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Abstract From Kahneman & Tversky’s seminal work on prospect theory (1992), we know that humans perceive random variables in
a systematically distorted manner; for example, humans are famously loss-averse. We show that existing methods for aligning LLMs
with human feedback implicitly model some of these distortions, making them human-aware loss functions (HALOs). However, the
utility functions these methods impute to humans still differ in some ways from those in the prospect theory literature. By bridging
this gap, we derive a HALO that directly maximizes the utility of LLM generations instead of maximizing the log-likelihood of
preferences, as current methods do. We call our approach Kahneman-Tversky Optimization (KTO). KTO matches or exceeds the
performance of direct preference optimization methods at scales from 1B to 30B. Moreover, because KTO does not need preference
pairs—only knowledge of whether an output is desirable or undesirable for a given input—it is much easier to deploy in the real

world, where the latter kind of data is far more abundant.

This document is a technical report that accompanies
the HALOs code repository on Github. A more compre-
hensive paper, with more details is available on Github
as of Feb 1, 2024.

1 Introduction

Aligning models with human feedback has quickly be-
come one of the most pressing questions in ML re-
search. Yet the connection between this line of re-
search and related work in behavioral economics has
been under-explored. In this technical report,

1. We show that alignment methods work in part
because they are human-aware loss functions
(HALOs); they impute to humans a utility func-
tion that possess many qualities of the utility
functions that have been empirically derived in
prospect theory. Through a series of experiments
on the Pythia (Biderman et al., 2023) and Llama
(Touvron et al., 2023) model families, we identify
which HALOs yield more performant models and
at what scales the improvements emerge.

2. Based on prospect theory (1992), we derive a new
HALO called the Kahneman-Tversky Optimiza-
tion (KTO) loss. Unlike existing state-of-the-art

methods, KTO does not require paired prefer-
ence data (x,y,, y;)—only (x,y) and knowledge
of whether y is desirable or undesirable. KTO-
aligned models are as good or better than DPO-
aligned models at scales from 1B to 30B, despite
not using paired preferences.

KTO is also far easier to use in the real world than
preference optimization methods, as the kind of
data it requires is far more abundant. For exam-
ple, every retail company has a lot of customer in-
teraction data and whether that interaction was
successful (e.g., purchase made) or unsuccessful
(e.g., no purchase made). They have little to no
counterfactual data (i.e., what would have made
an unsuccessful customer interaction y; into a
successful one y,,).

3. To validate KTO and understand how align-

ment scales across model sizes, we are releas-
ing Archangel, the largest-ever suite of human-
feedback aligned LLMs. It comprises 77 mod-
els: {7 pretrained models from 1B to 30B} x
{11 different alignment methods}, all alighed on
a mixture of the Anthropic HH (Ganguli et al.,
2022), Stanford Human Preferences (Ethayarajh
et al., 2022), and OpenAssistant (Kopf et al., 2023)
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datasets under nearly identical training settings.

2 Background

Large language models are traditionally trained in three
stages:

1. Pretraining: Given some large corpus, train the
model to predict the next token given the preceding
text. The loss function is the cross-entropy loss (also
called the “negative log-likelihood loss” or “standard
loss”). Let’s call the pretrained model 7.

2. Supervised Finetuning: Still using the standard
loss, finetune the model to predict the next token on
data that is more relevant to the downstream task.
Let’s call this version mef.

3. Reinforcment Learning from Human Feedback:
Given a dataset D of human preferences (x, Y., Y1)
— where x is an input, y,,, y; are the preferred and
dispreferred outputs, and r* is the “true” reward
function — first assume that the probability humans
will prefer y,, to y; can be captured with a Bradley-
Terry model of preferences (Bradley and Terry, 1952).
Where ¢ is the logistic function:

P (yw > yilx) = o(r* (x,yw) =" (x,y)) (1)

Since getting the true reward from a human would
be intractably expensive, we have to learn a reward
model ry that can serve as a proxy, done by minimiz-
ing the negative log-likelihood of the human prefer-
ence data.

Lgr(rg) = Ex y,.y~p[—log o(ry(x, yw) — 4 (x,y1))]

Now we have a human proxy whose judgments we
can use to critique the generations of my.

But solely maximizing the reward might come at the
expense of things like generating grammatical text.
To avoid such outcomes, we need a term to restrict
how far the language model can drift from the use-
ful version m.f that already exists after finetuning.
Where 7y is the model we are optimizing and 7* is
the model that optimally trades off these two con-
cerns,

7" =arg max Exep,yero [rg(x.y)]

— BDx1 (7o (y|x) [l e (y1x))

2

where Dy is the KL-divergence between the two dis-
tributions, and > 0 is a hyperparameter. Since this
objective is not differentiable, we need to use an RL
algorithm like PPO (Schulman et al., 2017).

3 Do we need RL?

RLHF is not the only way to align LLMs, however. In
fact, given the unstable nature of RLHF in a distributed
setting, the research community is increasingly turning
to closed-form loss functions that can be directly opti-
mized on a dataset of human preferences. As we will see
in the next section, these methods also have a connec-
tion to prospect theory (Tversky and Kahneman, 1992).

3.1 Direct Preference Optimization

We know from earlier work (Peng et al., 2019) that the
optimal language model for the objective in (2) would
have the distribution:

7" (ylx) = 7Gx )mef(ylx) eXP(EV (%, y))

where Z(x) is a partition function that turns the
right-hand side into a probability. In a recent pa-
per, Rafailov+Sharma+Mitchell et al. (2023) rewrote the
above in terms of the optimal reward:

7" (ylx)

(Ul +plog Z(x) 3)

r'(x,y) = Blog

They then plugged this back into equation (1) to express
the preference probability only in terms of the optimal
language model distribution 7* and reference distribu-
tion .. This clever idea allows us to avoid calculating
an explicit reward:

P (Y > yilx)
1

(waX) 7 (y, |x)
1+eXP( (/31 o8 ziyp ~ Pl gmef(ylm))

Although we don’t know what 7* is, we know that
the more aligned our language model 7y is with hu-
man preferences, the greater p(y,, > y;|x) will be.
This means that we can directly optimize our language
model to minimize the negative log-likelihood of the
observed human preferences, which is called the direct
preference optimization (DPO) loss:

Lopo (g, 7s¢1) = Exy,,,y~D [~ log o (Blog 70(Yulx)
ﬂref(ywlx)
o (yu]x)
_ Blog oWIX)
’B o8 ”ref(yl|x) )]
(4)

According to the authors, their method works equally
as well as traditional RLHF in theory and better in prac-
tice because it does not suffer from the former’s train-
ing instabilities.
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Supervised Finetuning

haro-to-get!

Direct Preference
Optimization (DPO)
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Kahneman-Tversky
Optimization (KTO)
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Figure 1: LLM alignment involves supervised finetuning followed by optimizing a human-aware loss (HALO). However,
the paired preferences that existing approaches need are hard-to-get. Kahneman-Tversky Optimization (KTO) uses a
far more abundant kind of data, making it much easier to use in the real world.

3.2 Sequence-Likelihood Calibration

Zhao et al. (2023) took a simpler approach: just make
sure that the log probability of the preferred output is
greater than that of the dispreferred output by a margin
of at least f3:

Leal (7[9) = ]Ex,yw,yIND [ maX(O, ﬁ

—log 7o (yw|x) + log 7o (yi]x)]
5)

As mentioned before, we don’t want to drift too far
from the reference model, which the authors enforce
by adding a A-weighted cross-entropy term for samples
generated from the reference model mef. This gives us
the Sequence-Likelihood Calibration (SLiC) loss:

-ESLiC(”B; ”ref) = Lcal(”@)
+ Areg Ex~D,y~mef(x) [_ IOg o (ylx)]

Notice that this doesn’t have the neat equivalence to
RLHF that DPO does; even if we only consider L, (7g),
the implied preference model looks like

1 1

P (Yw > yilx) = min (O,ﬁr*(x, Yw) = ﬁr*(x, Y-
_ ”ref(yl|x)
ﬁ ”ref(yw|x))

which does not look like any conventional preference
model. Since sampling from 7. is slow, for the exper-
iments in this paper, we assume that reference distri-
bution recovers the SFT distribution and treat the A-
weighted term as a standard language modelling loss.
As the standard loss is already incorporated, we just
do a single stage of alignment—otherwise, the models
would effectively undergo 2 epochs of supervised fine-
tuning, precluding an apples-to-apples comparison.

3.3 PPO (Offline, One-Step)

The standard RLHF objective in (2) is typically opti-
mized with a variant of Proximal Policy Optimization
(PPO) (Schulman et al., 2017), which works by “clip-
ping” how far our language model 7y can drift from
the version 7,q at the previous step. PPO is an online
algorithm—generations are sampled from our current
model, judged by a reward model, and then used to up-
date the current version. However, this process is slow
(largely due to sampling generations) and quite unsta-
ble in practice (especially in a distributed setting), so we
can:

1. Never update 7,q and keep it as m.f, instead
clipping less conservatively than we traditionally
would.

2. Use preferences from an existing dataset instead
of inferring them on-the-go.

Baheti et al. (2023) found that these changes, along with
treating the entire output sequence as a single action—
as opposed to treating the generation of each token
separately—greatly improves stability; they called their
approach ALoL. However, since language model align-
ment has historically treated each token as a separate
action, we omit the third change and only preserve the
first two. To make this even simpler, we won’t even
bother learning a reward and just use +1 for y,, and -
1 for y;. The resulting loss looks like:

Lpp0 (offline) = —Bx,y~p [ min(rgA(x, y<s, ys),
clip(rg, 1 - €, 1+ €)A(x,y<r, yr))]
where rg = log 7’;—9{ and A(x, y<¢, yy) is the per-token ad-

vantage (i.e., the surplus benefit from producing a given
token in a given state). Note that calling this method
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Does the aligned model beat the SFT target?
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Figure 2: Many alignment approaches work similarly
well up to 7B parameters. Surprisingly, despite us-
ing +1/-1 dummy rewards, our offline PPO variant
matches DPO at scales up to 13B. However, SFT+DPO is
uniquely performant at the 30B scale, though it’s pos-
sible that using less noisy data might cause this to be
apparent at smaller scales. The bars denotes the win
rate - 0.5, with a 90% binomial confidence interval.

PPO is a misnomer, because of these changes. But to
avoid introducing too many new terms, we will call this
“PPO (offline)”.

3.4 Which existing method works best?

To benchmark these methods, we aligned Pythia-{1.4,
2.8, 6.9, 12.0}B (Biderman et al., 2023) and Llama-{7,
13, 30}B (Touvron et al., 2023) models on three well-
known human-feedback datasets: Anthropic HH (Gan-
guli et al., 2022), OpenAssistant (Kopf et al., 2023), and
the subset of SHP recommended in the original release
(Ethayarajh et al., 2022). Because Pythia models were
pretrained on 0.3T tokens compared to 1.0T tokens for
LLama, they are categorically under-performant; any
cross-family comparisons should keep this in mind. All
models were aligned under identical settings (e.g., same
effective batch size, same optimizer, etc.), save for con-
figurations unique to them. When applicable, we also
did supervised finetuning (SFT), where the SFT targets
are a subset of the generations used to subsequently
align the model, following the precedent set by Rafailov
et al. (2023). Then we used GPT-4 to judge whether the
aligned model’s response was better than SFT target
yser for the given context x with respect to helpfulness,
harmlessness, and conciseness. Note that while the SFT
target is considered a desirable output for x, it is by no
means the best output, meaning that it can be improved
upon by an aligned model.

As seen in Figure 2, some of our findings are sur-

prising;:

1. At the ;7B scale, aligning the model offers no ad-
vantage over doing SFT alone. The only models
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Figure 3: Supervised finetuning makes LLM genera-
tions much shorter by preventing models from hallu-
cinating several turns of a multi-turn conversation.

that show a significant improvement from being
aligned after SFT are Llama-{13B, 30B}, and this
is only true when aligned with either our PPO
variant or DPO.

2. DPO does not offer a significant advantage over
PPO (off-policy, offline, one-step) until the 30B
scale. This is quite surprising because this PPO
version does not use a learned reward model — it
just uses dummy reward of +1 for y,, and -1 for
y;. The fact that it works so well suggests that
learning a good reward model is not as crucial
as previously thought, and a noisy reward may
actually be helpful as an implicit regularizer.

3. Both our PPO variant and DPO perform signif-
icantly better when you do SFT first, as is usu-
ally recommended. The biggest difference that
SFT makes is that the outputs get a lot shorter
because the LLM stops hallucinating an entire
multi-turn conversation (Figure 3).

4 Human-Aware Losses

The economists Kahneman & Tversky are best known
for their work on prospect theory, a theory of how hu-
mans make decisions about uncertain outcomes (Tver-
sky and Kahneman, 1992). Most famously, this theory
formalized notions such as loss aversion, the tendency
of humans to be more sensitive to losses than gains of
the same magnitude. The two points of prospect theory
most relevant to this work are the findings that:

1. The utility of some outcome is always relative to
some reference point (e.g., the money one has to
begin with or is guaranteed to receive).

Technical Report 4



Human-Aware Loss Functions (HALOs)

2. Human utility is not linear in the relative gain or
loss; the rate of change in utility diminishes the
further you move from the reference point.

Where z is the monetary reward from an outcome and
Zref is the baseline, Tversky and Kahneman (1992) pro-
posed the following functional form for human utility,
also called the human value function:

(z = zeef)® if Z > Zper

P mei i) = {—A(zref D) iz <z
where the median value of & = 0.88 and A = 2.25 across
individuals. These values were determined via experi-
ments that asked people for the certainty equivalent of a
gamble (e.g., the minimum amount of guaranteed com-
pensation someone would take in place of a particular
gamble). For example, for a gamble that returned $100
with 80% probability and $0 with 20% probability, a per-
son might say their certainty equivalent is $60, which
is lower than the expected value because of humans’
tendency to be loss-averse.

There are other functional forms that have been
proposed in later work as well (Gurevich et al., 2009).
The salient qualities of a human value function are:

1. the existence of a reference point that is added or
subtracted to get the relative gain or loss

2. convexity of the value function in relative losses
and concavity in gains (i.e., diminishing sensitiv-
ity the further you are from the reference point)

3. loss-aversion (a greater rate of change in utility
in the loss regime)

In Figure 4, we plot the value functions that the
alignment functions impute to humans:

hRLHE (X, Y, Y1) = o (rRLHF (X, Yaw) — FRLHE (X, Y1)
hopo (x, Yw; yz) = [log o(roro(x, yw) —rppo(x, yz))]
hstic (X, Yaw, y1) = min (0, rspic (x, Yw) — rsLic(x, Y1) — B)

All of them have qualities of a Kahneman-Tvesky value
function: all of them acknowledge the existence of a
reference point (namely the reward of the dispreferred
y1); most are both concave in gains and convex in losses;
most demonstrate loss-aversion. For this reason, we call
these methods human-aware loss functions (HALOs).
The fact that DPO performance can be matched with
offline PPO on dummy rewards (up to 13B parameters),
as discussed in section 3.4, challenges the conventional
wisdom in LLM alignment that places heavy emphasis
on reward learning, instead suggesting that the implicit
modeling of human biases plays a significant role in the
success of HALOs.

Implied Human Utility
(relative to reference point)

# Kahneman-Tversky
RLHF (f = 0)
s DPO
SLiC

loss <= e gain
Reference Point
(for DPO/RLHF/SLIC,

reward of dispreferred y)

Figure 4: The utility functions (a.k.a., human value
functions) implied by alignment methods are similar to
the those empirically derived by Tversky and Kahne-
man (1992) to describe the way people make decisions
about uncertain monetary outcomes.

5 Kahneman-Tversky
Optimization

If the usefulness of alignment methods is largely predi-
cated on them being HALOs, then preference pairs may
not be required. Instead of maximizing the likelihood of
preferences, we can directly maximize the utility of out-
puts instead. We can do so by adapting the Kahneman-
Tversky human value function (6) to the LLM setting:

1. The exponent in the original function makes it
difficult to optimize, so we set h to be h(z, z.¢f) =
0(z — zf) given that the logistic function o is
also concave in gains and convex in losses. We
replace the loss-aversion coefficient with two hy-
perparameters Ap, Ay that weight the losses for
desirble and undesirable examples respectively.

2. Since LLM generations do not have a monetary
value associated with them, we replace the mon-
etary reward with the implicit reward under the
RLHF objective (3).

3. Humans have some sense of all the probable gen-
erations y that can follow x, not just y,,, y;. Thus
it makes more sense for the reference point zf to
be the expected reward under the optimal policy,
not just for generations following x but following
any input x”: Ex/op y~n [r* (x", y")].

Combining these changes, and assuming that Z(x) in
(3) is the same for all inputs, we get a new objective:

h(x,y: ) = o(r" (x,y) = Bxepyr [F(x",y)])

= o [plog % CBup [ KL )]
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Does the aligned model beat the SFT target?

021 mmm pythia-{1.4B, 2.88B, 6.98, 12.0B}
e llama-{78, 13B, 30B} ‘

00
-01
-02
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-04

unaligned SFT+DPO SFT+KTO

Win Rate - 0.5

Figure 5: Kahneman-Tversky Optimization (KTO) is as
good or better than DPO at all scales, both when pre-
ceded or not preceded by supervised finetuning (SFT).
For the Llama models, KTO does not need to be pre-
ceded by SFT to generate outputs that match SFT+DPO
in quality. Error bars denote a 90% binomial confidence
interval.

where 7%, 7 are shorthand for 7*(y|x), mef(y|x) re-
spectively.

We do not know what 7* is, but we know that the
more aligned our language model is, the greater the
value h(x,y; f) will be. Therefore, based on whether a
given generation y is considered “desirable” or “unde-
sirable”, we can optimize the following loss:

Liro (70, Tref) = Ex,y~D [W(y)(l - fz(x, y; ﬂ))] (7)
where

g o (ylx)

”ref(ylx)
h(x yﬁ) - O-(g(x’ y’ﬁ)) ify ~ ydesirable|x

e 6(—g(x, y; ﬁ)) ify ~ yundesirable|x

g(x,y; p) = Blo —Ex-p [ KL(76]|7rer) ]

w(y) _ Ap lfy ~ ydesirable|x
Au |fy ~ yundesirable|x

®)

Implementation In practice, we estimate the KL
term by matching inputs x” with unrelated outputs
z in the same batch (of size m) and then calculating

max(0, - 3’ log :gf((zzll’; ))) However, we do not back-
propagate through the KL term (i.e., we detach it from
the computational graph), as it makes training much
more stable. This means that the KL term purely serves
to control how saturated the loss function is. Thus for a
minibatch of m examples with m different inputs x and
a corresponding y that is (un)desirable, we get m losses
that all share a KL term.

By default, the loss weights Ap = Ay = 1. However,
if there is an imbalance (i.e, there is more desirable than

Winrate (KTO-Aligned Llama7B vs. SFT Target)

b “‘v DPO-Aligned Llama7B 0.30 4 DPO-Aligned Llama7B

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 10
Fraction of Desirable Data Kept Fraction of Undesirable Data Kept

Figure 6: On Llama-7B, we can randomly discard up to
90% of the desirable data before aligning with KTO and
still exceed DPO performance. This is made possible by
the fact that you can upweight the losses of the more
scarce kind of data using the hyperparameters Ap, Ay
so that their effective impact on the total data is similar

for both groups.

undesirable data or vice-versa), then the hyperparame-
ters should be set such that

ADNdesi 4
D/ldesirable c [1’ _]
AUTundesirable 3

In other words, the effective ratio of desirable to unde-
sirable losses in the data should be somewhere from 1:1
to 1.33:1. If we randomly discarded 90% of the desirable
data for example, then % = 0.1, so Ap should be
between 10 and 13.33

Results We align the same suite of models as in sec-
tion 3 on the same data with the KTO loss (see Figure
5). We find that:

1. SFT+KTO is competitive with SFT+DPO at all
scales, despite not using pairs of preferences.

2. KTO alone is significantly better than DPO alone
for the Llama-{7B, 13B, 30B} models. In fact, a
KTO-aligned Llama-{13B, 30B} model is compet-
itive with its SFT+KTO counterpart, despite not
undergoing supervised finetuning first, and is the
only alignment method of the ones we tested to
show this behavior.

3. We can randomly discard up to 90% of the desir-
able data before aligning with KTO and still ex-
ceed DPO performance (the same holds for un-
desirable data, as seen in Figure 6).

It is worth noting that these results understate the prac-
tical improvement that KTO has over DPO. In real-
world settings, KTO will have access to far more data
than DPO-like methods because it does not rely on
paired preference data. For example, a retail com-
pany will have a lot of customer interactions and
knowledge of whether they went well or poorly (i.e.,
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(x,y, 1[y is desirable])); they will have little counter-
factual data of the type (x, y,, y1).

6 Archangel

We are releasing all 77 models we trained as the
Archangel suite: {4 Pythia models + 3 Llama mod-
els} x {SFT, SLiC, SFT+SLiC, DPO, SFT+DPO, PPO
(offline), SFT+PPO (offline), KTO, SFT+KTO (offline),
CSFT, SFT+CSFT}.1 The models were all trained and
sampled under nearly identical settings (e.g., same ran-
dom seed, same optimizer, same learning rate sched-
uler, effective batch size of 32, etc.). Hyperparameters
unique to a model were set according to a sweep. Un-
surprisingly, values of hyperparameters that had the
same meaning across different loss functions (e.g., § in
KTO and DPO) ended up having the same value. Be-
cause some methods relied on pairs of preferences and
others did not, the order in which the training data
was seen was different across the two kinds of losses
(e.g., preference-based vs. preference-free) but identi-
cal within the same type of loss. The prompts used to
sample generations for GPT-4 judgments were identi-
cal across all models. The model prompts follow the
chat format of TULU 2 (lvison et al., 2023). Additionally,
models trained with conditional tokens should post-
pend either <|good|> or <|bad|> to the prompt. By
aligning these 77 models in close-to-identical settings,
we hope that the research community can better under-
stand how the effectiveness of alignment evolves across
different methods and across different scales.

7 Future Work

The existence of HALOs as a distinct class of functions
raises many interesting questions:

+ Is there a human value function — and corre-
sponding HALO — that better describes how hu-
mans see language? The KTO loss is based on
the median human value function for monetary
gains and losses, which is almost certainly differ-
ent from how humans perceive the relative good-
ness/badness of text. So what does a human
value function for language specifically look like?
What is its median form and how does it vary
across individuals?

« What differences in helpfulness/harmfuless
emerge at different scales? All else constant,
are feedback-aligned LLMs more likely to be
sycophantic when they are larger (Perez et al,
2022), as some others have pointed out? Or

TModels are available on Huggingface and our code is available
on Github under Contextual AI/HALOs.

is harmfulness more of an issue with smaller
models, simply because they have a worse sense
of what is good and bad?

 Given that the data that KTO needs is much more
accessible, how far can we push synthetic data?
For example, if we wanted to create a toxicity
dataset to align our models to be less toxic, creat-
ing a tuple (x, yw, y;) where y; is more toxic than
Y, is tricky. However, with KTO, we can easily
create a dataset (x,y,¥[y is desirable])) where
desirability is determined by some black-box tox-
icity detection API. The ability to align models
with score-based data is a huge appeal of PPO,
and KTO permits a binary version of this.
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