
Supplementary for Theorem 3.1

proof for Theorem 3.1

Proof. Overall speaking, the derivation of the variance bound is built upon the classic theory in
Bickel et. al. (1993) (Section 3). Denote f(y(0), y(1), |x) as the conditional probability density of
the potential outcomes (Y (0), Y (1)) given x, e(x) := p(T = 1|x), and f(x) as the density of x.
Then the joint density of (Y (0), Y (1), T,X) is

p(y(0), y(1), t, x) = f(y(0), y(1), |x)e(x).

Let f1(·|x) :=
∫
f(y(0), ·)dy(0) and f0(·|x) :=

∫
f(·, y(1))dy(1), then joint density of (Y, T,X) is

p(y, t, x) = [f1(y|x)e(x)]t[f0(y|x)(1− e(x))]1−tf(x).

Consider a parametric model p(y, t,x|θ) = [f1(y|x, θ)e(x, θ)]t[f0(y|x, θ)(1− e(x, θ))]1−tf(x, θ)
such that p(y, t, x|θ0) = p(y, t,x). The corresponding score s(t, y,x|θ) = ∂

∂θ log p(y, t,x|θ) is

s(t, y, x | θ) ≡ t · [ ∂
∂θ

log f1(y|x, θ)] + (1− t) · [ ∂
∂θ

log f0(y|x, θ)]

+
t− p(x, θ)

e(x, θ)(1− e(x, θ))
· [ ∂
∂θ

e(x, θ)] +
∂

∂θ
log f(x, θ).

Then the tangent space of the model p(y, t,x|θ) is

P :=

{
t · [ ∂

∂θ
log f1(y|x] + (1− t) · [ ∂

∂θ
log f0(y|x)] + a(x)(t− e(x)) +

∂

∂θ
log f(x)

}
,

where a(x) is any square-integrable measurable function of x. Now we turn back to the formulation
of τ(x),

τθ(x) =

∫
yf1(y|x, θ)dy −

∫
yf0(y|x, θ)dy.

Let Fτ (Y, T,X) = T
e(X) (Y −µ1(X))− 1−T

1−e(X) (Y −µ0(X))), where µt(X) := E[Y (t)|X]. Then
we may validate that

∂

∂θ
τ(θ0) = E[Fτ (Y, T,X)s(T, Y,X|θ0)].

Then based on the result in Bickel et. al. (1993), the variance bound of τ(x) is the expected squares
of the projection Fτ (Y, T,X) in the tangent space P , which is equal to E[σ

2
1(X)
e(X) +

σ2
0(X)

1−e(X) ].
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where a(x) is any square-integrable measurable function of x. Now we turn back to the formulation
of τ(x),

τθ(x) =

∫
yf1(y|x, θ)dy −

∫
yf0(y|x, θ)dy.

Let Fτ (Y, T,X) = T
e(X) (Y −µ1(X))− 1−T

1−e(X) (Y −µ0(X))), where µt(X) := E[Y (t)|X]. Then
we may validate that

∂

∂θ
τ(θ0) = E[Fτ (Y, T,X)s(T, Y,X|θ0)].

Then based on the result in Bickel et. al. (1993), the variance bound of τ(x) is the expected squares
of the projection Fτ (Y, T,X) in the tangent space P , which is equal to E[σ

2
1(X)
e(X) +

σ2
0(X)

1−e(X) ].

Extension of Theorem 3.1

• when T multi-class categorical: V =
∑

t∈T E
[
σ2
t (X)

et(X)

]
, where σ2

t (X) = Var[Y (t)|X] and
et(X) = P(T = t|X) .

• when T continuous: V =
∫
t∈T E

[
σ2
t (X)

et(X)

]
dt, where σ2

t (X) = Var[Y (t)|X] and et(X) is the
conditional density of T given X .

Supplementary for Proposition 3.1

Definition. 3.1 Define Instrumental variables (I), Confounders (C), Adjustment variables (A) as

I={Xi| there exists an unblocked path from Xi to T and Xi ̸∈ PA(Y ) and Xi is not a collider};
C={Xi| there exists an unblocked path from Xi to T and Xi ∈ PA(Y )} ;
A={Xi| there exists an unblocked path from Xi to Y , and no unblocked paths from Xi to T},
where PA(Y ) denotes the set of parent nodes of Y .

Proposition.3.1 Let I,C,A be the variables set in Definition 3.1. Then (i) C blocks all the back-door
paths from T to Y ; (ii) P (Y |X, do(t)) = P (Y |C,A, do(t))

Proof. (i) All the back-door paths from T to Y are in the form T ← · · ·Y . Then we have two
sub-cases according to the nearest edge to Y ,
1) If the path is in the form T ← · · · ← Y : since T is earlier than Y , there exist no directed paths
from Y to T , so there exists at least one collider on this path. Let Xi denote the one nearest to Y,
then the path is in the form T ←· · ·→ Xi ←· · ·← Y . Therefore, this path is blocked by empty set.
2) If the path is in the form T ← · · · → Y , let Xi be the one nearest to Y in the form T ← · · ·Xi →
Y . If the first segment T ← · · ·Xi is an unblocked path, then Xi ∈ C and hence the path is blocked
by C. Otherwise, if the first segment T ← · · ·Xi is a blocked path (blocked by empty set), then the
whole path T ← · · ·Xi → Y is also blocked by empty set.
In summary, any back-door path from T to Y is either blocked by C or empty set. Thus C blocks
all the back-door from T to Y . (ii) Let GT be the causal graph by removing all the edges into T ,
then it suffices to show that all the paths from X ∈X and Y are blocked by C ∪A. Suppose π is
an unblocked path between X and Y . First, note that π would not be a directed path from Y to X
since X is a pre-treatment variable. Second, PA(Y ) is on the path π, otherwise π is a blocked path
with collider(s). Finally, note that PA(Y ) is either in C (if PA(Y ) has unblocked path to T ) or A
(if PA(Y ) has no unblocked paths to T ), we may conclude that the path is blocked by C ∪A

Supplementary for Theorem 3.2

Theorem. 3.2 The {I,C,A} are identifiable from the joint distribution P(X, T, Y ) as follows

• Xi ∈ A⇔
{
Xi|Xi ⊥ T and Xi ̸⊥ Y

}
• Xi ∈ I ⇔

{
Xi|Xi ̸∈ A, Xi ̸⊥ T, and there exists a subset X ′ ⊂X s.t. Xi ⊥ Y |X ′ ∪ {T}

}
• Xi ∈ C ⇔

{
Xi|Xi ̸∈ A and Xi ̸∈ I and Xi ̸⊥ T and Xi ̸⊥ Y

}
Further, the confounders C may serve as the variables set X ′, i.e., Xi ⊥ Y |C ∪ {T} for Xi ∈ I .
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Proof. 1) As for Xi ∈ A, according to Definition 3.1 and the d-separation criterion, Xi ⊥ T and
Xi ̸⊥ Y . Now we show A is not empty, i.e., Xi that has an unblocked path to Y may have no
unblocked paths to T . The path between Xi and Y is in the form Xi · · · → Y or Xi · · · ← Y . Note
that Xi is a pre-treatment variable, the latter one has at least one collider otherwise there exists a
directed path from Y to Xi. So we may only consider the form Xi · · · → Y , note that there is a
directed path T → Y , the path T → Y ← · · ·Xi is an unblocked path as Y is a collider.
2) Let π denote the path between Xi ∈ I and Y .
(a) If T is on path π, we have two sub-cases depending on whether T is a collider. (a.1) If T
is a collider such that π = I · · · → T ← · · ·Y , then the second segment T ← · · ·Y is either
T ← · · · → Y or T ← · · · ← Y . For the former one, let X

′ ∈ PA(Y ) be the covariate closet to Y .
Note that Xi is not a collider and has an unblocked path to T , thus X

′
also has an unblocked path

to T , and hence X
′ ∈ C and the path is blocked by C. For the latter one, T ← · · · ← Y must be

a blocked path (because T is prior to Y , there would be a collider in this case). (a.2) If T is not a
collider such that π = I · · · → T → · · ·T , then the path is blocked by T . To summarize, for a path
π with T , the path is blocked by T ∪C.
(b) If π does not pass T and is an unblocked path without collider(s), then π must be in the form
Xi · · · → Y since Xi is prior to Y . Denote Xj as the parent node of Y on this path, note Xj has
an unblocked path to Xi and Xi has an unblocked path to T , we conclude that Xj ∈ PA(Y ) has an
unblocked path to T . Thus we have Xj ∈ C, and π is blocked by C.
Overall, based on (a) and (b), any path π between Xi ∈ I and Y is blocked by C ∪ T .
3) The equivalent condition for C is readily from the definition. Since Xi ∈ C has unblocked paths
to both T and Y , we have Xi ̸⊥ T and Xi ̸⊥ Y .

Supplementary for Proposition 3.2

Proposition. Denote l(·, ·) as the cross-entropy loss (for categorical) or l2 loss (for numerical).
Let ĥA→T (·) :=argminh l(h(A(X)), T ) for given A(·), ĥC∪T→Y (·) :=argminh L(h( C(X)∪T ), Y ),
ĥI∪C∪T→Y (·) :=argminh l(h(C(X) ∪ I(X) ∪ T ), Y ) for given C(·) and I(·). Then

(i) let LA := l(ĥA→T (A(x)), T ), then LA is maximized when A(X) ⊥ T ;
(ii) let LI,C:=ld

(
ĥC∪T→Y (C(X)∪T ), ĥI∪C∪T→Y (I(X)∪C(X)∪ T )

)
, where ld() denote the KL diver-

gence (categorical Y ) or l2 loss (numerical Y ), then LI,C is minimized when I(X) ⊥ Y |{T,C(X)}.

Proof. Firstly, suppose that T is binary and l(·, ·) denotes the cross-entropy loss, let

Lh
A = −

∑
i

{Ti log hi + (1− Ti) log(1− hi)}

=
∑

A(x)∼p(A(x)|T=1)

log hi +
∑

A(x)∼p(A(x)|T=0)

log(1− hi)

For each X = x, by setting the derivative ∂
∂hi
Lh
A = 0, we have

ĥA→T (A(x)) =
p(A(x)|t = 1)

p(A(x)|t = 1) + p(A(x)|t = 0)
.

Substituting ĥA→T (A(x)) into LA, we have

LA = −
{ ∑

A(x)∼p(A(x)|T=1)

log
p(A(x)|T = 1)

p(A(x)|T = 1) + p(A(x)|T = 0)
+

∑
A(x)∼p(A(x)|T=0)

log
p(A(x)|T = 0)

p(A(x)|T = 1) + p(A(x)|T = 0)

}
= log 4−DKL

(
p(A(x)|T = 1)||p(A(x)|T = 1) + p(A(x)|T = 0)

2

)
−DKL

(
p(A(x)|T = 0)||p(A(x)|T = 1) + p(A(x)|T = 0)

2

)
≤ log 4.
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Meanwhile, note that LA = log 4 when p(A(x)|T = 1) = p(A(x)|T = 0). We may conclude that
LA is maximized when A(x) ⊥ T .

Secondly, when T is numeric, l(·, ·) denotes the l2 loss, and

ĥA→T (A(x)) = E[T |A(x)].

Substituting ĥA→T (A(x)) into LA, we have

LA = E[T − E[T |A(x)]]2 = V ar
[
E(T |A(X))

]
Note that

V ar(T ) = V ar
[
E(T |A(X))

]
+ E

[
V ar(T |A(X))

]
,

we have LA <= V ar(T ).

Meanwhile, note that when T ⊥ A(X), we have E(T |A(X)) = E(T ), and hence

LA = E[T − E[T ]]2 = V ar(T ).

Thus, LA is maximized when T ⊥ A(X).

The proof for (ii) follows the similar way. Firstly, when Y is binary, we have

ĥC∪T→Y (C(x), t) =
p(C(x), t|Y = 1)

p(C(x), t|Y = 1) + p(C(x), t|Y = 1)
.

ĥI∪C∪T→Y (I(x), C(x), t) =
p(I(x), C(x), t|Y = 1)

p(I(x), C(x), t|Y = 1) + p(I(x), C(x), t|Y = 1)
.

Note that the KL divergence DKL(ĥC∪T→Y (C(x), t)||ĥI∪C∪T→Y (I(x), C(x), t)) ≥ 0, and
ĥC∪T→Y (C(x), t) ≡ ĥI∪C∪T→Y (I(x), C(x), t) when p(Y |I(X), C(X), T ) = p(Y |C(X), T ),
we have LI,C is minimized when p(Y |I(X), C(X), T ) = p(Y |C(X), T ), i.e., Y ⊥ I(X)|C(X), T

When Y is numerical, we have

ĥC∪T→Y (C(x), t) = E[Y |C(x), t].

ĥI∪C∪T→Y (I(x), C(x), t) = E[Y |I(x), C(x), t].

Therefore, we have ĥC∪T→Y (C(x), t) = ĥI∪C∪T→Y (I(x), C(x), t) when Y ⊥ I(X)|C(X), T ,
and LI,C = 0 in this case. To summarize, LI,C is minimized when Y ⊥ I(X)|C(X), T .

Supplementary for source code
• module_DER_extended.py includes the model for both ADR and DeR-CFR;
• module_DR.py includes the model for DR-CFR;
• train.py is the script for one-time run by inputting the hyper-parameters in the command line.
• run.py is the script for multiple runs by setting a list of parameters in .json file. The hyper-

parameters setting in our paper can be found in ./configs/params_all.json.

selection of hyper parameters

The hyper-parameters mainly involve the {α, β, µ, λ} and K (Sec 4.3). .
• α = β = 1 by default when are all cross-entropy loss since the gradients are of the same

scale. In the continuous case, we may need to adjust α and β because T and Y may not
have a similar scale; The default parameter µ for the orthogonal loss is 10 and we need to
adjust by observing the scale of LO ;

• The default parameter of λ is 10−3 as the regularization term is commonly much larger;
• As for K, the number of iterations to train the auxiliary predictors h∗’s, we commonly take
K = 1, 2, 3.

In practice, we suggest to use tensorboard or similar tools to record the details of the loss functions
(including each component) and adjust the hyper-parameters to make the parameters convergent and
loss become steady.
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learning curve

(a) the curve of Lh
A (b) the curve of L
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