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ABSTRACT

Autonomous agents deployed in the real world need to be robust against adver-
sarial attacks on sensory inputs. Robustifying agent policies requires anticipating
the strongest attacks possible. We demonstrate that existing observation-space at-
tacks on reinforcement learning agents have a common weakness: while effective,
their lack of information-theoretic detectability constraints makes them detectable
using automated means or human inspection. Detectability is undesirable to ad-
versaries as it may trigger security escalations. We introduce ϵ-illusory attacks,
a novel form of adversarial attack on sequential decision-makers that is both ef-
fective and of ϵ-bounded statistical detectability. We propose a novel dual ascent
algorithm to learn such attacks end-to-end. Compared to existing attacks, we em-
pirically find ϵ-illusory attacks to be significantly harder to detect with automated
methods, and a small study with human participants1 suggests they are similarly
harder to detect for humans. Our findings suggest the need for better anomaly
detectors, as well as effective hardware- and system-level defenses. The project
website can be found at https://tinyurl.com/illusory-attacks.

1 INTRODUCTION

The sophistication of attacks on cyber-physical systems is increasing, driven in no small part by
the proliferation of increasingly powerful commercial cyber attack tools (NSCS, 2023). AI-driven
technologies, such as virtual reality systems (Adams et al., 2018) and large-language model assis-
tants (Radford et al., 2019) are opening up additional attack surfaces. Further examples are deep
learning methods in autonomous driving tasks (Ren et al., 2015; Shi et al., 2019; Minaee et al.,
2022), deep reinforcement learning methods for robotics (Todorov et al., 2012; Andrychowicz et al.,
2020), and nuclear fusion (Degrave et al., 2022). While AI can be used for cyber defense, the threat
from automated AI-driven cyber attacks is thought to be significant (Buchanan et al., 2023) and the
future balance between automated attacks and defenses hard to predict (Hoffman, 2021).

Beyond its beneficial use, deep reinforcement learning has also been proposed as a method for
learning flexible automated attacks on AI-driven sequential decision makers (Ilahi et al., 2021). A
common approach to countering adversarial attacks is to use policy robustification (Kumar et al.,
2021; Wu et al., 2021). This approach can be effective, as visualized by the red-circled budgets in
Fig. 1. However, as we show in this work, for observation-space attacks with larger budgets (grey
circles in Fig. 1), robustification can be ineffective. The practical feasibility of large budget attacks
has been highlighted in domains such as visual sensor attacks (Cao et al., 2021, patch attacks), as
well as botnet evasion attacks (Merkli, 2020; Schroeder de Witt et al., 2021). This highlights the
importance of a two-step defense process in which the first step employs anomaly detection (Haider
et al., 2023), followed by attack-mitigating security escalations. This coincides with common cy-
bersecurity practice, where intrusion detection systems allow for the implementation of mitigating
contingency actions as a defense strategy (Cazorla et al., 2018). Therefore, effective cyber attackers
are known to prioritize detection avoidance (Langner, 2011, STUXNET 417 attack).
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Figure 1: We see adversary performance (reduction in the victim’s reward) mapped against the KL
divergence between the unattacked training and the attacked test distribution. Attacks with a small
L2 attack budget (indicated by small circles) can be defended against using randomized smoothing,
and attacks with a large KL divergence can be defended against by triggering contingency options
upon detection of the attack (purple shaded area). Illusory attacks (blue) can achieve significantly
higher performance than classic adversarial attacks (black), as they allow to limit the KL divergence
and thereby avoid detection.

In this paper, we study the information-theoretic limits of the detectability of automated attacks on
cyber-physical systems. To this end, we introduce a novel observation-space illusory attack frame-
work, which imposes a novel information-theoretic detectability constraint on adversarial attacks
that is grounded in information-theoretic steganalysis (Cachin, 1998). Unlike existing frameworks,
the illusory attack framework naturally allows attackers to exploit environment stochasticity in order
to generate effective attacks that are hard (ϵ-illusory), or even impossible (perfect illusory) to detect.

We propose a theoretically-grounded dual ascent algorithm and scalable estimators for learning il-
lusory attacks. On a variety of RL benchmark problems, we show that illusory attacks can exhibit
much better performance against victim agents equipped with state-of-the-art detectors than conven-
tional attacks. Lastly, in a controlled study with human participants, we demonstrate that illusory
attacks can be significantly harder to detect visually than existing attacks, owing to their seeming
preservation of physical dynamics. Our findings suggest that software-level defenses against au-
tomated attacks alone might not be sufficiently effective, and that system-wide and hardware-level
robustification may be required for adequate security protection (Wylde, 2021). We also suggest that
better anomaly detectors for sequential-decision-making agents should be developed.

Our work makes the following contributions:

• We formalize the novel illusory attack framework with information-theoretically grounded
attack detectability constraints.

• We propose a dual ascent algorithm and scalable estimator to learn illusory attacks in high-
dimensional control environments.

• We show that illusory attacks can be effective against victims with state-of-the-art out-of-
distribution detectors, whereas existing attacks can be detected and hence are ineffective.

• We show that illusory attacks are significantly harder to detect by human visual inspection.

2 RELATED WORK

Please see Appendix A.1 for additional related work.

The adversarial attack literature originates in image classification (Szegedy et al., 2013), where
attacks commonly need to be visually imperceptible. Visual imperceptibility is commonly proxied
by simple pixel-space minimum-norm perturbation (MNP) constraints (Goodfellow et al., 2014;
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Madry et al., 2023). Several defenses against MNP attacks have been proposed (Das et al., 2018;
Xu et al., 2018; Samangouei et al., 2023; Xie et al., 2023). Various strands of research in cyber
security concern adversarial patch (AP) attacks that do not require access to all the sensor pixels,
and commonly assume that the attack target can be physically modified (Eykholt et al., 2018; Cao
et al., 2021). Illusory attacks differ from both MNP and AP attacks in that they are information-
theoretically grounded and undetectable even for large budgets.

MNP attacks have been extended to adversarial attacks on sequential decision-making
agents (Chen et al., 2019b; Ilahi et al., 2021; Qiaoben et al., 2021). In the sequential MNP frame-
work, the adversary can modify the victim’s observations up to a step- or episode-wise perturbation
budget, both in white-box, as well as in black-box settings. Zhang et al. (2020) and Sun et al. (2021)
use reinforcement learning to learn adversarial policies that require only black-box access to the
victim policy. Work towards robust sequential-decision making uses techniques such as random-
ized smoothing (Kumar et al., 2021; Wu et al., 2021), test-time hardening by computing confidence
bounds (Everett et al., 2021), training with adversarial loss functions (Oikarinen et al., 2021), and
co-training with adversarial agents (Zhang et al., 2021a; Dennis et al., 2020; Lanier et al., 2022). We
compare against and build upon this work.

Another body of work focuses on detection and detectability of learnt adversarial attacks on
sequential decision makers. Perhaps most closely related to our work, Russo & Proutiere (2022)
study action-space attacks on low-dimensional stochastic control systems and consider information-
theoretic detection (Basseville et al., 1993; Lai, 1998; Tartakovsky et al., 2014) based on stochastic
equivalence between the resulting trajectories. We instead investigate high-dimensional observation-
space attacks, and consider learned detectors, as well as humans.

AI-driven attacks on humans and human-operated infrastructure, such as social networks, are an
active area of research (Tsipras et al., 2018). (Ye & Li, 2020) consider data privacy and security
issues in the age of personal human assistants, and Ariza et al. (2023) investigate automated social
engineering attacks on professional social networks using chatbots. Illusory attacks signify that such
automated attacks may be learnt such as to be hard to detect, or indeed undetectable.

Within information-theoretic hypothesis testing, Bayesian optimal experimental design (Chaloner
& Verdinelli, 1995) studies optimisation objectives that share similarities with the illusory attack
objective. Foster et al. (2019) introduce several classes of fast EIG estimators by building on ideas
from amortized variational inference. Shen & Huan (2022) use deep reinforcement learning for
sequential Bayesian experiment design.

3 BACKGROUND AND NOTATION

We denote a probability distribution over a set X as P(X ), and an unnamed probability distribution
as P(·). The empty set is denoted by ∅, the indicator function by 1, and the Dirac delta function
by δ(·). Kleene closures are denoted by (·)∗. For ease of exposition, we restrict our theoretical
treatment to probability distributions of finite support where not otherwise indicated.

3.1 MDP AND POMDP.

A Markov decision process (MDP) (Bellman, 1958) is a tuple ⟨S,A, p, r, γ⟩, where S is the finite2

non-empty state space, A is the finite non-empty action space, p : S×A 7→ P(S) is the probabilistic
state-transition function, and r : S ×A 7→ P(R) is a lower-bounded reward function. Starting from
a state st ∈ S at time t, an action at ∈ A taken by the agent policy π : S 7→ P(A) effects a transition
to state st+1 ∼ p(·|at) and the emission of a reward rt+1 ∼ r(·|st+1, at). The initial system state
at time t = 0 is drawn as s0 ∼ p(·|∅). For simplicity, we consider episodes of infinite horizon
and hence introduce a discount factor 0 ≤ γ < 1. In a partially observable MDP (Åström, 1965;
Kaelbling et al., 1998, POMDP) ⟨S,A,Ω,O, p, r, γ⟩, the agent does not directly observe the system
state st but instead receives an observation ot ∼ O(·|st) where O : S 7→ P(Ω) is an observation
function and Ω is a finite non-empty observation space. In line with standard literature (Monahan,

2For conciseness, we restrict our exposition to finite state, action and observation spaces. Results
carry over to continuous state-action-observation spaces under some technical conditions that we omit for
brevity (Szepesvári, 2010).
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1982), we disambiguate two stochastic processes that are induced by pairing a POMDP with a policy
π: The core process, which is the process over state random variables {St}, and the observation
process induced by observation random variables {Ot}. Please see Appendix A.2 for a more detailed
exposition on POMDPs.

3.2 OBSERVATION-SPACE ADVERSARIAL ATTACKS.

Observation-space adversarial attacks consider the scenario where an adversary manipulates the ob-
servation of a victim at test-time. Much prior work falls within the SA-MDP framework (Zhang
et al., 2020), in which an adversarial agent with policy ξ : S 7→ P(S) generates adversarial observa-
tions ot ∼ ξ(st). The perturbation is bounded by a budget B : S 7→ 2S , limiting supp ξ(·|s) ∈ B(s).
For simplicity, we consider only zero-sum adversarial attacks, where the adversary minimizes the
expected return of the victim. In case of additive perturbations, S := Rd, d ∈ N and φt ∈ Rd (Ku-
mar et al., 2021), ξ(st) := δ(ot). Here, ot := st+φt, subject to a real positive per-step perturbation
budget B such that ∥φt∥22 ≤ B2, ∀t.

3.3 INFORMATION-THEORETIC HYPOTHESIS TESTING

Following (Blahut, 1987; Cachin, 1998), we assume two probability distributions P1 and P2 over
the space Q of possible measurements. Given a measurement Q ∈ Q, we let hypothesis H0 be true
if Q was generated from P1, and H1 if Q was generated from P2. A decision rule is then a binary
partition of Q that assigns each element q ∈ Q to one of the two hypotheses. Let α be the type
I error of accepting H1 when H0 is true, and β be the Type II error of accepting H0 when H1 is
true. By the Neyman-Pearson theorem (Neyman et al., 1997), the optimal decision rule is given by
assigning q to H0 iff the log-likelihood log (P1(q)/P2(q)) ≥ T , where T ∈ R is chosen according to
the maximum acceptable β. For a sequence of measurements qt, this decision rule can be extended
to testing whether

∑
t log (P1(qt)/P2(qt)) ≥ T (Wald, 1945). It can further be shown (Blahut,

1987) that d(α, β) ≤ KL(P1|P2), where KL(Q|P) = EQ [logQ− logP] is the Kullback-Leibler
divergence between two probability distributions Q and P, and d(α, β) ≡ α(logα− log(1− β)) +
(1 − α)(log(1 − α) − log β) is the binary relative entropy. Note that if KL(P1|P2) = 0, then
α = β = 1

2 , and therefore H0 cannot be better distinguished from H1 than by random guessing.
Hence H0 and H1 are information-theoretically indistinguishable if KL(P1|P2) = 0.

4 ILLUSORY ATTACKS

4.1 THE ILLUSORY ATTACK FRAMEWORK

We introduce a novel illusory attack framework in which an adversary attacks a victim acting in the
environment E at test time, thus inducing a two-player zero-sum game G (Von Neumann & Morgen-
stern, 1944). Our work assumes that the following facts about G are commonly known (Halpern &
Moses, 1990) by both adversary and victim: At test time, the adversary performs observation-space
attacks (see Sec. 3.2) on the victim. The victim can sample from the environment shared with an
arbitrary adversary at train time, but has no certainty over which specific test-time policy the adver-
sary will choose. The adversary can sample from the environment shared with an arbitrary victim at
train time, but has no certainty over which specific test-time policy the victim will choose. The task
of the victim is to act optimally with respect to its expected test-time return, while the task of the
adversary is to minimise the victim’s expected test-time return.

We follow Haider et al. (2023) in that we assume that the victim’s reward signal is endogenous (Barto
et al., 2009), which means it depends on the victim’s action-observation history and is not explicitly
modeled at test-time, thereby exposing it to manipulation by the adversary. Additionally, environ-
ments of interest frequently emit sparse or delayed reward signals that aggravate the task of detecting
an attacker before catastrophic damage is inevitable (Sutton & Barto, 2018; Haider et al., 2023).

Assuming the victim’s policy πv : (O ×A)
∗ 7→ P(A) conducts adversary detection using

information-theoretically optimal sequential hypothesis testing on its action-observation history (see
Section 3.3), the state of the adversary’s MDP must contain the action-observation history of the vic-
tim. The adversary’s policy ν : S × (O ×A)

∗ 7→ P(O) therefore conditions on both the state of the
unattacked MDP, as well as the victim’s action-observation history. This turns the victim’s test-time
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decision process into a POMDP with an infinite state space, making the game G difficult to solve
with game-theoretic means (see Appendix A.2).

In the illusory attack framework, the trajectory density induced by the adversary’s MDP is given by

ρa(·) ≡ p0(s0)ν(o0|s0)πv(a0|o0)
∏T
t=1 p(st|st−1, at−1)ν(ot|st, o<t, a<t)πv(at|o<t, a<t). (1)

The trajectory density of the victim’s observation process (see Sec. 3.1) in the attacked environment
is given by

ρv(·, ν) ≡
∑
s0...sT

ρa(·, s0 . . . sT ) (2)

Note that ρv(·,1ot=st) reduces to the trajectory density of the unattacked environment

ρv(·) ≡ ρv(·,1ot=st) = p0(s0)πv(a0|s0)
∏T
t=1 p(st|st−1, at−1)πv(at|s<t, a<t). (3)

4.2 THE ILLUSORY OPTIMISATION OBJECTIVE

At test-time, the adversary assumes that the victim is employing an information-theoretically optimal
decision rule in order to discriminate between the hypotheses that an adversary is present, or not (see
Section 3). At each test-time step, the victim only has access to an empirical distribution ρ̂v(·, ν)
based on its test-time samples N collected so far, which constrains the power of its hypothesis test.

We here assume that the adversary does not know how many test-time samples the victim can col-
lect, but has sampling access to the victim’s test-time policy πv . Therefore, in order to degrade
the victim’s decision rule performance, the adversary aims to ensure that the KL-distance between
ρv(·, ν) and ρv(·) is smaller than a detectability threshold ϵ. To maximise attack strength, the adver-
sary would choose the highest ϵ that warrants undetectability, i.e., renders the victim agent unable to
distinguish between the observed trajectory distribution of the attacked and unattacked environment.

We now define information-theoretical optimal adversarial attacks (ϵ-illusory attacks) for a given
detectability threshold ϵ. We set the direction of the KL-divergence analogously to Cachin (1998).

Definition 4.1 (ϵ-illusory attacks). An ϵ-illusory attack is an adversarial attack ν∗ which minimizes
the victim reward, subject to KL (ρv(·)||ρv(·, ν)) ≤ ϵ:

ν∗ = arg inf
ν
Eτ∼ρa [Rt], s.t. KL (ρv(·)||ρv(·, ν)) ≤ ϵ. (4)
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The ϵ-illusory attack objective3 therefore aims to train an adversary that reduces the victim’s ex-
pected cumulative return, while keeping its observed trajectory distribution ϵ-close to the one it
would have observed in the unattacked environment.

We refer to illusory attacks that satisfy ϵ = 0 as perfect illusory attacks. In this case, to the victim, the
presence of the adversary induces a POMDP with infinite state-space (see Appendix A.2), in which
the core process over MDP states (see Section 3.1) differs, but the observation process is statistically
indistinguishable from the state-transition dynamics of the unattacked MDP. Importantly, as the
illusory KL constraint is distributional, the adversary can learn stochastic adversarial attack policies
that are not restricted to the identity function.

Definition 4.2 (Perfect illusory attacks). A perfect illusory attack is any undetectable non-trivial
adversarial attack ν, i.e. any ν for which ν ̸= 1ot=st and KL (ρv(·)||ρv(·, ν)) = 0.

Example. We now build up some intuition over the meaning of illusory attacks by studying a
simple single-step stochastic control environment (Figure 2). The environment is assigned one of
two initial states with probabilities 1

3 and 2
3 , respectively. In the unattacked environment (Figure

2 left), the victim can observe the initial state s0, while under an adversarial attack, it observes o0
(see right side). Given its observation, the victim chooses between two actions, upon which the
environment terminates and a scalar reward is issued. The reward conditions on the initial state and
the victim’s action. Without undetectability constraints, the optimal observation-space attack always
generates observations fooling the victim over the initial state (Regular Adversary in Figure 2),
however, changing the victim’s observed initial state distribution. This makes this attack detectable.
In contrast, a perfect illusory attack only fools the victim half of the time when in the second initial
state, and always when in the first initial state, as this does not change the victim’s observed initial
state distribution. Note that attack undetectability comes at the cost of a higher expected victim
return of 1

6 for the perfect illusory attack, compared to 0 return under the regular adversarial attack.

4.3 DUAL-ASCENT FORMULATION

To solve the ϵ-illusory attack objective (see Def. 4.1), we propose the following dual-ascent algo-
rithm (Boyd & Vandenberghe, 2004) with learning rate hyper-parameter αλk ∈ R+:

νk+1 = arg inf
ν
Eτ∼ρa [Rt]− λk−1 [KL (ρv(·)||ρv(·, ν))− ϵ] .

λk+1 = max
(
λk + αλk [KL (ρv(·)||ρv(·, ν))− ϵ] , 0

) (5)

This algorithm alternates between policy updates and λ updates. As the KL-constraint is violated, λ
adapts, thus modifying the influence on the KL-constraint in the policy update objective. Note that
λ0 has to be initialized heuristically.

4.4 ESTIMATING THE KL-OBJECTIVE

Accurately estimating the KL objective in Def. 4.1 is, in general, a computationally complex prob-
lem due to its nested form and the large support of ρv(·) and ρv(·, ν) (see also Appendix A.3). We
write

KL (ρv(·)||ρv(·, ν)) = Eτ∼ρv(·)
[
log ρv(·)

ρv(·,ν)

]
,= H [ρv(·), ρv(·, ν)]−H [ρv(·)] (6)

where H [ρv(·)] is the entropy, and H [ρv(·), ρv(·, ν)] is the cross-entropy (Murphy, 2012, p. 953).

We now explicitly construct an estimator for the cross-entropy term. Let A ≡
∏T
t=1 πv(at|o<t, a<t).

Then, ρv(·) = A · p0(o0)
∏T
t=1 pt (ot+1|ot, at), and

ρv(·|ν) = A · E
s0

[
ν(o0|s0) E

s1

[
ν(o1|s1, o0, a0) E

s2

[
ν(o2|s2, o<2, a<2) · · ·

]
×(T−2). . .

]
. (7)

3Note that the ϵ-illusory attack objective differs from a standard constrained MDP (Altman, 2021,
CMDP) problem in that the illusory constraint cannot be expressed as a discounted sum over state-transition
costs (Achiam et al., 2017, CPO), but instead depends on trajectory densities.
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Figure 4: We display normalised adversary scores, indicating the reduction in the victim’s reward,
on the y-axis. Each plot shows results in different environments, with different adversarial attacks
on the x-axis. We show both the raw adversary score, as well as the adversary score adjusted
for detection rates of different adversarial attacks (see Figure 5). While the SA-MDP and MNP
benchmark attacks achieve higher unadjusted scores, their high detection rates result in significantly
lower adjusted scores.

Constructing an unbiased estimator of H(·) is known to be non-trivial (Shalev et al., 2022). How-
ever, we note that the victim (and adversary) have access to a large number of samples from ρv(·),
and, in the case of the adversary, ρv(·, ν). In this work, we employ a simple, but highly scalable
estimator. Jensen’s inequality (Jensen, 1906) yields

H [ρv(·), ρv(·, ν)] = −Eρv(·) [logEs0...sT [B]] ≤ −Eρv(·),s0...sT [logB] , (8)

where B ≡ ν(o0|s0)
∏
t ν(ot|st, o<t, a<t). This yields the upper-bound Monte-Carlo estimator

Ĥ [ρv(·), ρv(·, ν)] = − 1
N

N∑
i=1

[
log ν(oi0|si0) +

T∑
t=1

log ν(oit|sit, oi<t, ai<t)
]
, (9)

where (ot, at)
i i.i.d.∼ ρv(·), and si0

i.i.d.∼ p0, s
i
t>0

i.i.d.∼ p.

5 EMPIRICAL EVALUATION OF ILLUSORY ATTACKS

We illustrate illusory attacks in a simple stochastic MDP (see Fig. 2), where we show that our opti-
mization algorithm allows to precisely control the KL distance between the trajectory distributions
of the attacked and unattacked environment. We then conduct an extensive evaluation of illusory
attacks in standard high-dimensional RL benchmark environments (Zhang et al., 2021b; Kumar
et al., 2021). We first empirically demonstrate the ineffectiveness of state-of-the-art robustification
methods for large perturbation budgets B (see Sec. 3.2). However, we show that state-of-the-art out-
of-distribution detectors can readily detect such attacks, rendering them ineffective. In contrast, we
show that ϵ-illusory attacks with large perturbation budgets can be effective, yet undetectable. This
demonstrates that ϵ-illusory attacks can be more performant than existing attacks against victims
with state-of-the-art anomaly detectors. In an IRB-approved study, we demonstrate that humans,
efficiently detect state-of-the-art observation-space adversarial attacks on simple control environ-
ments, but are considerably less likely to detect ϵ-illusory attacks (Section 5.0.1). We provide videos
on the project web page at https://tinyurl.com/illusory-attacks.

Experimental setup. We consider the simple stochastic MDP explained in Figure 2 and the four
standard benchmark environments CartPole, Pendulum, Hopper and HalfCheetah (see Figure 6 in
the Appendix), which have continuous state spaces whose dimensionalities range from 1 to 17, as
well as continuous and discrete action spaces. The mean and standard deviations of both detection
and performance results are estimated from 200 independent episodes per each of 5 random seeds.
Victim policies are pre-trained in unattacked environments, and frozen during adversary training.
We assume the adversary has access to the unattacked environment’s state-transition function p.

Precisely controlling trajectory KL divergence. Using an exact implementation of Equation 5,
we learn ϵ-illusory attacks for the single-step MDP environment pictured in Figure 2. As can be
seen in Figure 3, the measured KL(ρv(·)||ρv(·, ν) at convergence is bounded tightly by ϵ until it hits
the divergence value for the unconstrained adversarial attack at ca. ϵ = 0.11. The adversary’s return
increases with increasing ϵ until it reaches the return of the unconstrained attack at ϵ = 0.0.
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Algorithm 1 ϵ-illusory training (dual ascent)

Input: env, state transition function p, λ, πv ,
N , α, ϵ, estimator D̂KL (see Sec. 5.0.1)
Init νψ .
for episode in 1 to N do

s = env.reset()
o = νψ(s); a = πv(o)
onew, r, done = env.step(a)
radv = −r − λ

(
∥o− p(∅)∥22 − ϵ

)
while not done do
o = νψ(s); a = πv(o)
snew, r, done = env.step(a)
radv = −r − λ

(
∥o− p(oold, aold)∥22 − ϵ

)
end while
Update νψ using (s, o, radv, snew).
λ = max(0, λ+ α(D̂KL − ϵ)).

end for

Effectiveness of state-of-the-art robustification methods under large-budget attacks. We first
investigate the effectiveness of different robustification methods against a variety of adversarial at-
tacks, considering randomized smoothing (Kumar et al., 2021) and adversarial pretraining (ATLA,
(Zhang et al., 2021a)), for budgets B ∈ {0.02, 0.2}. We compare the performance improvement
under adversarial attacks of each method relative to the performance without robustification. For an
attack budget B = 0.05, we find that randomized smoothing results in an average improvement of
61%, while adversarial pretraining results in a 10% performance improvement. However, for the
large attack budget B = 0.2, both only result in average performance improvements of 15% and
8%, respectively (see Appendix A.5 for details).

5.0.1 COMPARATIVE EVALUATION OF ILLUSORY ATTACKS

Setup. For all four evaluation environments, we implement perfect illusory attacks (see Def. 2)
by first constructing an attacked initial state distribution p(·|∅) that exploits environment-specific
symmetries. We then sample the initial attacked observations o0 from the attacked initial state
distribution and generate subsequent transitions using the unattacked state transition function
p(·|ot−1, at−1) where at−1 is the action taken at the last time step (see Appendix A.6 for details).
In contrast to perfect illusory attacks, ϵ-illusory attacks are learned end-to-end using reinforcement
learning. For this, we use a practical variant of the illusory dual ascent objective and estimate the
KL-Distance in accordance with the single-sample estimate of the MC-estimate defined in Eq. 9
(see Algorithm 1, and Appendix A.7). We estimate D̂KL in Algorithm 1, i.e. the penalty term
used to update the dual parameter λ, as the sliding window average of the DKL estimate defined in
Equation 6, using a single-sample estimate (see Eq. 9). We equip the victim agent with the state-of-
the-art out-of-distribution detector introduced by Haider et al. (2023), which is trained on trajectories
of the unattacked environment. This detector provides anomaly scores which we use to establish a
CUSUM (Page, 1954) decision rule tuned to achieve a false positive rate of 3%. We adjust the ϵ-
illusory treshold to the empirical sensitivity of the detector on each environment. We consider attack
budgets (see Sec. 3.2 B = 0.05 and B = 0.2, but focus on B = 0.2 in this analysis (see Appendix
for all results); to ensure a fair comparison, we also apply the attack budget to ϵ-illusory attacks.

Adversary performance against victim agents with automated detectors. We investigate the
adversaries’ relative performance in comparison to state-of-the-art adversarial attacks, specifically
SA-MDP attacks (Zhang et al., 2021a) and MNP attacks (Kumar et al., 2021). MNP attacks can only
be implemented in CartPole which has a discrete action space. We define the scalar adversary score
as the resultant reduction in the victim’s return, normalized relative to both the highest adversarial
return in each class, as well as the victim’s expected return in the unattacked environment. We
simulate contingency actions by setting the adversary’s return to zero across episodes classified as
attacked. This reflects a middle ground across different scenarios in which adversary detection could
trigger victim contingency options ranging from no action to test-time termination, major security
escalation, and adversary persecution. As detailed in Figure 5, the detector detects MNP and SA-
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MDP attacks with a probability close to 100%. In contrast, the detector classifies ϵ-illusory attacks
as adversarially attacked with very low probability. In coherence, the full columns in Figure 4 show
that ϵ-illusory attacks result in the highest average adversary scores when adjusting for detection. In
contrast, detection-adjusted adversary scores for state-of-the-art attacks are close to zero, which is
expected due to their high empirical detectability (see Fig. 5).

Detection of adversarial attacks by human inspection. We we perform a controlled study with
n = 10 human participants to investigate whether humans unfamiliar with adversarial attacks can
detect adversarial attacks in simple and easy-to-understand environments. We found CartPole and
Pendulum, in contrast to Hopper and HalfCheetah, to be immediately accessible to participants with-
out the need for additional training. Participants were first shown an unattacked introduction video
for both CartPole and Pendulum, exposing them to environment-specific dynamics. Participants
were then shown a random set of videos containing both videos of unattacked and attacked trajec-
tories. For each video, participants were asked to indicate whether they believed that the video was
unsuspicious, with the prompt ‘the system shown in the video was [not] the same as the one from
the introduction video’. This phrasing was chosen so that participants would not be primed on the
concept of illusory attacks (see details in Appendix A.8).

We found that participants classified MNP and SA-MDP attacks as suspicious with high accuracy
(see Human detection in Figure 5). In contrast, participants were almost equally likely to classify
videos of unattacked and ϵ-illusory attacked trajectories as unsuspicious. In fact, at a confidence
level of 95%, the hypothesis ‘participants are equally likely to classify an unattacked sequence as
attacked as to classify an ϵ-illusory attacked sequence as attacked’ cannot be rejected. Our findings
suggest that humans are unable to detect ϵ-illusory attacks from short observation sequences in our
simple environments. See Appendix A.8 for full results and the corresponding z-test statistic.

6 CONCLUSION AND FUTURE WORK

This paper introduces a novel class of observation-space adversarial attacks, illusory attacks, which
admit an information-theoretically grounded notion of statistical detectability. We show the effec-
tiveness and scalability our approach against both humans, and AI agents with access to state-of-
the-art anomaly detectors across a variety of benchmarks.

We expect the potential positive impact of our work to outweigh the potential negative consequences
as our work contributes to the design of secure cyber-physical systems. However, it should be
acknowledged we assume the availability of contingency options for victim agents, which may not
always hold true in real-world scenarios. Moreover, our experimental investigations are confined to
simulated environments, necessitating further exploration in more intricate real-world domains.

Future research should conduct comprehensive theoretical analysis of the Nash equilibria within the
two-player zero-sum game introduced by the illusory attack framework. Furthermore, efforts are
required to develop more effective defenses against adversarial attacks applicable to real-world en-
vironments, including (1) improved detection mechanisms, (2) robustified policies that incorporate
detectors, and (3) improved methods to harden observation channels against adversarial attacks. An
equally significant aspect of detection is gaining a deeper understanding of the human capability to
perceive and identify (illusory) adversarial attacks. We ultimately aim to demonstrate the viability
of illusory attacks and the corresponding defense strategies in real-world settings, particularly in
mixed-autonomy scenarios.

Reproducibility. We are committed to promoting reproducibility and transparency in our re-
search. To facilitate the reproducibility of our results, we release the code on out project page at
https://tinyurl.com/illusory-attacks. We provide detailed overviews for all steps of the
experiments conducted in the Appendix, where we also link to the publicly available Code reposito-
ries that our work uses.

9

https://tinyurl.com/illusory-attacks


Published as a conference paper at ICLR 2024

REFERENCES

Mazen Abdelfattah, Kaiwen Yuan, Z. Jane Wang, and Rabab Ward. Towards Universal Physical Attacks On
Cascaded Camera-Lidar 3d Object Detection Models. In 2021 IEEE International Conference on Image
Processing (ICIP), pp. 3592–3596, September 2021. doi: 10.1109/ICIP42928.2021.9506016. ISSN: 2381-
8549.

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained Policy Optimization. 2017.

Devon Adams, Alseny Bah, Catherine Barwulor, Nureli Musaby, Kadeem Pitkin, and Elissa M. Red-
miles. Ethics Emerging: the Story of Privacy and Security Perceptions in Virtual Reality. pp. 427–442,
2018. ISBN 978-1-939133-10-6. URL https://www.usenix.org/conference/soups2018/
presentation/adams.

Eitan Altman. Constrained Markov Decision Processes. Routledge, New York, December 2021. ISBN 978-1-
315-14022-3. doi: 10.1201/9781315140223.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew, Jakub Pa-
chocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning dexterous in-hand manip-
ulation. The International Journal of Robotics Research, 2020.
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A APPENDIX

A.1 ADDITIONAL RELATED WORK

Assuming a different black-box setting, Hussenot et al. (2019) introduce a class of adversaries for which a
unique mask is precomputed and added to the agent observation at every time step. Our framework differs
from these previous works in that it preserves consistency across trajectories of observation sequences. Kork-
maz (2023) proposes adversarial attacks motivated by a notion of imperceptibility measured in policy network
activation space. One major difference is that the paper focuses on per-state imperceptibility, while our work
focuses on information-theoretic undetectability, which hence requires focusing on whole trajectories.

AP attack targets include cameras (Eykholt et al., 2018; Chen et al., 2019a; Duan et al., 2020; Huang et al.,
2020; Hu et al., 2021), LiDAR (Sun et al., 2020a; Cao et al., 2019; Zhu et al., 2021; Tu et al., 2020), and
multi-sensor fusion mechanisms (Cao et al., 2021; Abdelfattah et al., 2021).

Lin et al. (2017) develop an action-conditioned frame module that allows agents to detect adversarial attacks
by comparing both the module’s action distribution with the realised action distribution. Tekgul et al. (2021)
detect adversaries by evaluating the feasibility of past action sequences. Li et al. (2019); Sun et al. (2020b);
Huang & Zhu (2019); Korkmaz & Brown-Cohen (2023) focus on the detectability of adversarial attacks but
without considering notions of stochastic equivalence between observation processes.

A.2 POMDP CORRESPONDENCE

We begin this section by defining standard POMDP notation. In a partially observable MDP (Åström, 1965;
Kaelbling et al., 1998, POMDP) ⟨S,A,Ω,O, p, r, γ⟩, the agent does not directly observe the system state st but
instead receives an observation ot ∼ O(·|st) where O : S 7→ P(Ω) is an observation function and Ω is a finite
non-empty observation space. The canonical embedding pomdp : M ↪→ P from the set of finite MDPs M to
the family of POMDPs P maps Ω 7→ S, and sets O(s) = s, ∀s ∈ S. In a POMDP, the agent acts on a policy
π : H∗

\r 7→ P(A), growing a history ht+1 = htatot+1rt+1 from a set of histories Ht := (A×O × R)t,
where H∗ :=

⋃
t H

t denotes the set of all finite histories. We denote histories (or sets of histories) from which
reward signals have been removed as (·)\r.

In line with standard literature (Monahan, 1982), we distinguish between two stochastic processes that are
induced by pairing a POMDP with a policy π: The core process, which is the process over state random
variables {St}, and the observation process, which is induced by observation random variables {Ot}. The
frequentist agent’s goal is then to find an optimal policy π∗ that maximizes the total expected discounted
return, i.e. π∗ = arg supπ∈Π Eh∞∼Pπ∞

∑∞
t=0 γ

trt, where Π := {π : H∗
\r 7→ P(A)} is the set of all policies.

Now consider a POMDP Ee := ⟨S ′,A,Ω,O′, p′, r, γ⟩ with finite horizon T , a state space S ′ := (S×A×Ω)T ,
deterministic observation function O′ : S ′ 7→ Ω, and stochastic state transition function p′ : S ′×A 7→ P(S ′).
Then, for any πv : H∗

\r 7→ P(A) and ν : S × H∗
\r 7→ P(Ω), we can define corresponding p′ and O′ such that

the reward and observation processes cannot be distinguished by the victim. We now proceed to the formal
Theorem.

Theorem A.1 (POMDP Correspondence). For any E (·)
ν , there exists a corresponding POMDP Ee (E (·)

ν ) for
which the victim’s learning problem is identical.

Proof. Recall that the semantics of Eπ
ν are as follows: Fix a victim policy π : H∗

\r 7→ P from the space of
all possible sampling policies Π. At time t = 0, we sample an initial state s0 ∼ p(·|∅). The adversary then
samples an observation o0 ∼ ν(·|s0) which is emitted to the victim. The victim takes an action a0 ∼ π(·|o0),
upon which the state transitions to s1 ∼ p(·|s0, a0) and the victim receives a reward r1 ∼ (·|s0, a0). At time
t > 0, the victim has accumulated a history ht := o0a0r1 . . . ot, on which ot ∼ ν(·|st, ht\r) conditions.

Define p′ as the following sequential stochastic process: At time t = 0, first sample s0 ∼ p(·|∅). Then sample
o0 ∼ ν(·|s0), and define s′0 := p′(∅) := (s0, o0). For any t > 0, first sample st ∼ p(·|st−1, at−1), then
ot ∼ ν(·|s≤t, a<t, o<t) and define s′t := p′(s′t−1, st, ot, at−1). We finally define O(s′t) := projo(s

′
t) := ot,

where we indicate that ot is stored in s′t by using an explicit projection operator projo. Clearly, under any
sampling policy π, the observation and reward processes induced by Ee and Eπv

ν are identical as T → ∞. This
renders the reward and observation processes identical in both environments. Note that, as T → ∞, Ee’s state
space grows infinitely large.

In other words, Theorem A.1 implies that, given enough memory (Yu & Bertsekas, 2008) , the adversary can
be chosen such that the state-space of Ee(E (·)

ν ) becomes arbitrarily due to its infinite horizon. This renders the
worst-case problem of finding an optimal victim policy in Ee(E (·)

ν ) intractable even if the adversary’s policy
is known (Hutter, 2005; Leike, 2016). The underlying game G, therefore, assumes an infinite state space,
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Figure 6: Benchmark environments used for empirical evaluation, from left to right. In CartPole,
the agent has to balance a pole by moving the black cart. In Pendulum, the agent has to apply a
torque action to balance the pendulum upright. In Hopper and HalfCheetah, the agent has to choose
high-dimensional control inputs such that the agent moves towards the right of the image.

preventing recent progress in solving finite-horizon extensive-form games (Kovařı́k et al., 2022; McAleer et al.,
2023; Sokota et al., 2023) from being leveraged in characterizing its Nash equilibria. We now a give a proof of
construction.

A.3 ON THE DIFFICULTY OF ESTIMATING THE ILLUSORY OBJECTIVE

We note that estimating the illusory objective is, in general, difficult. Even when choosing a nonparametric
kernel with optimal bandwidth, the risk of conditional density estimators increases as O(N− 4

4+d ) with support
dimensionality d (Wasserman, 2006; Grünewälder et al., 2012; Fellows et al., 2023). This is aggravated by
KL-estimation being a nested estimation problem (Rainforth et al., 2018).

While the estimator bias may be further reduced by using a more sophisticated nested estimation method
such as a multi-level MC estimator (Naesseth et al., 2015), and by performing improved estimates for ρν(·, ν)
using variational inference (Blei et al., 2017, VI), or sequential Monte-Carlo (Doucet et al., 2001, SMC), these
methods come with increased computational complexity.

A.4 DETECTOR AND DECISION RULE USED IN EXPERIMENTS

We implement the out-of-distribution detector proposed by Haider et al. (2023) using the implementation
provided by the authors4. As this detector provides anomaly scores at every time step but does not provide
a decision rule for classifying a distribution as attacked, we implement a CUSUM (Page, 1954) decision rule
based on the observed anomaly scores observed at test time and the mean anomaly score for a held-out test set
of unattacked episodes. We train the detector on unperturbed environment interactions, using the configuration
provided by the authors. We then tune the CUSUM decision rule such that a per-episode false positive rate
of 3% is achieved. We assess the accuracy of detecting adversarial attacks across all scenarios presented in
Table A.7.1.

A.5 ROBUSTIFICATION

We implement the ATLA (Zhang et al., 2021a) victim by co-training it with an adversary agent, and follow
the original implementation of the authors 5. We implemented randomized smoothing as a standard defense
against adversarial attacks on RL agents, as introduced in Kumar et al. (2021). We use the author’s original
implementation6. See Table 1 for results.

A.6 PERFECT ILLUSORY ATTACKS IMPLEMENTATION

We implement perfect illusory attacks as detailed in Algorithm 2. The first observation o0 is set to the negative
of the true first state sampled from the environment. Note that in HalfCheetah and Hopper the initial state
distribution is not centered around the origin, we hence first subtract the offset, and then compute the negative of
the observation and add the offset again. As the distribution over initial states is symmetric in all environments
(after removing the offset), this approach satisfies the conditions of a perfect illusory attack (see Definition 4.2).

4https://github.com/FraunhoferIKS/pedm-ood
5https://github.com/huanzhang12/ATLA_robust_RL
6https://openreview.net/forum?id=mwdfai8NBrJ
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Algorithm 2 Perfect illusory adversarial attack

Input: environment env, environment transition function t whose initial state distribution p(·|∅)
is symmetric with respect to the point psymmetry in S, victim policy πv .
k = 0
s0 = env.reset()
o0 = −(s0 − psymmetry) + psymmetry
a0 = πv(o0)
, done = env.step(a0)

while not done do
k = k + 1
ok ∼ t(ok−1, ak−1)
ak = πv(ok)
, done = env.step(ak)

end while

A.7 LEARNING ϵ-ILLUSORY ATTACKS WITH REINFORCEMENT LEARNING

We next describe the algorithm used to learn ϵ-illusory attacks and the training procedures used to compute
the results in Table A.7.1. We use the CartPole, Pendulum, HalfCheetah and Hopper environments as given
in Brockman et al. (2016). We shortened the episodes in Hopper and HalfCheetah to 300 steps to speed up
training. The transition function is implemented using the physics engines given in all environments. We
normalize observations by the maximum absolute observation. We train the victim with PPO (Schulman et al.,
2017) and use the implementation of PPO given in Raffin et al. (2021), while not making any changes to the
given hyperparameters. In both environments we train the victim for 1 million environment steps.

We implement the illusory adversary agent with SAC (Haarnoja et al., 2018), where we likewise use the imple-
mentation given in Raffin et al. (2021). We initially ran a small study and investigated four different algorithms
as possible implementations for the adversary agent, where we found that SAC yields best performance and
training stability. We outline the dual ascent update steps in Algorithm 1, which, like RCPO (Tessler et al.,
2018), pulls a single-sample approximation of the constraint into the reward objective. We approximate D̂KL

by taking the mean of the constraint violation ∥o − p(oold, aold)∥22 over the last 50 time steps. We further ran
a small study over hyperparameters α ∈ {0.01, , 0.1, 1} and the initial value for λ ∈ {10, 100} and chose the
best performing combination. We train all adversarial attacks for four million environment steps.
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Figure 7: Detection results for B = 0.05. Dif-
ferent adversarial attacks are shown on the x-
axis, with detection rates on the y-axis. We see
that the automated reliably detector detects SA-
MDP and MNP attacks, while ϵ-illusory attacks
are less likely to be detected.

Table 1: Adversary scores under different at-
tacks and defenses.

Norm. adversary [%]

Attack Budget B no
de

fe
nc

e

sm
oo

th
in

g

A
T

L
A

MNP (Kumar et al., 2021) 0.05 3 ± 7 64 ± 6 -
SA-MDP (Zhang et al., 2021a) 0.05 85 ± 7 50 ± 5 75 ± 4
MNP (Kumar et al., 2021) 0.2 97 ± 3 97 ± 3 -
SA-MDP (Zhang et al., 2021a) 0.2 87 ± 6 72 ± 3 79 ± 6

Computational overhead of ϵ-illusory attacks. Note that there is no computational overhead of our
method at test-time. We found in our experiments that the computational overhead during training of the
adversarial attack scaled with the quality of the learned attack. In general, we found that the training wall-clock
time for the ϵ-illusory attacks attacks results presented in Table 1 was about twice that of the SA-MDP attack
(note that MNP attacks and perfect illusory attacks do not require training).
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A.7.1 RESULTS FOR PERTURBATION BUDGET 0.05

We show the remaining results for a perturbation budget of B = 0.05 in Figures 8 and 7. Note that the
corresponding Figures in the main paper are for a perturbation budget of B = 0.2.
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Figure 8: Results for B = 0.05. We display normalised adversary scores, indicating the reduction in
the victim’s reward, on the y-axis. Each plot shows results in different environments, with different
adversarial attacks on the x-axis. We show both the raw adversary score, as well as the adversary
score adjusted for detection rates of different adversarial attacks (see Figure 5). While the SA-MDP
and MNP benchmark attacks achieve higher unadjusted scores, their high detection rates result in
significantly lower adjusted scores. Note that MNP attacks perform significantly worse for B =
0.05, as compared to B = 0.2 (see Figure 4).

Table 2: Full results table for all four environments

attack budget β Detection Rate Victim reward

Pendulum

SA-MDP (Zhang et al., 2021a) 0.05 76.3±0.05 -797.2±69.9
ϵ-illusory attack (ours) 0±0 -524.1±104.3

SA-MDP (Zhang et al., 2021a) 0.2 100±0.03 -1387.0±119.0
ϵ-illusory attack (ours) 3.6±0.02 -980.0±84.0

Perfect illusory attack (ours) 1 3.0±0.02 -1204.8±88.6

unattacked 3.2±0.03 -189.4

CartPole

MNP (Kumar et al., 2021) 0.05 86.9±0.3 485.0±33.5
SA-MDP (Zhang et al., 2021a) 80.5±0.8 9.4±0.2
ϵ-illusory attack (ours) 1.5±0.02 12.9±0.3

MNP (Kumar et al., 2021) 0.2 100±0 18.3±20.8
SA-MDP (Zhang et al., 2021a) 100±0 9.3±0.1
ϵ-illusory attack (ours) 3.7±0.01 11.0±0.5

Perfect illusory attack (ours) 1 3.1±0.01 30.1±2.2

unattacked 3.2±0.01 500.0

HalfCheetah

SA-MDP (Zhang et al., 2021a) 0.05 100±0 -1570.8±177.4
ϵ-illusory attack (ours) 0±0 -180.8± 50.1

SA-MDP (Zhang et al., 2021a) 0.2 100±0 -1643.8±344.8
ϵ-illusory attack (ours) 0±0 -240.6± 18.0

Perfect illusory attack (ours) 1 2.9±0.04 5.9 ±36.8

unattacked 3.1±0.02 2594.6
Hopper

SA-MDP (Zhang et al., 2021a) 0.05 87.4±0.02 144.1±265.4
ϵ-illusory attack (ours) 0±0 209.4±90.8

SA-MDP (Zhang et al., 2021a) 0.2 95.6±0.02 -761.5±127.4
ϵ-illusory attack (ours) 1.56±0.4 -260.9‡140.8

Perfect illusory attack (ours) 1 3.1±0.02 679.2‡63.9

unattacked 2.8±0.08 958.1

A.8 HUMAN STUDY

Study approval. Our study was approved by an independent ethics committee under reference
R84123/RE001.
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Table 3: Results from our study with human participants.

Environment

both Pendulum CartPole
P (false | no attack) 34.2± 11.4 31.5± 10.5 37.0± 12.3
P (false | SA-MDP) 81.4± 27.2 96.3± 32.1 66.7± 22.2
P (false | ϵ-illusory attack ) 32.4± 10.8 37.0± 12.3 27.7± 9.3
P (false | MNP) 83.3± 27.8 83.3± 27.8

Setup. We performed a controlled study with n = 10 human participants. All participants were graduate-
level university students. None had prior knowledge about the objective of the study. Participants participated
voluntarily; we estimate the time needed per participant to be around 15 minutes. Participants were handed a
slide show which contained all relevant information. This slide show is included in the supplementary material
in the respective folder. We further add the sheet with ground truth labels for all video sequences.

After consenting to participate, participants were provided with the slide show and an online sheet to indicate
their answers. The study was self-paced and done by the participants without further supervision. We further
advised participants not to do the study if they would not feel comfortable at any point in time.

The first 18 videos in the slide show are 100-frame long sequences of the Pendulum environment, i.e. six
each for either no adversarial attack, an ϵ-illusory attack (for which we added an l∞ penalty to the l2 penalty
in Algorithm 1) or an SA-MDP attack (Zhang et al., 2021a). The subsequent 24 10-frame long sequences
of the CartPole include the same attacks as for Pendulum, plus an additional six sequences under an MNP
attack (Kumar et al., 2021). Note that MNP attacks cannot be applied to the Pendulum environment, as it has
a continuous action space. For all attacks, the budget B was 0.2. Within both groups, the order of the videos
shown was randomised. Subjects had to choose for each video between correct and false, where false indicates
that subjects find that the system observed in the respective video is not the same as the one observed in the
introductory video. We likewise refer to a video marked as false as a suspicious video. Table 3 includes all
empirically estimated probabilities and standard deviations for classifying a segment from a given class as false.

Result analysis. We find that subjects reported one-third of unattacked sequences as false. Subjects clas-
sified sequences under an MNP or SA-MDP (Zhang et al., 2020) attack as false with a probability higher than
80%, while categorizing illusory attacks as false with a probability of only 32.4%. We computed the double-
sided z-statistics and were able to reject both the hypothesis that P (false | SA-MDP)=P (false | no attack) and
the hypothesis that P (false | MNP)=P (false | no attack) for α = 0.05, while the hypothesis that P (false |
E-illusory attack )=P (false | no attack) cannot be rejected. We conclude that subjects were able to distinguish
SA-MDP and MNP attacks from unattacked sequences while being unable to distinguish illusory attacks from
unattacked sequences.

A.9 RUNTIME COMPARISON

We investigate wall-clock time for training different adversarial attacks. We first recall that MNP attacks (Ku-
mar et al., 2021) as well as perfect illusory attacks do not require training. For SA-MDP attacks (Zhang et al.,
2021a) and ϵ-illusory attacks, training time is highly dependent on the complexity of the environment, with
lower training times for the CartPole and Pendulum environments, and higher training times for Hopper and
HalfCheetah environments. All reported times are measured using an NVIDIA GeForce GTX 1080 and an
Intel Xeon Silver 4116 CPU. We trained SA-MDP attacks for 6 hours, and 12 hours in the simpler and more
complex environments respectively. We trained ϵ-illusory attacks for 10 hours, and 20 hours in the simpler and
more complex environments respectively. At test-time, inference times for ϵ-illusory attacks are identical to
SA-MDP attacks as they only consist of a neural network forward pass. Memory requirements are identical.
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