
processes (X,X 0) in the following way and will be instrumental in proving our results.
Lemma F.6. For any pair of processes X(t), X 0(t) such that the forward drift of X is of form ev + eu
and backward drift of X 0 is ev � eu:

!
LX

LX0

x�

LX0

!
LXx =

LX0

LX0

x�
!
LX

!
LXx. (72)

with both sides being equal to 0 if and only if X 0 is time reversal of X .

Proof. Manual substitution of explicit forms of generators and drifts yields equation (8b) for both
cases. This equation is zero only if eu = ~

2mr log pX

Lemma F.7. The following bound holds:
���
� !
LX +

LX

�
(eu� ~

2m
r log pX)k

���
!
LX

LX0

x�

LX0

!
LXx

���+ 2krevk1
��eu� ~

2m
r log pX

��.
(73)

28

Under review as a conference paper at ICLR 2024

Proof. First, using Lemma F.6 we obtain:
!
LX

LXx�

LX

!
LXx = 0 (74)

()
!
LX

�
ev + eu� ~

m
r log pX

�
�

LX

�
ev + eu

�
= 0 (75)

()
!
LX

�
(ev � eu) + (2eu� ~

m
r log pX)

�
�

LX

�
ev + eu

�
= 0 (76)

()
!
LX

�
(ev � eu) + (2eu� ~

m
r log pX)

�
�

LX0�

ev + eu
�
+
⇣
LX0�

ev + eu
�
�

LX

�
ev + eu

�⌘
= 0

(77)

()
!
LX

�
2eu� ~

m
r log pX

�
+
!
LX(ev � eu)�

LX0�

ev + eu
�
+
⇣
LX0�

ev + eu
�
�

LX

�
ev + eu

�⌘
= 0.

(78)

Then, we note that:

LX0�

ev + eu
�
�

LX

�
ev + eu

�
= h ~

m
r log pX � 2eu,r(ev + eu)i. (79)

This leads us to the following identity:
!
LX

�
2eu� ~

m
r log pX

�
+
!
LX(ev � eu)�

LX0�

ev + eu
�
+ h ~

m
r log pX � 2eu,r(ev + eu)i = 0

()
!
LX

�
2eu� ~

m
r log pX

�
+
!
LX

LX0

x�

LX0

!
LXx+ h ~

m
r log pX � 2eu,r(ev + eu)i = 0.

Again by using Lemma F.6 to time-reversal X 0 we obtain:

LX

LXx�

!
LX

!
LXx = 0 (80)

()

LX

�
ev + eu� ~

m
r log pX

�
�
!
LX

�
ev + eu

�
= 0 (81)

()

LX

�
(ev � eu) + (2eu� ~

m
r log pX)

�
�
!
LX

�
ev + eu

�
= 0 (82)

()

LX0�

ev � eu
�
+

LX

�
2eu� ~

m
r log pX

�
�
!
LX

�
ev + eu

�
+
⇣
LX

�
ev � eu

�
�

LX0�

ev � eu
�⌘

= 0

(83)

()

LX

�
2eu� ~

m
r log pX

�
+

LX0�

ev � eu
�
�
!
LX

�
ev + eu

�
� h ~

m
r log pX � 2eu,r(ev � eu)i = 0

(84)

()

LX

�
2eu� ~

m
r log pX

�
+

LX0

LX0

x�
!
LX

!
LXx� h ~

m
r log pX � 2eu,r(ev � eu)i = 0.

(85)

By using Lemma F.6 we thus derive:

LX

�
2eu� ~

m
r log pX

�
+
!
LX

LX0

x�

LX0

!
LXx� h ~

m
r log pX � 2eu,r(ev � eu)i = 0. (86)

Summing up both identities, therefore, yields:
⇣
LX +

!
LX

⌘�
eu� ~

2m
r log pX

�
+
!
LX

LX0

x�

LX0

!
LXx+ 2heu� ~

2m
r log pX ,revi = 0. (87)

Theorem F.8. The following bound holds:

sup
0tT

EX
��eu(X(t), t)� ~

2m
r log pX(X(t), t)

��2 e
�

1
2+4krevk1

�
T �L3(ev, eu) + L2(ev, eu)

�
. (88)

29

Under review as a conference paper at ICLR 2024

Proof. We consider process Z(t) = euu(X(t), t)� ~
2mr log pX(X(t), t). From Nelson’s lemma F.4,

we have the following identity:

EXkeu(X(t), t)� ~
2m

r log pX(X(t), t)k2 � EXkeu(X(0), 0)� ~
2m

r log pX(X(0), 0)k2 (89)

=EX

Z t

0
hu(X(s), s)� ~

2m
r log pX(X(s), s), (90)

� !
LX +

LX

��
u(X(s), s)� ~

2m
r log pX(X(s), s)

�
ids. (91)

Note that u ⌘ ~
2mr log pX(X(t), t). Thus, EXkeu(X(0), 0)� ~

2mr log pX(X(0), 0)k2 = L3(ev, eu).
Using inequality ha, bi 1

2

�
kak2 + kbk2

�
we obtain:

EXku(X(t), t)� ~
2m

r log pX(X(t), t)k2 � L3(ev, eu) (92)

Z t

0

⇣1
2

EXku(X(s), s)� ~
2m

r log pX(X(s), s)k2 (93)

+
1

2
EX

���
� !
LX +

LX

��
u(X(s), s)� ~

2m
r log pX(X(s), s)

����
2⌘

ds (94)

Using Lemma F.7, we obtain:

EXku(X(t), t)� ~
2m

r log pX(X(t), t)k2 � L3(ev, eu) (95)

Z t

0

⇣1
2

EXku(X(s), s)� ~
2m

r log pX(X(s), s)k2 (96)

+
���
!
LX

LX0

x�

LX0

!
LXx

���
2
+ 4krevk21

��eu� ~
2m

r log pX
��2
⌘
ds (97)

Observe that
R t
0 EX

���
!
LX

LX0

x�

LX0

!
LXx

���
2
dt L2(ev, eu), in fact, at t = T it is equality as this is

the definition of the loss L2. Thus, we have:

EXku(X(t), t)� ~
2m

r log pX(X(t), t)k2 (98)

 L3(ev, eu) + L2(ev, eu) +
Z t

0

�1
2
+ 4krevk1

�
EXku(X(s), s)� ~

2m
r log pX(X(s), s)k2ds.

(99)

Using integral Grönwall’s inequality (Gronwall, 1919) yields the bound: EXku(X(t), t) �
~
2mr log pX(X(t), t)k2 e

�
1
2+4krevk1

�
t�L3(ev, eu) + L2(ev, eu)

�
.

F.3 NELSONIAN PROCESSES

Considering those two operators, we can rewrite the equations (27) alternatively as:

1

2

⇣ !
LY

LY x+

LY

!
LY x

⌘
= � 1

m
rV (x), (100)

1

2

⇣ !
LY

LY x�

LY

!
LY x

⌘
= 0. (101)

This leads us to the identity:
!
LY

LY x = � 1

m
rV (x). (102)

Lemma F.9. We have the following bound:
Z t

0
EX

���
!
LX0

LXX(t) +

1

m
rV (X(t))

���
2
dt 2L1(ev, eu) + 2L2(ev, eu).

30

Under review as a conference paper at ICLR 2024

Proof. Consider rewriting losses as:

L1(ev, eu) =
Z t

0
Et⇠U [0,T]E

X
���
1

2

� !
LX

LX0

X(t) +
!
LX

LX0

X(t)
�
+

1

m
rV (X(t))

���
2
dt, (103)

L2(ev, eu) =
1

4

Z t

0
Et⇠U [0,T]E

X
���
!
LX

LX0

X(t)�
!
LX0

LXX(t)

���
2
dt. (104)

Using the triangle inequality yields the statement.

Lemma F.10. We have the following bound:
Z t

0
EX

���

LX

!
LXX(t) +

1

m
rV (X(t))

���
2
dt

 2T
�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T �L3(ev, eu) + L2(ev, eu)

�
+ 4L1(ev, eu) + 4L2(ev, eu).

Proof. From equation 79 we have:

LX

!
LXX(t) =

LX0

!
LXX(t) + h ~

m
r log pX � 2eu,r(ev + eu)i. (105)

Noting that h ~
mr log pX � 2eu,r(ev + eu)i

�
kreuk1 + krevk1

���� ~
mr log pX � 2eu

��� and using
triangle inequality we obtain the bound:
Z t

0
EX

���

LX

!
LXX(t) +

1

m
rV (X(t))

���
2
dt (106)

 2
�
keuk1 + kevk1

�2
Z t

0
EX

���u(X(t), t)� ~
2m

log pX(X(t), t)
���
2
dt+ 4L1(ev, eu) + 4L2(ev, eu).

(107)

Using Theorem F.8 concludes the proof.

Lemma F.11. Denote Z(t) = (X(t), Y (t)) as compound process. For functions h(x, y, t) =
f(x, t) + g(y, t) we have the following identity:

!
LZh =

!
LXf +

!
LY g (108)

Proof. A generator is a linear operator by very definition. Thus, it remains to prove only
!
LZf =

!
LXf (109)

Since the definition of
!
Ft already contains all past events for both processes X(t), Y (t), we see that

this is a tautology.

As a direct application of this Lemma, we obtain the following Corollary (by applying it twice):
Corollary F.12. We have the following identity:

LZ

!
LZ

�
X(t)� Y (t)

�
=

LX

!
LXX(t)�

LY

!
LY Y (t).

Theorem F.13. (Strong Convergence) Let the loss be defined as L(ev, eu) =
P4

i=1 wiLi(ev, eu) for
some arbitrary constants wi > 0. Then we have the following bound between processes X and Y :

sup
tT

EkX(t)� Y (t)k2 CTL(ev, eu) (110)

where CT = maxi
w0

i
wi

, w01 = 4eT (T+1), w02 = eT (T+1)
⇣
2T

�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T +

4
⌘

, w03 = 2TeT (T+1)
⇣
1 +

�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T
⌘

, w04 = 2TeT (T+1).

31

Under review as a conference paper at ICLR 2024

Proof. We are going to prove the bound:

sup
tT

EkX(t)� Y (t)k2
4X

i=1

w0iLi(ev, eu) (111)

for constants that we obtain from the Lemmas above. Then we will use the following trick to get the
bound with arbitrary weights:

4X

i=1

w0iLi(ev, eu)
4X

i=1

w0i
wi

wiLi(ev, eu)
�
max

i

w0i
wi

� 4X

i=1

wiLi(ev, eu) = CTL(ev, eu) (112)

First, we apply Lemma F.5 to Z = X � Y by noting that
⇥
X(t) � Y (t), X(t) � Y (t)

⇤
t
⌘ 0 and

kX(0)� Y (0)k2 = 0 almost surely:

EZkX(t)� Y (t)k2 (113)

=

Z t

0
EZ

⇣
2h

LZ(X(0)� Y (0)), X(s)� Y (s)i (114)

+ 2

Z s

0
h

LZ

!
LZ(X(z)� Y (z)), X(s)� Y (s)idz

⌘
ds (115)

Z t

0
EZ

⇣��

LZ(X(0)� Y (0))

��2 + kX(s)� Y (s)k2 (116)

+

Z s

0

⇣��

LZ

!
LZ(X(z)� Y (z))

��2 + kX(s)� Y (s)k2dz
⌘⌘

ds (117)

Z t

0
EZ

⇣��

LZ(X(0)� Y (0))

��2 + (1 + T)kX(s)� Y (s)k2 (118)

+

Z s

0

��

LZ

!
LZ(X(z)� Y (z))

��2dz
⌘
ds. (119)

Then, using Corollary F.12, equation 102 and then Lemma F.10 we obtain that
Z s

0

��

LZ

!
LZ(X(z)� Y (z))

��2dz =

Z s

0

��

LZ

!
LZX(z) +

1

m
rV (X(z))

��2dz (120)

 2T
�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T �L3(ev, eu) + L2(ev, eu)

�
+ 4L1(ev, eu) + 4L2(ev, eu).

(121)

To deal with the remaining term involving X(0)� Y (0) we observe that:
Z t

0
EZ

⇣��

LZ(X(0)� Y (0))

��2 2TL3(ev, eu) + 2TL4(ev, eu), (122)

where we used triangle inequality. Combining obtained bounds yields:

EZkX(t)� Y (t)k2 (123)

Z t

0
(1 + T)kX(s)� Y (s)k2ds (124)

+ 2TL3(ev, eu) + 2TL4(ev, eu) (125)

+ 2T
�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T �L3(ev, eu) + L2(ev, eu)

�
(126)

+ 4L1(ev, eu) + 4L2(ev, eu) (127)

=

Z t

0
(1 + T)kX(s)� Y (s)k2ds (128)

+ 4L1(ev, eu) +
⇣
2T

�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T + 4

⌘
L2(ev, eu) (129)

+ 2T
⇣
1 +

�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T
⌘
L3(ev, eu) + 2TL4(ev, eu). (130)

32

Under review as a conference paper at ICLR 2024

Finally, using integral Grönwall’s inequality Gronwall (1919), we have:

EZkX(t)� Y (t)k2 (131)

 4eT (T+1)L1(ev, eu) + eT (T+1)
⇣
2T

�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T + 4

⌘
L2(ev, eu)

(132)

+ 2TeT (T+1)
⇣
1 +

�
kreuk1 + krevk1

�2
e
�

1
2+4krevk1

�
T
⌘
L3(ev, eu) + 2TeT (T+1)L4(ev, eu)

(133)

G APPLICATIONS

G.1 BOUNDED DOMAIN M

Our approach assumes that the manifold M is flat or curved. For bounded domains M, e.g., like
it is assumed in PINN or any other grid-based methods, our approach can be applied if we embed
M ⇢ Rd and define a new family of smooth non-singular potentials V↵ on entire Rd such that
V↵ ! V when restricted to M and V↵ ! +1 on @(M,Rd) (boundary of the manifold in embedded
space) as ↵! 0+.

G.2 SINGULAR INITIAL CONDITIONS

It is possible to apply Algorithm 1 to 0 = �x0e
iS0(x) for some x0 2 M. We need to augment the

initial conditions with a parameter ↵ > 0 as 0 =

r
1p

2⇡↵2
e�

(x�x0)2

2↵2 for small enough ↵ > 0. In

that case, u0(x) = � ~
2m

(x�x0)
↵ . We must be careful with choosing ↵ to avoid numerical instability.

It makes sense to try ↵ / ~2

m2 as X(0)�x0

↵ = O(
p
↵). We evaluated such a setup in Appendix D.1.

G.3 SINGULAR POTENTIAL

We must augment the potential to apply our method for simulations of the atomic nucleus with
Bohr-Oppenheimer approximation (Woolley & Sutcliffe, 1977). A potential arising in this case has
components of form aij

kxi�xjk . Basically, it has singularities when xi = xj . In case when xj is fixed,
our manifold is M\{xj}, which has a non-trivial cohomology group.

When such potential arises we suggest to augment the potential V↵ (e.g., replace all aij

kxi�xjk with
aijp

kxi�xjk2+↵
) so that V↵ is smooth and non-singular everywhere on M. In that case we have that

V↵ ! V as ↵! 0. With the augmented potential V↵, we can apply stochastic mechanics to obtain
an equivalent to quantum mechanics theory. Of course, augmentation will produce bias, but it will be
asymptotically negligent as ↵! 0.

G.4 MEASUREMENT

Even though we have entire trajectories and know positions for each moment, we should carefully
interpret them. This is because they are not the result of the measurement process. Instead, they
represent hidden variables (and u, v represent global hidden variables – what saves us from the Bells
inequalities as stochastic mechanics is non-local (Nelson, 1966)).

For a fixed t 2 [0, T], the distribution of X(t) coincides with the distribution X(t) for X being
position operator in quantum mechanics. Unfortunately, a compound distribution (X(t), X(t0)) for
t 6= t0 may not correspond to the compound distribution of (X(t),X(t0)); for details see Nelson
(2005). This is because each X(t) is a result of the measurement process, which causes the wave
function to collapse (Derakhshani & Bacciagaluppi, 2022).

Trajectories Xi are as if we could measure X(t) without causing the collapse of the wave function.
To use this approach for predicting some experimental results involving multiple measurements, we

33

Under review as a conference paper at ICLR 2024

need to re-run our method after each measurement process with the measured state as the new initial
condition. This issue is not novel for stochastic mechanics. There is the same problem in classical
quantum mechanics.

This “contradiction” is resolved once we realize that X(t) involves measurement, and thus, if we
want to calculate correlations of (X(t),X(t0)) for t < t0 we need to do the following:

• Run Algorithm 1 with 0, V (x, t) and T = t to get eu, ev.
• Run Algorithm 2 with eu, ev, 0 to get {XNj}Bj=1 – B last steps from trajectories Xi of

length N .
• For each XNj in the batch we need to run Algorithm 1 with 0 = �XNj , V

0(x, t0) =
V (x, t0 + t) (assuming that u0 = 0, v0 = 0) and T = t0 � t to get euj , evj .

• For each XNj run Algorithm 2 with batch size B = 1, 0 = �XNj , euj , evj to get X 0Nj .

• Output pairs
�
(XN,j , X 0N,j)

 B

j=1
.

Then the distribution of (XN,j , X 0N,j) will correspond to the distribution of (X(t),X(t0)). This
is well described and proven in Derakhshani & Bacciagaluppi (2022). Therefore, it is possible to
simulate the right correlations in time using our approach, though, it may require learning 2(B + 1)
models. The promising direction of future research is to consider X0 as a feature for the third step
here and, thus, learn only 2 + 2 models.

G.5 OBSERVABLES

To estimate any scalar observable of form Y(t) = y(X(t)) in classic quantum mechanics one needs
to calculate:

hYit =
Z

M
 (x, t)y(x) (x, t)dx.

In our setup, we can calculate this using the samples X⇥Nt
T

⇤ ⇡ X(t) ⇠
�� (·, t)

��2:

hYit ⇡
1

B

BX

j

y(X⇥Nt
T

⇤
j
),

where B � 1 is the batch size, N is the time discretization size. The estimation error has magnitude
O(1p

B
+ ✏+ "), where ✏ = T

N and " is the L2 error of recovering true u, v. In our paper, we have
not bounded " but provide estimates for it in our experiments against the finite difference solution.8

G.6 WAVE-FUNCTION

Recovering the wave function from u, v is possible using a relatively slow procedure. Our experiments
do not cover this because our approach’s main idea is to avoid calculating wave function. But for
the record, it is possible. Assume we solved equations for u, v. We can get the phase and density by
integrating Equation (21):

S(x, t) = S(x, 0) +

Z t

0

⇣ 1

2m
hr, u(x, t)i+ 1

2~
��u(x, t)

��2 � 1

2~
��v(x, t)

��2 � 1

~V (x, t)
⌘
dt,

(134)

⇢(x, t) = ⇢0(x) exp
⇣Z t

0

�
� hr, v(x, t)i � 2m

~ hu(x, t), v(x, t)i
�⌘

dt (135)

This allows us to define =
p
⇢(x, t)eiS(x,t), which satisfies the Schrödinger equation (1). Suppose

we want to estimate it over a grid with N time intervals and
⇥p

N
⇤

intervals for each coordinate (a
typical recommendation for Equation (1) is to have a grid satisfying dx2 ⇡ dt). It leads to a sample
complexity of O(N

d
2+1), which is as slow as other grid-based methods for quantum mechanics. The

error in that case will also be O(
p
✏+ ") (Smith & Smith, 1985).

8If we are able to reach L(✓) = 0 then essentially " = 0. We leave bounding " by L(✓⌧) for future work.

34

Under review as a conference paper at ICLR 2024

H ON CRITICISM OF STOCHASTIC MECHANICS

Three major concerns arise regarding stochastic mechanics developed by Nelson (1966); Guerra
(1995):

• The proof of the equivalence of stochastic mechanics to classic quantum mechanics relies
on an implicit assumption of the phase S(x, t) being single-valued (Wallstrom, 1989).

• If there is an underlying stochastic process of quantum mechanics, it should be non-
Markovian (Nelson, 2005).

• For a quantum observable, e.g., a position operator X(t), a compound distribution of
positions at two different timestamps t, t0 does not match distribution of (X(t),X(t0))
(Nelson, 2005).

Appendix G.4 discusses why a mismatch of the distributions is not a problem and how we can adopt
stochastic mechanics with our approach to get correct compound distributions by incorporating the
measurement process into the stochastic mechanical picture.

H.1 ON “INEQUIVALENCE” TO SCHRÖDINGER EQUATION

This problem is explored in the paper by Wallstrom (1989). Firstly, the authors argue that proofs of
the equivalency in Nelson (1966); Guerra (1995) are based on the assumption that the wave function
phase S is single-valued. In the general case of a multi-valued phase, the wave functions are identified
with sections of complex line bundles over M. In the case of a trivial line bundle, the space of
sections can be formed from single-valued functions, see Alvarez (1986). The equivalence class of
line bundles over a manifold M is called Picard group, and for smooth manifolds, M is isomorphic
to H2(M,Z), so-called second cohomology group over Z, see Prieto & Vitolo (2014) for details.
Elements in this group give rise to non-equivalent quantizations with irremovable gauge symmetry
phase factor.

Therefore, in this paper, we assume that H2(M,Z) = 0, which allows us to eliminate all criticism
about non-equivalence. Under this assumption, stochastic mechanics is equivalent indeed. This
condition holds when M = Rd. Though, if a potential V has singularities, e.g., a

kx�x⇤k , then we
should exclude x⇤ from Rd which leads to M = Rd\{x⇤} and this manifold satisfies H2(M,Z) ⇠= Z
(May, 1999), which essentially leads to ”counterexample” provided in Wallstrom (1989). We suggest
a solution to this issue in Appendix G.2.

H.2 ON “SUPERLUMINAL” PROPAGATION OF SIGNALS

We want to clarify why this work should not be judged from perspectives of physical realism,
correspondence to reality and interpretations of quantum mechanics. This tool gives the exact
predictions as classical quantum mechanics at a moment of measurement. Thus, we do not care
about a superluminal change in the drifts of entangled particles and other problems of the Markovian
version of stochastic mechanics.

H.3 NON-MARKOVIANITY

Nelson believes that an underlying stochastic process of reality should be non-Markovian to avoid
issues with the Markovian processes like superluminal propagation of signals (Nelson, 2005). Even
if such a process were proposed in the future, it would not affect our approach. In stochastic calculus,
there is a beautiful theorem from Gyöngy (1986):
Theorem H.1. Assume X(t), F (t), G(t) are adapted to Wiener process W (t) and satisfy:

dX(t) = F (t)dt+G(t)d
!
W.

Then there exist a Markovian process Y (t) satisfying

dY (t) = f(Y (t), t)dt+ g(Y (t), t)d
!
W

where f(x, t) = E(F (t)kX(t) = x),g(x, t) =
p

E(G(t)G(t)T kX(t) = x) and such that 8t holds
Law(X(t)) = Law(Y (t)).

35

Under review as a conference paper at ICLR 2024

This theorem tells us that we already know how to build a process Y (t) without knowing X(t); it
is stochastic mechanics by Nelson (Nelson, 1966; Guerra, 1995) that we know. From a numerical
perspective, we better stick with Y (t) as it is easier to simulate, and as we explained, we do not care
about correspondence to reality as long as it gives the same final results.

H.4 GROUND STATE

Unfortunately, our approach is unsuited for the ground state estimation or any other stationary state.
FermiNet (Pfau et al., 2020) does a fantastic job already. The main focus of our work is time evolution.
It is possible to estimate some observable Y for the ground state if its energy level is unique and
significantly lower than others. In that case, the following value approximately equals the group state
observable for T � 1:

hYiground ⇡ 1

T

Z T

0
hYitdt ⇡

1

NB

NX

i=1

BX

j=1

y(Xij)

This works only if the ground state is unique, and the initial conditions satisfy
R
M 0 grounddx 6= 0,

and its energy is well separated from other energy levels. In that scenario, oscillations will cancel
each other out.

I FUTURE WORK

This section discusses possible directions for future research. Our method is a promising direction
for fast quantum mechanics simulations, but we consider the most straightforward setup in our work.
Possible future advances include:

• In our work, we consider the simplest integrator of SDE (Euler-Maryama), which may
require setting N � 1 to achieve the desired accuracy. However, a higher-order integrator
(Smith & Smith, 1985) or an adaptive integrator (Ilie et al., 2015) should achieve the desired
accuracy with much lower N .

• It should be possible to extend our approach to a wide variety of other quantum mechanical
equations, including Dirac and Klein-Gordon equations used to account for special relativity
(Serva, 1988; Blanchard et al., 2005), a non-linear Schrödinger Equation (1) equation used
in condensed matter physics (Serkin & Hasegawa, 2000) by using McKean-Vlasov SDEs
and the mean-field limit (Buckdahn et al., 2017a;b; dos Reis et al., 2022), and the Shrödinger
equation with a spin component (Dankel, 1970; De Angelis et al., 1991).

• We consider a rather simple, fully connected architecture of neural networks with tanh
activation and three layers. It might be more beneficial to consider specialized architectures
for quantum mechanical simulations, e.g., Pfau et al. (2020).

• Many practical tasks require knowledge of the error magnitude. Thus, providing explicit
bounds on " in terms of L(✓M) is critical.

36

	Introduction
	Problem formulation

	Related work
	Contributions
	Deep Stochastic Mechanics
	Learning drifts
	Algorithmic complexity
	Theoretical Guarantees

	Experiments
	Harmonic oscillator
	Interacting system
	Naive sampling
	Algorithmic complexity

	Discussion and Limitations
	Notation
	DSM algorithm
	Experimental setup details
	A numerical solution
	Architecture and training details
	On Optimization

	Experiments
	Singular initial conditions
	3D harmonic oscillator
	Naive sampling
	Computational complexity
	Interacting system
	Scaling experiments

	Stochastic Mechanics
	Stochastic Mechanics Equations
	Novel Equations of Stochastic Mechanics
	Diffusion processes of Stochastic Mechanics
	Interpolation between Bohmian and Nelsonian pictures

	On Strong Convergence
	Stochastic Processes
	Adjoint Processes
	Nelsonian Processes

	Applications
	Bounded domain M
	Singular initial conditions
	Singular potential
	Measurement
	Observables
	Wave-function

	On criticism of Stochastic Mechanics
	On ``inequivalence'' to Schrödinger equation
	On ``superluminal'' propagation of signals
	Non-Markovianity
	Ground state

	Future work

