
Think Big, Teach Small:
Do Language Models Distil Occam’s Razor?

SUPPLEMENTARY MATERIAL

Gonzalo Jaimovitch-López1
gonzalojaimovitch@gmail.com

David Castellano-Falcón1

dcastf01@gmail.com

Cèsar Ferri1
cferri@dsic.upv.es

José Hernández-Orallo1,2
jorallo@upv.es

1VRAIN - Universitat Politècnica de València
2Leverhulme Centre for the Future of Intelligence - University of Cambridge

Introduction

In this document, we present additional information providing a deeper understanding of certain
aspects of the paper. We include some other experiments not described in the paper. Specifically,
we present:

1. Concepts and Examples. The concepts in P3 and the complete teaching and test sets used
in the experiments (Table 1)

2. Concepts in the Form of Decision Rules. The P3 concepts expressed in the form of
decision rules for better understanding (Tables 2, 3 and 4).

3. Ablation by Temperature and Model Size. We split Fig. 1 in the paper by temperature
and model size by showing T0 in Fig. 1 and T1 in Fig. 2.

4. Complete Experimental Results. The experimental results for all learners considering the
different teaching batches and concept complexities (Tables 5, 6, 7 and 8).

5. Explored Prompts. Examples of the prompts used in the experiments with GPT-2 and
GPT-3 (Tables 9 and 10).

6. Detailed Results with Systems with Variability. These report the performance and error
bars for those systems that present variability (GPT-3A-T1, GPT-3B-T1, GPT-3C-T1, GPT-
3D-T1, GPT-2-exp) including humans as well because of populational variability (Figures
9, 10, 7, 8, 5, 6, 3, 4, 11, 12, 13 and 14).

7. Additional Experiments: Concepts with Loops. The results obtained by GPT-3D-T0 in
the learning of four different algorithmic concepts using loops (Table 11).

8. Additional Experiments: Concepts without Loops. The results obtained by GPT-3D-T0
for three new concepts with H-C and VH-C complexities (Tables 12 and 13) (Figures 15
and 16).

9. Additional Experiments: Many More Concepts and Baselines. This first reports how
many concepts we can have for each complexity group (Table 14). This determines the
experiments with extra concepts (Tables 15, 16, 17 and 18 with 300 concepts). Tables 19
and 20 show the majority and random baselines.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

10. Additional Experiments: Not Using Machine Teaching. This section includes results
with a different way of generating the training examples, not based on machine teaching.
Tables 21 and 22 compare the generation based on machine teaching with an alternative
generation protocol.

11. Explanations produced by GPT-3. Here we include a sample of the explanations from
the learned concepts produced by GPT-3 (Tables 23, 24, 25 and 26).

12. Software. Availability and licenses of the software used in the experiments (Table 27).
13. Hardware specifications. Specification of the hardware used for the experiments (Table

28).
14. Formal Definition of Teaching Size and the Teaching Book. This includes a formal

account of teaching size based on (Telle et al., 2019).
15. Distilling Simplicity, and Occam’s Razor for Few-shot Inference. An extension of the

coverage and discussion of related work about simplicity in deep learning (and transform-
ers) and the contingency of the hypothesis we explore in this paper.

16. Program Length Ties and Lexicographic Preference. This section discusses the effect
of choosing lexicographic preference for programs and strings (witness sets).

The data and code can be found in https://github.com/gonzalojaimovitch/think-big-teach-small.

2

https://github.com/gonzalojaimovitch/think-big-teach-small

1 Concepts and Examples

We include the complete set of concepts with their teaching (witness set WS, additional set AS I and
additional set AS II) and test examples.

Table 1: Complete set of concepts with their teaching (WS, AS I and AS II) and test examples.

Experimental Setting
Id P3 Program Witness Set Additional Set I Additional Set II Test Examples

C1 o {('0','0')} {('111001','1'),
('110101','1')}

{('100110','1'),
('01010','0'),
('111100','1')}

{('00000','0'),
('11100','1'),
('00111','0'),
('11010','1'),
('0010', '0')}

C2 >o {('10','0')} {('01000','1'),
('01010','1')}

{('1011','0'), ('00','0'),
('001','0')}

{('01011','1'),
('0101','1'),
('0010','0'),
('100','0'), ('1','')}

C3 >+o {('','0'),
('01','')}

{('010100',''),
('10101','1')}

{('010',''), ('100','1'),
('011101','')}

{('00010','1'),
('110',''),
('00111','1'),
('11000',''),
('101','1')}

C4 o+oo {('0','011')} {('10','1'),
('001','011')}

{('00','011'),
('0001','011'),
('000','011')}

{('01011','011'),
('0101','011'),
('0010','011'),
('100','1'),
('1','1')}

C5 >>>-o {('','1'),
('1110','')}

{('10','1'),
('111001','')}

{('11','1'), ('11100',''),
('0001','0')}

{('01011','0'),
('110','1'),
('0010',''),
('101','1'),
('1000','')}

C6 >-[o<] {('0','10'),
('00','')}

{('11','01'), ('10','')} {('101',''), ('','1'),
('000','')}

{('01','00'),
('0000',''),
('00011',''),
('0011',''),
('1000','')}

C7 -[-<]>o {('','0'), ('0',''),
('00','0')}

{('0001','0'),
('01','1')}

{('0101','1'),
('0010','0'),
('0110','1')}

{('01011','1'),
('0000','0'),
('00000','0'),
('100',''),
('1000','')}

C8 +[>+o<+] {('','01'),
('01',''),
('1','')}

{('11',''), ('011','')} {('10',''), ('0','0'),
('0100','')}

{('10101',''),
('11101',''),
('00000','1'),
('0011','1'),
('1111','')}

3

2 Concepts in the Form of Decision Rules

The concepts used in the experiment were originally in P3. Here, for the sake of comprehensibility,
we show the concepts expressed as decision rules in Python.

Table 2: Description of P3 concepts 1-4 using Python decision rules.

Id P3 Programs Decision Rules

1 o
i f input == ’ ’ :

p r i n t (’ ’)
e l s e :

p r i n t (input [0])

2 >o
i f input == ’ ’ or

input == ’ 0 ’ or
input == ’ 1 ’ :

p r i n t (’ ’)
e l s e :

p r i n t (input [1])

3 >+o
i f input == ’ ’ or

input == ’ 0 ’ or
input == ’ 1 ’ :

p r i n t (’ 0 ’)
e l i f input [1] == ’ 0 ’ :

p r i n t (’ 1 ’)
e l s e :

p r i n t (’ ’)

4 o+oo
i f input == ’ ’ :

p r i n t (’ 00 ’)
e l i f input [0] == ’ 0 ’ :

p r i n t (’ 011 ’)
e l s e :

p r i n t (’ 1 ’)

4

Table 3: Description of P3 concepts 5-7 using Python decision rules.

Id P3 Programs Decision Rules

5 >>>-o
i f input == ’ ’ or

l e n (input) <= 3 :
p r i n t (’ 1 ’)

e l i f input [3] == ’ 0 ’ :
p r i n t (’ ’)

e l s e :
p r i n t (’ 0 ’)

6 >-[o<]
i f input == ’ ’ :

p r i n t (’ 1 ’)
e l i f input == ’ 0 ’ :

p r i n t (’ 10 ’)
e l i f input == ’ 1 ’ :

p r i n t (’ 11 ’)
e l i f input [1] == ’ 0 ’ :

p r i n t (’ ’)
e l i f input [: 2] == ’ 01 ’ :

p r i n t (’ 00 ’)
e l s e :

p r i n t (’ 01 ’)

7 -[-<]>o
i f input == ’ ’ :

p r i n t (’ 0 ’)
e l i f input == ’ 0 ’ or

input [: 1] == ’ 1 ’ :
p r i n t (’ ’)

e l s e :
p r i n t (input [1])

5

Table 4: Description of P3 concept 8 using Python decision rules.

Id P3 Programs Decision Rules

8 +[>+o<+]
i f input == ’ ’ :

p r i n t (’ 01 ’)
e l i f input == ’ 0 ’ :

p r i n t (’ 0 ’)
e l i f input [: 1] == ’ 1 ’ or

input [: 2] == ’ 01 ’ :
p r i n t (’ ’)

e l s e :
p r i n t (’ 1 ’)

6

3 Ablation by Temperature and Model Size

Here we include the same results as Fig. 1 in the main paper but separated by temperature and model
size, showing T0 in Fig. 1 and T1 in Fig. 2.

(a) Mean GPT-3 accuracy by teaching batch. (b) Mean GPT-3 accuracy by concept complexity
level.

Figure 1: Same as Fig. 1 in the main paper but only for T0.

(a) Mean GPT-3 accuracy by teaching batch. (b) Mean GPT-3 accuracy by concept complexity
level.

Figure 2: Same as Fig. 1 in the main paper but only for T1.

7

4 Complete Experimental Results

Here we include the experiment results for all learners considering the teaching batches and concept
complexities.1 Note that Table 5 and Table 7 include all the results, while Table 6 and Table 8
showcase the results when the test examples whose output is the empty string are excluded, as we do
in the paper. We discard test examples with the empty string as output because humans usually leave
it blank when they do not know the answer, and the language model’s outputs are postprocessed in
such a way that the empty output can simply capture meaningless outputs from GPT.

Table 5: Average accuracy obtained by all learners with concepts binned by complexity (from very low to very
high) and by the three batches.

Learner Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

Humans WS 32.00 23.00 44.00 44.65
AS (I) 63.35 42.00 43.65 48.65
AS (II) 81.00 48.65 45.00 51.65

MH WS 10.00 20.00 20.00 0.00
AS (I) 100.00 0.00 0.00 0.00
AS (II) 100.00 0.00 0.00 0.00

Louise-ens WS 50.00 0.00 10.00 60.00
AS (I) 70.00 30.00 0.00 60.00
AS (II) 100.00 30.00 10.00 60.00

Louise-exp WS 52.32 0.00 10.00 45.00
AS (I) 71.29 30.00 0.00 60.00
AS (II) 95.83 30.00 6.66 60.00

GPT-2-ens WS 40.00 30.00 40.00 40.00
AS (I) 50.00 10.00 60.00 60.00
AS (II) 50.00 40.00 70.00 60.00

GPT-2-exp WS 17.00 12.25 26.00 24.25
AS (I) 48.75 19.25 32.00 38.00
AS (II) 49.25 40.75 42.50 43.75

GPT-3D-T0 WS 70.00 30.00 60.00 50.00
AS (I) 70.00 40.00 50.00 60.00
AS (II) 90.00 40.00 60.00 60.00

1The complete code for the experiments can be found at https://github.com/gonzalojaimovitch/
think-big-teach-small

8

https://github.com/gonzalojaimovitch/think-big-teach-small
https://github.com/gonzalojaimovitch/think-big-teach-small

Table 6: Average accuracy obtained by all learners in the teaching task with concepts binned by complexity
(from very low to very high) and batches, not including the test examples where the output is the empty string.

Learner Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

Humans WS 38.17 13.00 7.78 19.44
AS (I) 67.92 43.89 12.78 28.61
AS (II) 85.17 54.11 23.33 36.94

MH WS 0.00 0.00 0.00 0.00
AS (I) 100.00 0.00 0.00 0.00
AS (II) 100.00 0.00 0.00 0.00

Louise-ens WS 55.00 0.00 0.00 50.00
AS (I) 77.50 36.60 0.00 50.00
AS (II) 100.00 36.60 16.60 50.00

Louise-exp WS 57.87 0.00 0.00 50.00
AS (I) 75.74 36.60 0.00 50.00
AS (II) 98.33 36.60 11.10 50.00

GPT-2-ens WS 45.00 10.00 0.00 33.33
AS (I) 57.50 10.00 33.33 50.00
AS (II) 55.00 46.67 33.33 50.00

GPT-2-exp WS 18.63 6.83 18.33 22.71
AS (I) 54.63 17.00 24.58 27.50
AS (II) 54.81 47.50 30.83 41.62

GPT-3D-T0 WS 80.00 10.00 0.00 33.33
AS (I) 80.00 30.00 33.33 50.00
AS (II) 100.00 46.67 33.33 50.00

9

Table 7: Average accuracy obtained by the eight different GPT-3 configurations in the teaching task with
concepts binned by complexity (from very low to very high) and by the three batches. The system GPT-3D-T0-
S is a variation of the GPT-3D-T0 configuration, with a prompt modification separating the string characters
using a specific separator, in order to address a possible byte-pair encoding implicitly implemented in the
system. The system GPT-3D-T0-A is a variation of the GPT-3D-T0 configuration, with a prompt modification
where the character “0” was replaced with the string “Apple”, the character “1” was replaced with the string
“Banana”, and the character “0” was replaced with the string “Chair”.

Learner Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

GPT-3A-T0 WS 50.00 40.00 60.00 50.00
AS (I) 50.00 60.00 60.00 60.00
AS (II) 50.00 60.00 50.00 60.00

GPT-3B-T0 WS 10.00 30.00 30.00 40.00
AS (I) 70.00 50.00 20.00 60.00
AS (II) 70.00 40.00 40.00 60.00

GPT-3C-T0 WS 10.00 50.00 60.00 70.00
AS (I) 80.00 50.00 70.00 60.00
AS (II) 80.00 50.00 60.00 60.00

GPT-3D-T0 WS 70.00 30.00 60.00 50.00
AS (I) 70.00 40.00 50.00 60.00
AS (II) 90.00 40.00 60.00 60.00

GPT-3D-T0-S WS 40.00 0.00 40.00 20.00
AS (I) 70.00 30.00 20.00 50.00
AS (II) 90.00 40.00 60.00 30.00

GPT-3D-T0-A WS 10.00 10.00 20.00 40.00
AS (I) 70.00 50.00 20.00 60.00
AS (II) 70.00 80.00 20.00 30.00

GPT-3A-T1 WS 50.00 30.00 50.00 40.00
AS (I) 40.00 40.00 50.00 60.00
AS (II) 60.00 60.00 50.00 60.00

GPT-3B-T1 WS 10.00 10.00 10.00 50.00
AS (I) 80.00 40.00 50.00 60.00
AS (II) 70.00 40.00 70.00 60.00

GPT-3C-T1 WS 30.00 30.00 60.00 60.00
AS (I) 70.00 50.00 60.00 60.00
AS (II) 90.00 30.00 60.00 60.00

GPT-3D-T1 WS 60.00 20.00 60.00 70.00
AS (I) 50.00 20.00 50.00 60.00
AS (II) 80.00 40.00 60.00 60.00

10

Table 8: Average accuracy obtained by the eight different GPT-3 configurations in the teaching task with
concepts binned by complexity (from very low to very high) and batches, not including the test examples from
the original experiment setting where the output is the empty string. Interpretation as in Table 7.

Learner Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

GPT-3A-T0 WS 55.00 20.00 0.00 33.33
AS (I) 57.5 40.00 0.00 33.33
AS (II) 55 56.67 0.00 50.00

GPT-3B-T0 WS 12.50 10.00 0.00 33.33
AS (I) 75.00 46.66 33.33 50.00
AS (II) 75.00 46.66 33.33 50.00

GPT-3C-T0 WS 12.50 30.00 0.00 33.33
AS (I) 90.00 30.00 16.67 50.00
AS (II) 87.50 46.67 33.33 50.00

GPT-3D-T0 WS 80.00 10.00 0.00 33.33
AS (I) 80.00 30.00 33.33 50.00
AS (II) 100.00 46.67 33.33 50.00

GPT-3D-T0-S WS 42.50 0.00 33.33 33.33
AS (I) 75.00 36.67 33.33 50.00
AS (II) 100.00 53.33 50.00 50.00

GPT-3D-T0-A WS 12.50 10.00 33.33 50.00
AS (I) 75.00 70.00 33.33 50.00
AS (II) 75.00 100.00 33.33 50.00

GPT-3A-T1 WS 55.00 10.00 0.00 16.67
AS (I) 45.00 20.00 0.00 50.00
AS (II) 65.00 56.67 16.67 50.00

GPT-3B-T1 WS 12.50 0.00 0.00 33.33
AS (I) 87.50 30.00 33.33 50.00
AS (II) 77.50 46.67 50.00 50.00

GPT-3C-T1 WS 35.00 10.00 0.00 16.67
AS (I) 80.00 30.00 0.00 50.00
AS (II) 100.00 20.00 33.33 50.00

GPT-3D-T1 WS 67.50 16.67 16.67 50.00
AS (I) 55.00 10.00 33.33 50.00
AS (II) 90.00 46.67 33.33 50.00

11

5 Explored Prompts

We present examples of the different kinds of prompts that have been used in the experiments with
GPT-2 and GPT-3. These prompts were employed for two goals: test the performance on the learning
task, and try to generate natural language explanations based on the examples. We tried different
variations of prompts and several changes of alphabet. For instance, we did experiments where 0
and 1 were replaced by a and b, or “Apple” and “Banana”. Some results reported in Tables 7 and 8.

Table 9: Examples of prompts used in the experiments with GPT-2 and GPT-3.

System Purpose Prompt Observations

GPT-2 Test Per-
formance

Input1: 0, Output1: 0; Input2:
00000, Output2:

Final prompt used for the experiment test.
The numbering aims to logically connect
and distinguish the different input-output
pairs.

GPT-3 Test Per-
formance

Input: 0
Output: 0
Input: 00000
Output:

Final prompt used for the experiment test.
In this case, instead of using ’;’ as the sepa-
rator between pairs, we just included a line
break. Also, numbering was omitted, fol-
lowing the prompt style guidelines for dif-
ferent problems presented in the OpenAI
API.

GPT-3 Test Per-
formance

Input: 0
Output: 0
Input: 0,0,0,0,0
Output:

Prompt designed to consider the possible
implicit byte-pair encoding of GPT-3. Dis-
carded for the final experiments as results
were worse than the “no separator” alter-
native (see Tables 7 and 8).

GPT-3 Test Per-
formance

Input: Apple
Output: Apple
Input: Apple Apple Apple Apple
Apple
Output:

This prompt aimed to discover any perfor-
mance difference if we changed the binary
alphabet to represent the inputs and out-
puts. “0” is replaced with “Apple”, “1” is
replaced with “Banana” and “-” is replaced
with “Chair”. Discarded for the final ex-
periments as results were not strictly dif-
ferent from those obtained with the origi-
nal setting (see Tables 7 and 8).

GPT-3 Test Per-
formance

Input: a
Output: a
Input: aaaaa
Output:

This prompt also aimed to discover any
performance difference if we changed the
binary alphabet to represent the inputs and
outputs. “0” is replaced with “a”, “1” is
replaced with “b” and “-” is not replaced.
Discarded for the final experiments as re-
sults were not strictly different from those
obtained with the original setting (see Ta-
bles 7 and 8).

GPT-3 Test Per-
formance

Q: If 0 changes to 0, what does
00000 change to?
A:

This prompt aimed to discover any perfor-
mance difference if we changed the way in
which we ask for answers, using a sentence
rather than the explicit input-output labels.
Discarded for the final experiments as re-
sults were not strictly different from those
obtained with the original setting (see Ta-
bles 7 and 8).

12

Table 10: Examples of the prompts used in the experiments with GPT-3 to generate natural language explana-
tions.

System Purpose Prompt Observations

GPT-3 Explanations P: write a Python function that
when given ‘0’ as input, returns ‘0’
Code:

As GPT-3 has demonstrated its capabil-
ity to generate code from descriptions, the
main idea of this prompt is to generate the
explanations using Python scripts.

GPT-3 Explanations Truth: program(‘0’)=‘0’
Description: Print the first character
of program’s input
Truth: program(‘0’)=‘001’ &&
program(‘01’)=‘001’ && pro-
gram(‘1’)=‘0’
Description: If the first character of
program’s input is ‘0’, print ‘001’;
else, print ‘0’
Truth: program(‘010’)=‘1’ &&
program(‘10’)=‘0’
Description:

In this prompt we give GPT-3 examples of
how we would like it to behave, by repre-
senting the training examples input-output
patterns and asking for a description re-
lated to the given truth.

GPT-3 Explanations My colleague asked me about the
behaviour of these examples: An
instance with the attribute 0 as ‘1’,
the attribute 1 as ‘1’, the attribute 2
as ‘1’, the attribute 3 as ‘1’, the at-
tribute 4 as ‘1’ and the attribute 5
as ’1’ belongs to the class ‘1’ (...)
I rephrased it for him, in plain lan-
guage:

This prompt aims to test the summarisation
power of GPT-3 and use it for the explana-
tion generation purpose. We write all the
instances in natural language and ask GPT-
3 to give an abstraction based on the exam-
ples.

GPT-3 Explanations Input1: 0
Output1: 0
Explanation: Print the first charac-
ter of a string
Input2: 00
Output2: 0
Input1: 01
Output1: 1
Explanation:

In a similar style to the prompt used for the
experiment test, examples are provided to
indicate the desired output, and finally we
ask for the explanation using the teaching
examples of interest.

13

6 Detailed results and dispersion for systems with variability

Some results such as MH and Louise give one solution. Analysing variability is then more interesting
in the variants of GPT where there is stochasticity (and several runs) or in cases such as humans,
where we average the results for a population. Here we add the detailed results with their error
bars (the standard deviation) for GPT-3A-T1, GPT-3B-T1, GPT-3C-T1, GPT-3D-T1, GPT-2-exp
and humans (Figures 9, 10, 7, 8, 5, 6, 3, 4, 11, 12, 13 and 14).

Figure 3: Performance mean and standard deviation bars for the 40 GPT-3A-T1 runs.

Figure 4: Performance mean and standard deviation bars for the 40 GPT-3A-T1 runs when the test examples
from the original experiment setting with empty outputs are deleted.

14

Figure 5: Performance mean and standard deviation bars for the 40 GPT-3B-T1 runs.

Figure 6: Performance mean and standard deviation bars for the 40 GPT-3B-T1 runs when the test examples
from the original experiment setting with empty outputs are deleted.

Figure 7: Performance mean and standard deviation bars for the 40 GPT-3C-T1 runs.

15

Figure 8: Performance mean and standard deviation bars for the 40 GPT-3C-T1 runs when the test examples
from the original experiment setting with empty outputs are deleted.

Figure 9: Mean and standard deviation bars for the 40 runs with GPT-3D-T1.

Figure 10: Performance mean and standard deviation bars for the 40 GPT-3D-T1 runs when the test examples
from the original experiment setting where the output is the empty string are deleted.

16

Figure 11: Performance mean and standard deviation bars for the 40 GPT-2 runs.

Figure 12: Performance mean and standard deviation bars for the 40 GPT-2 runs when the test examples from
the original experiment setting with empty outputs are deleted.

Figure 13: Performance mean and standard deviation bars for the 30 human participants performance.

17

Figure 14: Performance mean and standard deviation bars for the 30 human participants when the test examples
from the original experiment setting with empty outputs are deleted.

18

7 Additional Experiments: Concepts with Loops

To test GPT-3’s capability of learning concepts with loops, we used four different concepts using
loops of different complexities.

• Algorithmic Concept 1 (AC1), [o>] can be described as the concept “identity”.
• Algorithmic Concept 1 (AC2), [oo>] can be described as the concept “duplicate each bit”.
• Algorithmic Concept 1 (AC3), [>]+[<o] can be described as the concept “reverse”.
• Algorithmic Concept 1 (AC4), [o>]<[<]>[o>] can be described as the concept “duplicate

the string”.

The results by the system GPT-3D-T0 are shown in Table 11. The learning performance is generally
poor. Only the concept “identity” ([o>]) seems to be captured correctly.

Table 11: Average accuracy obtained by GPT-3D-T0 when learning algorithmic concepts with different com-
plexities.(*) Witness sets for AC 2 and AC 4 are not obtained with the machine teaching setting explained in
the paper, but hand-picked. (**) The learner was capable of learning the full concept with just two examples
(WS + 1).

Learner Batch AC 1 (%) AC 2 (%) AC 3 (%) AC 4 (%)

[o>] [oo>] [>]+[<o] [o>]<[<]>[o>]

GPT-3D-T0 *WS 0.00 0.00 0.00 0.00
AS I **100.00 0.00 0.00 0.00
AS II 100.00 0.00 20.00 0.00

19

8 Additional Experiments: Concepts without Loops

As results showed a change on the accuracy decreasing trend when evaluating concepts with the
highest complexity (VH-C, concepts with 7 or 8 instructions), Table 12 shows the results for some
additional experiments with GPT-3D-T0, targeting concepts with 5 (H-C), 6 (V-HC) and 7 (V-HC)
instructions:

• Additional Concept 5 (AC5), >ooooo, can be described as the concept “print the second
character 5 times”.

• Additional Concept 6 (AC6), o>ooo<o, can be described as the concept “print the first
character once, then print the second character three times, and then print the first character
once”.

• Additional Concept 7 (AC7), o+oooo−o, can be described as the concept “if input is the
empty string, print the empty string; else if input starts with '1', print '1'; else print '011110'”.

What we see in these results is that the reference language is very important when using only the
WS, and the results are very poor. For these more difficult concepts, AS I and especially AS II make
a big difference. Table 13 incorporates all the concepts we have evaluated for GPT-3D-T0. With
more concepts we see the trends are more clear, decreasing by complexity and increasing as more
training data is provided. Figure 15 shows the mean accuracy for GPT-3D-T0 for the three teaching
set batches and Figure 16 shows the mean accuracy for GPT-3D-T0 shown for the four complexity
levels.

Table 12: Average accuracy obtained by GPT-3D-T0 when learning additional concepts AC5, AC6 and AC7
with H-C and VH-C complexities.

Learner Batch AC5 (%) AC6 (%) AC7 (%)

>ooooo o>ooo<o o+oooo−o

GPT-3D-T0 WS 20.00 0.00 20.00
AS I 80.00 60.00 20.00
AS II 80.00 60.00 100.00

Table 13: Average accuracy obtained by GPT-3D-T0 using the averaging of the original 8 concepts, the four
algorithmic concepts AC1, AC2, AC3, AC4 and the three additional concepts AC5, AC6, AC7. Note that the
concept AC4 (with 9 instructions) has been included in the VH-C bin.

GPT-3D-T0 Batch VL-C (%) L-C (%) H-C (%) VH-C (%)
(C1-2) (C3-4,AC1) (C5-6,AC2,AC5) (C7-8,AC3-4,AC6-7)

WS 80.00 6.67 5.00 14.44
AS (I) 80.00 53.33 36.67 30.00
AS (II) 100.00 64.44 36.67 46.67

20

Figure 15: Mean accuracy for GPT-3D-T0 shown for the three teaching set batches with all the results in Table
13.

Figure 16: Mean accuracy for GPT-3D-T0 shown for the four complexity levels with all the results in Table 13.

9 Additional Experiments: Many More Concepts and Baselines

The choice of a small set of representative concepts was motivated because we wanted to include
humans in our study. However, we can analyse the result with a much larger set of concepts to get
more stable results. Some reviewers suggested to increase the number of examples in the test set
as an alternative way of getting more robust results. However, as this would change the distribution
of the test set, towards larger input-output pairs, we decided to look for more robust results by
increasing the number of concepts only.

Another limitation for an arbitrary large number of concepts is that for each program size there is
a finite number of programs, and for some sizes, this number is very small. For instance, there is

21

only one concept of program size 1, and only four concepts of program size 2. Table 14 shows the
number of non-redundant concepts in P3 for each program length by our complexity groups VL-C,
L-C, H-C, VH-C. As a result, we cannot increase the concepts for VL and we will find some limits
in the number of concepts that we can explore for the L-C group.

Table 14: Number of non-redundant concepts in P3 according to their program length (the value for VH-C is
an underestimate).

Size No. of programs

VL-C 5
L-C 47
H-C 366
VH-C 1475*

We include the results of all GPT-3 configurations with zero temperature using the same methodol-
ogy as in the paper (and test examples with empty outputs deleted) for a total of 5 VL-C + 47 L-C +
98 H-C + 150 VH-C concepts, getting the results shown in tables 15, 16, 17 and 18, which are very
similar to our previous experiments.

Table 15: Average accuracy obtained by GPT-3A-T0 using 300 concepts (5 VL-C + 47 L-C + 98 H-C + 150
VH-C).

GPT-3A-T0 Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

WS 37.00 29.03 19.05 20.68
AS (I) 48.00 40.53 26.02 24.30
AS (II) 57.00 45.88 26.49 25.18

Table 16: Average accuracy obtained by GPT-3B-T0 using 300 concepts (5 VL-C + 47 L-C + 98 H-C + 150
VH-C).

GPT-3B-T0 Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

WS 20.00 25.20 15.75 13.75
AS (I) 60.00 44.35 30.11 31.77
AS (II) 65.00 49.92 34.94 28.36

Table 17: Average accuracy obtained by GPT-3C-T0 using 300 concepts (5 VL-C + 47 L-C + 98 H-C + 150
VH-C).

GPT-3C-T0 Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

WS 20.00 23.57 12.21 7.26
AS (I) 51.00 37.68 19.89 18.81
AS (II) 70.00 36.66 28.08 21.47

The results are much more stable than those in Table 6 (especially for the WS row), but nevertheless
consistent. They also show a more consistent increase as more examples are given (last row over
middle row and especially first row) and decrease for higher complexities.

Interestingly, the results for GPT-3B-T0 seem to be better than GPT-3D-T0. It is only for VL-C that
the largest version of GPT-3 is better than the rest. This again suggests a non-monotonic relation
between number of parameters and performance in our setting.

Finally, for the experiment with 300 concepts, we also included two baselines, majority and ran-
dom. The majority baseline simply extracts the output string that is most common in the training

22

Table 18: Average accuracy obtained by GPT-3D-T0 using 300 concepts (5 VL-C + 47 L-C + 98 H-C + 150
VH-C).

GPT-3D-T0 Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

WS 37.00 20.05 6.71 10.02
AS (I) 47.00 38.56 18.76 19.62
AS (II) 75.00 46.70 29.55 22.35

examples (depending on the batch) and outputs the most frequent string as output. The random
baseline simply generates an output string with probably 2−(l(s)+1). For instance, the string ‘0’ has
probability 0.25, while the string ‘1011’ has probability 0.015625. Table 19 shows the results for
the majority baseline, and Table 20 shows the results for the random baseline (no need to separate
by batches here as this baseline is independent on the seen examples). They are sufficiently low to
exclude any significant effect in the analysis of results. This is why we only include them here in
the supplementary material.

Table 19: Average accuracy obtained by the majority baseline for 300 concepts (5 VL-C + 47 L-C + 98 H-C +
150 VH-C).

Majority Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

WS 6.67 3.56 3.54 3.65
AS (I) 6.67 5.33 2.92 2.43
AS (II) 6.67 5.33 2.92 2.43

Table 20: Average accuracy obtained by the random baseline for 300 concepts (5 VL-C + 47 L-C + 98 H-C +
150 VH-C).

Random VL-C (%) L-C (%) H-C (%) VH-C (%)

4.06 2.86 2.67 2.61

10 Additional Experiments: Not Using Machine Teaching

In the paper we have argued why machine teaching is the right approach to really know what the
minimal set must be such that there is perfect identification between teacher and learner. Deviations
from this optimal result would reflect a lack of alignment in the prior. However, there are many
other ways of generating examples. Doing the generation less carefully would create training sets
with redundancies. This would make it harder to understand factors such as the number and size of
examples, and prior alignment.

We nevertheless may be interested in seeing the results when the examples are generated in a dif-
ferent way. However, in order to make an experiment of this kind comparable with the original
machine teaching setting, we must keep some things constant. For instance, we could generate the
training examples, the additional examples and the test set from a different distribution, but then we
would compare both approaches against different test set distributions, especially because their sizes
would be different. By using larger examples in the test set, we may get different results just because
the outputs are larger and the corrections of guessing them by chance should be different (mapping
0000 into 1010 by chance is less likely than mapping 0 into 1 by chance). This is something that
happens in structured prediction, unlike classification or regression. In order to consider a larger test
set where the input strings may be larger, we force the output strings follow the size distribution of
the original sets we used (e.g., examples such as mapping 0000 into 1).

More specifically, we want to compare the effect of the first batch, represented by the witness set
(WS) chosen using machine teaching, with an alternative procedure of choosing the first batch as a

23

random set (let us call it RS 0). The most important thing for making this comparison fair is that
both sets must have the same sizes. If we allow for larger sets for WS than RS 0, or vice versa,
then this would be an unfair comparison, since one would have more bits than the other. With this
constraint, there are still many choices to make the experiment informative. This is the configuration
that we think is most informative. We kept the AS I, AS II and test sets as the original experiments,
so that we only focus on the effect of the first batch, keeping everything else equal. We also kept the
size s of the original WS for each concept. Since this s could give advantage to the old method (as
they would never have overlap with AS I and AS II), we regenerated both approaches as follows.

• Experiment A: We generated the WS choosing from the witness sets of size s in the teaching
book, always checking that the examples are not in the test set.

• Experiment B: We generated a RS 0 choosing examples randomly of sets of size s, always
checking that the set is neither in the witness sets for that concept in the teaching book nor
its examples are in the test set. We also chose this configuration as otherwise for small
complexities there would not be many instances to choose from, given a limit on the size.

In those cases where A or B could not complete the set, we used the original WS. Note that this
configuration plays in favour of approach B, as we choose from a random distribution for Test and
RS 0, while we choose from the teaching set distribution for WS. It is hard to think of a totally fair
configuration, so we decided to choose against A. We generated 5 VL-C + 40 L-C + 40 H-C + 40
VH-C = 125 concepts, the same for both experiments. Table 21 shows the results for experiment A
and Table 22 shows the results for experiment B.

Table 21: Average accuracy obtained by experiment A (using WS with machine teaching) for 5 VL-C + 40 L-C
+ 40 H-C + 40 VH-C = 125 concepts.

GPT-3D-T0 (Experiment A) Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

WS 33.00 16.88 12.35 4.86
AS (I) 55.00 34.17 14.66 18.67
AS (II) 59.00 40.92 30.68 30.00

Table 22: Average accuracy obtained by experiment B (using RS 0 not using machine teaching) for 5 VL-C +
40 L-C + 40 H-C + 40 VH-C = 125 concepts.

GPT-3D-T0 (Experiment B) Batch VL-C (%) L-C (%) H-C (%) VH-C (%)

RS 0 18.00 15.08 9.53 15.52
AS (I) 34.00 25.54 17.91 18.24
AS (II) 75.00 40.45 34.70 31.33

The results of experiment A are very similar to those reported previously, as they both use a WS
from the teaching book. When comparing the results between WS (from experiment A) and RS 0
(from experiment B), we see that WS gives better results, especially for low complexity. They seem
to produce more informative examples with the same size.

However, the results for VH in experiment B are higher than expected. In this VH-C case, the
value of s is usually large and experiment B has more to choose from. This means there is more
coincidence between the outputs of AS 0 and the test set. In other words, the test set does not try to
cover a range of different cases as WS tries to do, but it is generated randomly with many repeated
outputs that also benefit RS 0. Controlling for cases where the target output appears four or more
times in the RS 0 gives a value of 0.067, which better fits the decreasing trend in experiment B.
In any case, let us remember that we choose from a random distribution for the test set, which is
used to evaluate RS 0 (sampled from the very same distribution) and WS (sampled from a different
distribution, the witness set). Also note that it is not the goal of our paper to find the sample that
gives the best results, but the one that best corresponds to the simplicity prior.

24

Overall, we think that these results are in agreement with the use of WS based on machine teaching
being the most informative approach to represent the inductive bias used for P3, which translates
partially to other representations, at least for concepts of small and medium complexity.

11 All the explanations produced by GPT-3

For generating the explanations in tables 23, 24, 25 and 26 we used the last prompt style presented
in Table 10. This prompt presents a very similar style to that of the prompts used for the main
experiments with GPT-3. The input and output labels are numbered, so GPT-3 knows when it should
provide the output for the test example (the last one labelled as “Input1”) and the explanation.
Provided explanations for the teaching examples are basic explanations such as “return the first
character” or if-else rules.

The explanations returned by GPT-3 are classified as “correct”, “partially-correct” and “incorrect”.
An explanation is “partially-correct” when it explains part of the concept, but not the whole concept.
An explanation is “incorrect” when it incorrectly explains a part or the whole concept.

Figure 3 of the main paper includes results about accuracy and size of the explanations for the
learned concepts provided by humans. The concepts are those in Table 1 of this supplementary
material.

25

Table 23: Explanations produced by GPT-3 for C1-C3

Concept Batch Test Explanation Rating

C1 WS (’00000’,’0’) Explanation: if the input starts with 0, return 0; else, return 1 Correct
(’11100’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’00111’,’0’) Explanation: return the input’s second character Incorrect
(’11010’,’1’) Explanation: return the input’s second character Incorrect
(’0010’, ’0’) Explanation: if the input starts with 0, return 0; else, return 1 Correct

C1 AS I (’00000’,’0’) Explanation: return the input’s second character Incorrect
(’11100’,’1’) Explanation: return the input’s second character Incorrect
(’00111’,’0’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’11010’,’1’) Explanation: return the input’s second character Incorrect
(’0010’, ’0’) Explanation: return the input’s second character Incorrect

C1 AS II (’00000’,’0’) Explanation: return the input’s second character Incorrect
(’11100’,’1’) Explanation: return the input’s second character Incorrect
(’00111’,’0’) Explanation: return the input’s second character Incorrect
(’11010’,’1’) Explanation: return the input’s second character Incorrect
(’0010’, ’0’) Explanation: return the input’s second character Incorrect

C2 WS (’01011’,’1’) Explanation: return the input’s second character Correct
(’0101’,’1’) Explanation: return the input’s second character Correct
(’0010’,’0’) Explanation: if the input starts with 0, return 1; else, return 0 Incorrect
(’100’,’0’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’1’,”) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect

C2 AS I (’01011’,’1’) Explanation: return the input’s second character Correct
(’0101’,’1’) Explanation: return the input’s second character Correct
(’0010’,’0’) Explanation: return the input’s second character Correct
(’100’,’0’) Explanation: return the input’s third character Incorrect
(’1’,”) Explanation: return the input’s second character Correct

C2 AS II (’01011’,’1’) Explanation: return the input’s second character Correct
(’0101’,’1’) Explanation: return the input’s second character Correct
(’0010’,’0’) Explanation: if the input starts with 0, return 1; else, return 0 Incorrect
(’100’,’0’) Explanation: return the input’s second character Correct
(’1’,”) Explanation: if the input is 1, return 0; else, return 1 Incorrect

C3 WS (’00010’,’1’) Explanation: return the input’s second character Incorrect
(’110’,”) Explanation: return the input’s second character Incorrect
(’00111’,’1’) Explanation: if the input is negative, return 0; else, return 1 Incorrect
(’11000’,”) Explanation: if the input is negative, return 0; else, return 1 Incorrect
(’101’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect

C3 AS I (’00010’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’110’,”) Explanation: return the input’s second character Incorrect
(’00111’,’1’) Explanation: if the input is negative, return 0; else, return 1 Incorrect
(’11000’,”) Explanation: return the input’s second character Incorrect
(’101’,’1’) Explanation: return the input’s second character Incorrect

C3 AS II (’00010’,’1’) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’110’,”) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’00111’,’1’) Explanation: return the input’s second character Incorrect
(’11000’,”) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’101’,’1’) Explanation: if the input is 1, return 0; else, return 1 Incorrect

26

Table 24: Explanations produced by GPT-3 for C4-C5

Concept Batch Test Explanation Rating

C4 WS (’01011’,’011’) Explanation: return the input’s second character Incorrect
(’0101’,’011’ Explanation: return the input’s second character Incorrect
(’0010’,’011’) Explanation: return the input’s second character Incorrect
(’100’,’1’) Explanation: if the input starts with 0, return 1; else, return 0 Incorrect
(’1’,’1’) Explanation: if the input starts with 0, return 1; else, return 0 Incorrect

C4 AS I (’01011’,’011’) Explanation: return the input’s third character Incorrect
(’0101’,’011’ Explanation: return the input’s second character Incorrect
(’0010’,’011’) Explanation: return the input’s second character Incorrect
(’100’,’1’) Explanation: return the input’s second character Incorrect
(’1’,’1’) Explanation: return the input’s second character Incorrect

C4 AS II (’01011’,’011’) Explanation: return the input’s second character Incorrect
(’0101’,’011’ Explanation: return the input’s second character Incorrect
(’0010’,’011’) Explanation: return the input’s second character Incorrect
(’100’,’1’) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’1’,’1’) Explanation: if the input is 0, return 1; else, return 0 Incorrect

C5 WS (’01011’,’0’) Explanation: if the input starts with 1, return -; else, return 1 Incorrect
(’110’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’0010’,”) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’101’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’1000’,”) Explanation: if the input is negative, return 1; else, return 0 Incorrect
(’01011’,’0’) Explanation: if the input is a string of 1s, return -; else, return

1
Incorrect

C5 AS I (’110’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’0010’,”) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’101’,’1’) Explanation: if the input is a string of 1s, return -; else, return

1
Incorrect

(’1000’,”) Explanation: if the input is a 1, return 0; else, return 1 Incorrect
(’01011’,’0’) Explanation: return the input’s second character Incorrect

C5 AS II (’110’,’1’) Explanation: return the input’s second character Incorrect
(’0010’,”) Explanation: return the input’s second character Incorrect
(’101’,’1’) Explanation: if the input starts with 1, return 0; else, return 1 Incorrect
(’1000’,”) Explanation: return the input’s second character Incorrect

27

Table 25: Explanations produced by GPT-3 for C6

Concept Batch Test Explanation Rating

C6 WS (’01’,’00’) Explanation: if the input is 0, return 10; else, return -1 Incorrect
(’0000’,”) Explanation: if the input is 0, return 10; else, return -1 Incorrect
(’00011’,”) Explanation: if the input is 0, return 10; else, return - Incorrect
(’0011’,”) Explanation: if the input is 0, return 10; else, return - Incorrect
(’1000’,”) Explanation: if the input is 0, return 10; else, return -1 Incorrect

C6 AS I (’01’,’00’) Explanation: if the input is 0, return 10; else, return -1; if the
input is 1, return -1; else, return 1; if the input is 10, return -1;
else, return 1; if the input is 11, return -1; else, return 1;

Incorrect

(’0000’,”) Explanation: if the input is 0, return 0; else, return 1 Incorrect
(’00011’,”) Explanation: if the input is 0, return 10; else, return -1 Incorrect
(’0011’,”) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’1000’,”) Explanation: if the input is 0, return 10; else, return -1 Incorrect

C6 AS II (’01’,’00’) Explanation: if the input is 0, return 10; else, return -1 Incorrect
(’0000’,”) Explanation: if the input is 0, return 10; else, return -1; if the

input is 1, return 0; else, return -1; if the input is 2, return -1;
else, return 1; if the input is 3, return -1; else, return 1; if the
input is 4, return 1; else, return -1; if the input is 5, return -1;
else, return 1; if the input is 6, return 1; else, return -1; if the
input is 7, return -1; else, return 1; if the input is 8, return 1;
else, return -1; if the input is 9, return -1; else, return 1;

Incorrect

(’00011’,”) Explanation: if the input is 0, return 10; else, return -1; if the
input is 1, return 0; else, return -1; if the input is 2, return -1;
else, return 1; if the input is 3, return -1; else, return 1; if the
input is 4, return 1; else, return -1; if the input is 5, return -1;
else, return 1; if the input is 6, return 1; else, return -1; if the
input is 7, return -1; else, return 1; if the input is 8, return 1;
else, return -1; if the input is 9, return -1; else, return 1; if the
input is 10, return -1; else, return 1; if the input is 11, return 1;
else, return -1; if the input is 12, return -1; else, return 1

Incorrect

(’0011’,”) Explanation: if the input is 0, return 10; else, return -1; if the
input is 1, return 0; else, return -1; if the input is 2, return -1;
else, return 1; if the input is 3, return -1; else, return -1; if the
input is 4, return -1; else, return 1; if the input is 5, return -1;
else, return -1; if the input is 6, return -1; else, return 1; if the
input is 7, return -1; else, return -1; if the input is 8, return -1;
else, return 1; if the input is 9, return -1; else, return -1; if the
input is 10, return -1; else, return 1; if the input is 11, return
-1; else, return -1; if the input is 12, return -1

Incorrect

(’1000’,”) Explanation: if the input is 0, return 10; else, return -1; if the
input is 1, return 0; else, return -1; if the input is -1, return 1;
else, return -1; if the input is -1, return 1; else, return -1; if the
input is -1, return 1; else, return -1; if the input is -1, return 1;
else, return -1; if the input is -1, return 1; else, return -1; if the
input is -1, return 1; else, return -1; if the input is -1, return 1;
else, return -1; if the input is -1, return 1; else, return -1; if the
input is -1, return 1; else, return -1; if the input is -1, return 1;
else, return -1; if the input is

Incorrect

28

Table 26: Explanations produced by GPT-3 for C7-C8

Concept Batch Test Explanation Rating

C7 WS (’01011’,’1’) Explanation: if the input is 0, return -1; else, return 0 Incorrect
(’0000’,’0’) Explanation: if the input is 0, return 0; else, return -1 Incorrect
(’00000’,’0’) Explanation: if the input is 0, return 0; else, return -1 Incorrect
(’100’,”) Explanation: if the input starts with 0, return -; else, return 0 Incorrect
(’1000’,”) Explanation: if the input is 0, return -1; else, return 0 Incorrect

C7 AS I (’01011’,’1’) Explanation: return the input’s third character Incorrect
(’0000’,’0’) Explanation: return the input’s second character Incorrect
(’00000’,’0’) Explanation: return the input’s third character Incorrect
(’100’,”) Explanation: return the input’s third character Incorrect
(’1000’,”) Explanation: return the input’s second character Incorrect

C7 AS II (’01011’,’1’) Explanation: return the input’s third character Incorrect
(’0000’,’0’) Explanation: return the input’s second character Incorrect
(’00000’,’0’) Explanation: return the input’s third character Incorrect
(’100’,”) Explanation: return the input’s third character Incorrect
(’1000’,”) Explanation: return the input’s second character Incorrect

C8 WS (’10101’,”) Explanation: if the input is negative, return the input; else,
return the negation of the input

Incorrect

(’11101’,”) Explanation: if the input is negative, return 0; else, return 1 Incorrect
(’00000’,’1’) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’0011’,’1’) Explanation: if the input is negative, return the input; else,

return -1
Incorrect

(’1111’,”) Explanation: if the input is negative, return 1; else, return the
input

Incorrect

C8 AS I (’10101’,”) Explanation: if the input is -, return 1; else, return the input’s
second character

Incorrect

(’11101’,”) Explanation: if the input is -, return 1; else, return the input Incorrect
(’00000’,’1’) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’0011’,’1’) Explanation: if the input is -, return 1; else, return 0 Incorrect
(’1111’,”) Explanation: if the input is -, return 1; else, return the input Incorrect

C8 AS II (’10101’,”) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’11101’,”) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’00000’,’1’) Explanation: if the input is 0, return 0; else, return 1 Incorrect
(’0011’,’1’) Explanation: if the input is 0, return 1; else, return 0 Incorrect
(’1111’,”) Explanation: if the input is 0, return 1; else, return 0 Incorrect

29

12 Software licences

Table 27 shows the software used for the experimental results2. In those cases where the use of the
software required citing the paper (e.g., Louise), we have done so. Following the recommendations
of the OpenAI API3, we communicated by email the publication of this paper to OpenAI.

Table 27: Licence of the software used in this work

System Licence

MagicHaskeller BSD-3-Clause.4
Louise No explicit licence (Default copyright laws apply).
GPT-2 Modified MIT License.5
GPT-3 Proprietary. Accessed through API.

13 Hardware specifications

Table 28 shows the infrastructure that we have used. The teaching book was reused from a previous
work Telle et al. (2019). The amount of compute for the first three systems (MagicHaskeller, Louise
and GPT-2) was quite small compared to the resources that were used for GPT-3.

Table 28: Specifications of the hardware used in this work

Experiments Specifications

MagicHaskeller Intel(R) Xeon(R) CPU E5-2609 v4 @ 1.70GHz, with 252GB RAM
DIMM Synchronous 2400 MHz.

Louise Intel Core i5 2GHz Quad-Core, with 16GB 3733MHz LPDDR4X
RAM.

GPT-2 Intel(R) Xeon(R) CPU @ 2.20GHz, Tesla T4, with 12.69GB RAM
(Google Colab).

GPT-3 Unknown (approximately 3,000,000 API tokens).

14 Formal Definition of Teaching Size and the Teaching Book

Following Telle et al. (2019), we consider a possibly infinite example spaceX and a possibly infinite
concept class C consisting of concepts over X . Examples are defined as pairs (i, o) and concepts
as functions mapping inputs to outputs. An example set S = {(i1, o1), . . . , (ik, ok)} is just a finite
set of input-output pairs, used as witness for the teaching process. Given a concept c ∈ C and an
example set S, we say that c satisfies S, denoted by c ⊨ S, if c(i) = o for all the pairs (i, o) in S.
The empty set is satisfied by all the concepts. We define an encoding function δ as the number of
bits needed to encode S, then δ(S) represents the size of S. The teaching size is defined as:

TS(c) = min
S

{δ(S) : {c} = {c′ ∈ C : c′ ⊨ S}}

A concept c can be implemented in a language L by zero, one or more programs. A program p
captures concept c iff for every S we have that p ⊨ S iff c ⊨ S. The equivalence class for c is
ClassL(c) = {p : ∀S, p ⊨ S ⇐⇒ c ⊨ S}. The learner Φ can be seen as a function mapping sets to
programs. After this, the teaching size for Φ can be reformulated as follows:

TS(c) = min
S

{δ(S) : Φ(S) ∈ ClassL(c)}

2The complete code for the experiments can be found at https://github.com/gonzalojaimovitch/
think-big-teach-small

3https://beta.openai.com/policies/sharing-and-publication
4MagicHaskeller Licence: https://hackage.haskell.org/package/MagicHaskeller-0.9.6.8/src/LICENSE
5GPT-2 Licence: https://github.com/openai/gpt-2/blob/master/LICENSE

30

https://github.com/gonzalojaimovitch/think-big-teach-small
https://github.com/gonzalojaimovitch/think-big-teach-small
https://beta.openai.com/policies/sharing-and-publication
https://hackage.haskell.org/package/MagicHaskeller-0.9.6.8/src/LICENSE
https://github.com/openai/gpt-2/blob/master/LICENSE

Priors can be used as more than one concept might be consistent with one given set S. One natural
choice is simplicity, which can be formally defined as the size of the concepts. Let l(p) be the
length in bits of a program p in L using an appropriate encoding. Let ≺ be the total order of
programs ordered by l, where shorter programs precede longer ones. In case of equal l, ties are
broken lexicographically (more on this in section 16).

So the teaching size and the learner can now be expressed as:

TSl(c) = min
S

{δ(S) : Φl(S) ∈ ClassL(c)} with Φl(S) = arg
≺

min
p

{l(p) : p ⊨ S}

From these equations the concept of the teaching book derives easily. The teaching book is a list con-
sisting of entries in the form (w, p) with w being the optimal witness set and p the smallest program
compatible with w. The book is ordered by the encoding size δ for w. The algorithm enumerates
on the size of w and looks for the shortest program p in each case, and does not include 〈w, p〉 if p
has appeared before. All this ensures that no w is repeated and no p is repeated. This setting allows
to prove theoretically and empirically that it is possible to find witness sets for explaining concepts
whose size is smaller than the programs they identify, “an illuminating justification of why machine
teaching from examples makes sense at all” (Telle et al., 2019).

15 Distilling Simplicity, and Occam’s Razor for Few-shot Inference

In this paper we analyse whether Occam’s razor, i.e., a simplicity prior, is distilled by language
models when used for few-shot inference. In this section we review the key elements of Occam’s
razor in machine learning, what priors are and how knowledge that is distilled can change these
priors when performing inference. We want to properly clarify why we mean by having a simplicity
prior in few-show inference, and the possibility and contingency of the main hypothesis we evaluate
empirically in this paper.

Occam’s razor is a quintessential concept in inductive inference and philosophy of science, and it is
ubiquitous in statistics and machine learning, explicitly —through criteria such as the MML/MDL
principles (Wallace and Boulton, 1968; Rissanen, 1983) and the use of regularisation terms— or
implicitly —in the optimisation algorithms or parameter-function maps in many methods, including
deep learning (Valle-Perez et al., 2019; Shah et al., 2020). The no free lunch theorems (Wolpert,
1996) would make learning impossible when considering infinite function classes if we assumed
block uniformity in the data. Consequently, the assumptions of these theorems are thought to be false
in practice. Indeed, there are strong theoretical and empirical reasons to believe that all hypotheses
should not be equally likely a priori, and a strong Occam’s razor should be assumed in any kind of
inductive inference. See, e.g., (Solomonoff, 1964; Dingle et al., 2018) for some relevant pointers.

Occam’s razor must be well understood, though, especially in the context of overparametrised mod-
els such as deep learning. A naive interpretation of Occam’s razor would suggest that massive neural
network architectures are against Occam’s razor, but this is not necessarily true. For instance, in the
particular case of transformers (Vaswani et al., 2017) and large language models (Brown et al.,
2020), it is not that shortest ‘models’ are preferable, because the number of parameters as ‘size’ is
not necessarily comparable, as their weights can have more or less information after training. For
instance, a naive interpretation would be that, given some training data X , for which two models
M1 and M2 have the same loss (ψ(M1(X)) = ψ(M2(X)), with ψ being a metric of performance),
model M1 would be preferable over M2 if size(M1) < size(M2). Rather, the correct interpreta-
tion is that M1 is preferred over M2 when both have the same loss (ψ(M1(X)) = ψ(M2(X))) if
K(M1) < K(M2), with K being the Kolmogorov complexity of the function represented by the
model. In other words, the prior applies to the complexity of the functions represented by M1 and
M2.

The choice of Occam’s razor as a prior for learning, as discussed above, is standard and well-known.
The question comes when these language models and other pre-trained models are used for few-shot
inference, usually referred to as ‘few-shot learning’. It is important to clarify that the weights of the
language model do not change at this deployment stage, so there is no further tuning or adaptation.
Consequently, in strict technical terms, unlike other interpretations of ‘few-shot learning’ (Perez
et al., 2021) we should be careful when using the term ‘learning’. When applying these models we
are actually doing inference, but not an inductive inference that changes weights or creates a new
representation or model. This also holds for language models, as pre-trained models. However,

31

and this is precisely what we analyse in this paper, after being trained with such large and diverse
corpora they acquire a vast amount of knowledge that is really what conditions the continuations
(the probability of the next token). Inference (and hence text generation) is performed by choosing
the tokens that best accommodate the model. So, what is really happening when a language model
is given an intrinsic pattern such as ababab...? We cannot really say the model is retrieving the
pattern, since in many cases good performance is achieved even when it is unlikely that the pattern
appeared previously in the training data. Consequently, there must be some abstract representations
that capture a preference for simple patterns and are triggered by the prompt. There is already strong
evidence that transformers can distil structural bias from raw data (Warstadt and Bowman, 2020).

It is not a coincidence that in this paper we compare language models with Louise, which is actually
an inductive logic programming system similar to Metagol (Muggleton et al., 2014), a paradigm that
uses higher-order meta-rules that are instantiated by abduction to the given evidence. This empha-
sises that, in the context of transformers, few-shot ‘learning’ is actually abduction (seen as some kind
of conditioning over previous knowledge) for some given abstract representations. When we ask the
question of whether Occam’s razor is distilled by language models, we are asking the question of
whether a very abstract representation, such as a preference for simplicity, can be distilled during
learning (Wu et al., 2021). This abstraction must be understood in a scale that is different from the
first-order vs higher-order distinction of declarative languages. We use the term ‘distillation’, in
a somewhat related way to ‘knowledge distillation’ (Gou et al., 2021), used for simplified models
that capture the essence of the acquired model. Here, when the model is applied for inference, we
consider Occam’s razor as a kind of very abstract knowledge that acts as a prior for abduction.

Clarified all this, let us now try to formalise what it means to have an Occam’s razor prior for few-
shot inference. Consider we have a pre-trained model M to make continuations of input strings (or
prompts) s. For the sake of the argument, let us considerM to be deterministic (e.g., by choosing the
continuation with highest probability), then the continuation to s is given by M(s). Now consider
that we can wrap a set of pairs of inputs and outputs S and a final input i into a string s and feed M
with it so that the continuation is the output for i. In this few-shot setting, which is exactly the one
used in the paper, M has distilled a simplicity prior in language L in a few-shot inference context
as much as it minimises Es,i[δ(M(⟨s, i⟩), p(i))] where δ is a divergence metric, s wraps S, i is the
input of test instance and p is the shortest program for S. Using the notation of section 14 here in
the supplementary material, we have that p = Φl(S), where Φl is simply the learner in our machine
teaching setting, guided by Occam’s razor, i.e., Φl(S) = argmin≺p {l(p) : p ⊨ S}.

While we talk about distilling simplicity or Occam’s razor in general, this is always relative to a
language L. The invariance theorem (see, e.g., Li and Vitányi, 2008) ensures that the use of different
(optimal) languages gives at most a constant difference that only depends on these two languages.
While these constants may be very large, some level of agreement is usually observed even for very
different representations.

It is at this point that we can properly understand if the hypothesis that gives title to this paper and
that we evaluate experimentally is tenable and contingent, otherwise it would be pointless to do
experiments other than corroboration. If Occam’s razor happens in many of the patterns in the data
used to train a language model M , the metric ψ will favour abstractions that are aligned with that
razor. As known with some other deep learning architectures, these more complex abstractions can
only be made when sufficient network layers and data are available, so it seems reasonable to expect
that larger models may have been able to distil Occam’s razor in higher degrees than smaller models.

Once established that the hypothesis is possible, is it contingent? Do neural networks favouring
Occam’s razor when training imply that they have to distil Occam’s razor when used during de-
ployment? If this was necessary (not contingent) there would not be much insight in performing
the experiments. The necessity of the hypothesis is easy to reject by a counterexample. For in-
stance, imagine the class C of all computable functions that map binary strings into binary strings
such that the output string always has parity 1 (the number of 1s in the string is an odd num-
ber). Imagine that a model M has been trained with a strong Occam’s razor prior from the whole
class C. Now imagine that we choose each of these functions in isolation, and ‘learn’ separate
models Mk using Occam’s razor for each ck ∈ C. This Mk would frequently make wrong pre-
dictions, as it cannot know that parity-0 outputs are not allowed. For instance, given the sample
S = {⟨1, 1⟩, ⟨100, 100⟩, ⟨0111, 0111⟩, }, Occam’s razor applied to this S in isolation would likely

32

learn to identity function id, but id /∈ C. Consequently, there are situations whether Occam’s razor
for learning does not necessarily entail Occam’s razor for few-shot inference.

Investigating whether this is the case for language models is hence both tenable and contingent,
which means that any outcome is informative. This is why it is worth being explored experimentally,
as we do in this paper.

16 Program Length Ties and Lexicographic Preference

In the machine teaching setting we are using, the witness set is calculated as the smallest set of
examples (in overall string size) that makes the learner output a program compatible with the con-
cept. The ideal learner the teacher has in mind is an enumerator, following the simplicity prior for
programs. However, in case of a tie, a lexicographic order is used for programs.

This lexicographic order (on the programs) has a few consequences. First, it includes an arbitrary
choice that is not strictly based on simplicity and makes identification harder. Second, we also use
the lexicographic order when two witness sets have the same size (and both would be sufficient
for the concept). In particular, this lexicographic order (on the strings) has an additional effect
on language models, as we are using them in a few-shot learning scenario. In the complexities
VL and L we usually find witness sets such {“” → “0111”}, because the empty string comes
lexicographically before other examples of the same size as {“01” → “10”}. Also, it would come
before {“0” → “1”, “1” → “1”} too. In many cases, the number of examples matters more than the
size of examples for language models in a few-shot inference scenarios, because this consolidates
the pattern for the prompt, so that the continuations are more reliable.

Overall, this suggests that future studies should put more attention to the lexicographic order in the
machine teaching scenario (for programs and examples)

References
Brown, T. B., Mann, B., Ryder, N., et al. (2020). Language models are few-shot learners. arXiv

preprint arXiv:2005.14165.

Dingle, K., Camargo, C. Q., and Louis, A. A. (2018). Input–output maps are strongly biased towards
simple outputs. Nature communications, 9(1):1–7.

Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowledge distillation: A survey. International
Journal of Computer Vision, 129(6):1789–1819.

Li, M. and Vitányi, P. (2008). An introduction to Kolmogorov complexity and its applications (3rd
ed.). Springer-Verlag.

Muggleton, S. H., Lin, D., Pahlavi, N., and Tamaddoni-Nezhad, A. (2014). Meta-interpretive learn-
ing: application to grammatical inference. Machine learning, 94(1):25–49.

Perez, E., Kiela, D., and Cho, K. (2021). True few-shot learning with language models. arXiv
preprint arXiv:2105.11447.

Rissanen, J. (1983). A universal prior for integers and estimation by minimum description length.
Annals of Statistics, 11(2):416–431.

Shah, H., Tamuly, K., Raghunathan, A., Jain, P., and Netrapalli, P. (2020). The pitfalls of simplicity
bias in neural networks. arXiv preprint arXiv:2006.07710.

Solomonoff, R. J. (1964). A formal theory of inductive inference. Part I. Information and Control,
7(1):1–22.

Telle, J. A., Hernández-Orallo, J., and Ferri, C. (2019). The teaching size: computable teachers and
learners for universal languages. Machine Learning, 108(8-9):1653–1675.

Valle-Perez, G., Camargo, C. Q., and Louis, A. A. (2019). Deep learning generalizes because the
parameter-function map is biased towards simple functions. ICLR.

33

Vaswani, A., Shazeer, N., et al. (2017). Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008.

Wallace, C. S. and Boulton, D. M. (1968). An information measure for classification. Computer
Journal, 11(2):185–194.

Warstadt, A. and Bowman, S. R. (2020). Can neural networks acquire a structural bias from raw
linguistic data? arXiv preprint arXiv:2007.06761.

Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural com-
putation, 8(7):1341–1390.

Wu, Y., Rabe, M., Li, W., Ba, J., Grosse, R., and Szegedy, C. (2021). Lime: Learning inductive bias
for primitives of mathematical reasoning. arXiv preprint arXiv:2101.06223.

34

	Concepts and Examples
	Concepts in the Form of Decision Rules
	Ablation by Temperature and Model Size
	Complete Experimental Results
	Explored Prompts
	Detailed results and dispersion for systems with variability
	Additional Experiments: Concepts with Loops
	Additional Experiments: Concepts without Loops
	Additional Experiments: Many More Concepts and Baselines
	Additional Experiments: Not Using Machine Teaching
	All the explanations produced by GPT-3
	Software licences
	Hardware specifications
	Formal Definition of Teaching Size and the Teaching Book
	Distilling Simplicity, and Occam's Razor for Few-shot Inference
	Program Length Ties and Lexicographic Preference

