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ABSTRACT

Latent diffusion models (LDMs) have made significant advancements in the field
of image generation in recent years. One major advantage of LDMs is their ability
to operate in a compressed latent space, allowing for more efficient training and
deployment. However, despite these advantages, challenges with LDMs still re-
main. For example, it has been observed that LDMs often generate high-frequency
details and complex compositions imperfectly. We hypothesize that one reason
for these flaws is due to the fact that all pre- and post-training of LDMs are done
in latent space, which is typically 8 × 8 lower spatial-resolution than the output
images. To address this issue, we propose adding pixel-space supervision in the
post-training process to better preserve high-frequency details. Experimentally,
we show that adding a pixel-space objective significantly improves both super-
vised quality fine-tuning and preference-based post-training by a large margin on
a state-of-the-art DiT transformer and U-Net diffusion models in both visual qual-
ity and visual flaw metrics, while maintaining the same text alignment quality.

1 INTRODUCTION

Diffusion models learn to sequentially denoise from random Gaussian noise to sharp images and
have revolutionized the field of media generation and editing in recent years. Latent diffusion mod-
els represent the most popular type of diffusion model because of their efficiency and simplicity.
State-of-the-art LDMs are typically pretrained on webscale data, resulting in “foundation mod-
els” (Rombach et al., 2022; Podell et al., 2023; Esser et al., 2024; Saharia et al., 2022; Imagen
3 Team, 2024; Dai et al., 2023; Ramesh et al., 2021; 2022; Betker et al., 2023).

These foundation models are then post-trained on a smaller, carefully curated dataset to improve
quality through either supervised quality fine-tuning (SFT) (Dai et al., 2023) or human-in-the-loop
preference modeling (Rafailov et al., 2024; Wallace et al., 2024; Meng et al., 2024). Post-training of
image foundation models is also utilized to create new models for a variety of applications, including
controllable generation (Zhang et al., 2023), editing (Sheynin et al., 2024), 3D generation (Poole
et al., 2022), video generation (Singer et al., 2022; Girdhar et al., 2023), and many others.

To achieve efficiency and simplicity, LDMs use a pretrained variational autoencoder (VAE) to com-
press images into latent representations. For example, in the original LDM paper (Rombach et al.,
2022), the authors used a conv-based VAE to compress a 512 × 512 × 3 image to 64 × 64 × 4.
This representation significantly speeds up training and reduces computational cost as the denois-
ing diffusion model now operates in the 64 × 64 × 4 space instead of the original 512 × 512 × 3
space (48× compression). However, this comes at the cost of lossy compression, which can result
in inaccuracies in or loss of high-frequency details.

The research community has invested considerable effort in improving fine details, including scaling
up the model, carefully curating fine-tuning datasets, increasing the latent channel dimension (Dai
et al., 2023), and designing more powerful decoders (Betker et al., 2023).

In this paper, we take a step back and hypothesize that the artifacts in LDMs are partially caused
by the fact that all pretraining, post-training, and inference steps are done on a lower-resolution
latent space. With this assumption, we propose adding an additional supervision term in the original
pixel space during post-training by decoding the latent representation back and combining it with
the original latent loss term. This approach aims to improve the quality of generated images by
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Figure 1: Enhancing LDMs with pixel-space objectives. We hypothesize that losses of details
and artifacts in high-frequency details are partially caused by training on the lower-resolution latent
space. We propose adding a pixel-space objective during LDM post-training. Our experiments show
significant improvements in both DiT-based and UNet-based LDMs for reward-based and supervised
fine-tuning.

providing additional guidance in the pixel space, which helps to mitigate the loss of high-frequency
details and artifacts introduced by the compression of the latent space. Figure 1 demonstrates that
our method can generate more stunning details when post-trained on the same dataset.

Through extensive experiments and independent human evaluation from annotators who have no
knowledge of this project, we have found that the proposed method has the following advantages:

1. Simplicity: The proposed method does not modify the architecture of the diffusion denois-
ing model and can be seamlessly integrated into any LDM-based model without introducing
new parameters, making it flexible and efficient.

2. Effectiveness: Despite its simplicity, we found that the proposed method is surprisingly
effective, resulting in a 18.2% and 23.5% improvements on visual appeal and visual flaws
with supervised fine-tuning, and 17.8% and 11.3% improvements on preference-based fine-
tuning on a DiT model on head-to-head A/B comparisons with the latent-space baseline.

3. General applicability to models: The proposed method performs remarkably well in both
DiT and U-Net based LDMs (Rombach et al., 2022; Dai et al., 2023).

4. General applicability to post-training methods: The proposed method works well on
both supervised fine-tuning and reward-based fine-tuning, and can be easily added to the
future post-training methods researchers develop.

A secondary contribution of this paper is that we are the first paper that extends the recently proposed
SimPO (Meng et al., 2024) preference optimization post-training technique to the image generation
task and shows its effectiveness on the diffusion-based image generation domain.
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2 RELATED WORK

A comprehensive review of diffusion models is out of the scope of this section. Interested readers
are referred to Fuest et al. (2024) and Chan (2024). Here we highlight a few works that are closest-
related to us.

2.1 TEXT-TO-IMAGE DIFFUSION MODEL

Researchers have explored a variety of representations to train text-to-image diffusion models, in-
cluding pixel-diffusion models (Ramesh et al., 2022; Saharia et al., 2022; Balaji et al., 2022), latent
diffusion models (Rombach et al., 2022; Dai et al., 2023), and token-based generative transform-
ers (Chang et al., 2023; Sun et al., 2024; Li et al., 2024). Pixel-diffusion models directly generate
images in the pixel space, but due to computational constraints, they typically first generate images
at a lower resolution (e.g., 64× 64) and then upsample them (sometimes multiple times) to achieve
the target resolution in a cascade fashion (Saharia et al., 2022).

Latent Diffusion Models (LDMs), on the other hand, employ a pretrained autoencoder (Rombach
et al., 2022) to compress the spatial dimensions of the image to be generated, typically by a factor of
8× 8, while moderately increasing the channel dimension from 3 (RGB) to 4. This approach signif-
icantly enhances training efficiency compared to pixel diffusion models, thereby facilitating various
applications such as high-resolution (Chen et al., 2023) and real-time image generation (Kohler
et al., 2024; Wimbauer et al., 2024). Early LDM models use convolutional U-Nets as the backbone
diffusion model, such as LDM1.5 (Rombach et al., 2022) and Emu (Dai et al., 2023). Recently,
the field has been dominated by diffusion transformers (DiTs), such as SD3 (Esser et al., 2024) and
PixArt-α (Chen et al., 2023). PixArt-α incorporates cross-attention modules into DiT and trained
the model on high-aesthetic data in its final training stage. However, all of these LDM methods are
still trained in latent space, which might suffer from loss of details and artifacts due to low spatial
resolution.

In this paper, we propose a novel approach to refining image quality in diffusion models by deploy-
ing a pixel-space objective function in the post-training stage. Our method does not depend on a
particular diffusion model type and works equally well for both U-Nets and DiTs.

2.2 SUPERVISED QUALITY FINE-TUNING (SFT)

Supervised fine-tuning is crucial to the success of modern LLMs (Zhou et al., 2024; Touvron et al.,
2023; Achiam et al., 2023). In image and vision, Dai et al. (2023) proposes using a small set of ex-
tremely high-quality images to fine-tune a pretrained LDM model, resulting in significant improve-
ments to the visual quality of generated images without sacrificing text-image alignment. Betker
et al. (2023) and Segalis et al. (2023) propose using captions rewritten by vision language models to
facilitate better learning, including during SFT. However, none of these proposed methods explored
the representation space in which the model was fine-tuned. In this paper, we propose supplement-
ing the regular supervised fine-tuning loss with a pixel-space objective function. We experimented
with two different models: a replacement-trained U-Net LDM-1.5 (Rombach et al., 2022) and a DiT
model. Our results show that when fine-tuning on a small high-quality dataset, our proposed method
can significantly improve generation quality and visual flaws.

2.3 HUMAN PREFERENCE BASED POST TRAINING

Reinforcement learning represents another popular type of post-training technique. The seminal
work of Schulman et al. (2017) makes the policy gradient method practical. Rafailov et al. (2024)
proposes doing direct preference optimization (DPO) with a reference model to improve the model
quality on language models. Wallace et al. (2024) and Black et al. (2023) extend DPO to diffusion
models. DPO optimizes diffusion models on paired human preference data by implicitly estimating
a reward model. Liang et al. (2024) proposes doing step-aware DPO. Meng et al. (2024), on the
other hand, remove the reference model to make reinforcement learning more direct and effective.
In this paper, we show that our proposed pixel-space objective also works well for reward-based
post-training.
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Figure 2: Supervised fine-tuning with pixel-space loss. During fine-tuning, we decode the latent
representation back to the pixel space and add a supervision in the output image resolution.

3 METHOD

Given an image x ∈ RH×W×3 in RGB space, LDMs use an autoencoder E that encodes x into a
latent representation z = E(x). The decoder D then reconstructs the image from the latent, giving
x̃ = D(z) = D(E(x)), where z ∈ Rh×w×c.

3.1 SUPERVISED PIXEL-SPACE FINE-TUNING

By denoising a normally distributed variable step-by-step, LDMs learn a data distribution pθ(x).
Therefore, they can be understood as a series of denoising autoencoders ϵθ(zt, t); t = 1 . . . T that
are trained to predict the denoised variant of their input zt where zt is the noisy version of latent input
z at time t, ϵ is the original noise added to get zt, and ϵθ(zt, t) is the predicted noise. Furthermore,
the noise added to zt−1 to get zt is Gaussian with variance βt. The standard objective function for
LDMs is:

Llatent
SFT := EE(x),ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, t)∥22

]
. (1)

Instead of working only in the latent space Rh×w×c, we propose a loss function that incorporates
the pixel space RH×W×3 in the objective function. This is achieved by adding the noise ϵ to the
latent image z through the forward diffusion process xt =

√
ᾱtx0 +

√
1− ᾱtϵ, where αt = 1− βt

and ᾱt =
∏t

i=1 αi, and decoding it back to the pixel space. The objective function then becomes

Lpixel
SFT := EE(x),ϵ∼N (0,1),t

[
∥D(

√
ᾱtz +

√
1− ᾱtϵ)−D(

√
ᾱtz +

√
1− ᾱtϵθ(zt, t))∥22

]
. (2)

We combine the latent objective, Equation 1, with the pixel objective, Equation 2, to obtain an
objective that uses both the latent and pixel space, weighted by hyper-parameter λ.

LSFT := Llatent
SFT + λLpixel

SFT . (3)

3.2 PIXEL-SPACE FINE-TUNING USING REWARD MODELING

Define xw and xl to be the “winning” and “losing” samples from human annotations, then zw =
E(xw) and zl = E(xl) represent the “winning” and “losing” samples in the latent space. Unlike
regular supervised fine-tuning, fine-tuning with DPO utilizes a reference distribution pref(x) and
hyperparameter β for regularization. Fine-tuning now aims to learn pθ, which is aligned to human
preferences, while still remembering pref. The reward modeling objective for fine-tuning takes the
form:

Llatent
dpo :=− EE(x),ϵ∼N (0,1),t log σ(−β(∥ϵw − ϵθ(z

w
t , t)∥22−

∥ϵw − ϵref(z
w
t , t)∥22 − (∥ϵl − ϵθ(z

l
t, t)∥22 − ∥ϵl − ϵref(z

l
t, t)∥22))).

(4)
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Inspired by Meng et al. (2024), we remove the reference model and simplify the objective to

Llatent
simpo := −EE(x),ϵ∼N (0,1),t log σ

(
−β(∥ϵw − ϵθ(z

w
t , t)∥22 − (∥ϵl − ϵθ(z

l
t, t)∥22))

)
. (5)

Similar to supervised fine-tuning, we also incorporate calculations in the pixel space into our reward
modeling. and define the pixel-space objective as

Lpixel
simpo :=− EE(x),ϵ∼N (0,1),t log σ(

−β((∥D(
√
ᾱtz

w +
√
1− ᾱtϵ

w)−D(
√
ᾱtz

w +
√
1− ᾱtϵθ(z

w
t , t))∥22

−(∥D(
√
ᾱtz

l +
√
1− ᾱtϵ

l)−D(
√
ᾱtz

l +
√
1− ᾱtϵθ(z

l
t, t))∥22))).

(6)

Combining latent and pixel terms and weighted by a constant µ, we get

Lreward = Llatent
simpo + µLpixel

simpo. (7)

4 EXPERIMENT

We conduct a comprehensive qualitative and quantitative analysis, as well as ablation studies to
show that our proposed loss function outperforms the regular latent space loss in both supervised
fine-tuning and preference-based post-training.

4.1 HUMAN EVALUATION

Like many recent studies, we found that a rigorous and independent human evaluation process is the
most reliable way to evaluate different models. Commonly used metrics such as the FID score do
not correlate well with human preference (Dai et al., 2023; Podell et al., 2023; Kirstain et al., 2023).

We contracted a team of paid and independent annotators who do not have contexts of our project to
evaluate the generated images. We conducted A/B comparisons on visual flaws and visual appeal,
as well as standalone evaluations on text alignment. We use a 600-prompt list in the GenAI MAGIC
challenge for the evaluation (Tsai et al., 2024), where each example is annotated by at least 5 people
and the majority decision is used.

Visual flaws. The annotators were presented with two images side-by-side, generated by two differ-
ent models, without the prompt. The annotators were trained to identify major flaws (e.g., displaced
body parts) and minor flaws (distorted eyes), and are asked to choose from “left wins”, “tie” and
“right wins”.

Visual appeal. Similar to the visual flaws task, but the annotators are asked to compare which image
is more aesthetically pleasing. Annotators were instructed to reject any examples where one image
was photo-realistic and the other was stylized (e.g., a cartoon).

Text alignment. We predefined a list of binary questions for each prompt and asked annotators
to answer yes or no. We calculated the text alignment rate by aggregating the results across all
questions. For example, for the prompt “a cat and a dog”, the annotators are asked “is there one
dog”, “is there one cat”, and “are there other animals present”.

4.2 EXPERIMENTAL SETUP

Baseline. We tested our model on three models: 1) A 0.6B parameter DiT model with standard
transformer and cross attention blocks and trained with high quality data in an “annealing” stage
after pretraining to generate high quality images, 2) A 0.86B parameter U-Net with LDM1.5 ar-
chitecture (Rombach et al., 2022), replacement-trained on 300M Shutterstock data without quality
tuning, which thus generates lower-quality images without prompt engineering and 3) A larger U-
Net based Emu model (Dai et al., 2023) that has been quality fine-tuned, and generates the highest
quality images among the three.

Supervised fine-tuning. We curated a small, high-quality dataset of 1816 images for fine-tuning,
following the practice of Dai et al. (2023). Since Emu is already quality fine-tuned, we focused
on replacement-trained LDM1.5 and DiT. For supervised fine-tuning with a small dataset, style
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A vibrant bowl of Greek salad, with crisp 
lettuce, ripe tomatoes, cucumbers, feta cheese, 
and a drizzle of olive oil.

A plate of Indonesian nasi goreng, a flavorful 
fried rice dish with shrimp, chicken, vegetables, 
and a hint of sambal sauce.

A couple of glasses are sitting on a table. a drawing of a stork playing a violinA cactus in the desert

Figure 3: SFT with pixel-space loss: DiT. Fine-tuning with our method improves visual quality
and reduces flaws. Zoom in to see details.

consistency is crucial. We found that using a hand-picked set of generated images from a high-
quality model is sufficient. Examples of our curated fine-tune data are in Appendix Figure 6.

Preference-based fine-tuning. We conducted experiments on the higher-quality U-Net Emu and
DiT models. For each model, we generate 5 images per prompt and ask annotators to select a
positive and negative pair. In instances where visual flaws and visual quality conflicted, we prioritize
the image with fewest visual flaws as the positive example.

Implementation details. We run all experiments at 512× 512 resolution for LDM1.5 and DiT, and
768× 768 for Emu, using Adam optimizer with weight decay of 5e− 6. For preference-based fine-
tuning, we set λ = µ = 8.0 for DiT and 2.0 for Emu to balance the pixel loss magnitude and latent
loss magnitude, running 100 epochs. For supervised fine-tuning, we empirically use 140 epochs. We
ablate the hyper-parameters such as learning rate and batch size for each model and choose the best
ones. Each experiment took 1-8 hours on 8 H100 GPUs to fine-tune one model. During inference,
we use the standard DDIM solver with 50 steps with classifier-free guidance.

4.3 EXPERIMENTAL RESULTS

Supervised Fine-tuning. After supervised fine-tuning, our proposed loss improved visual flaws
win rate from 17.7% to 64.2%, and visual quality win rate from 47.9% to 64.7%, compared to
regular fine-tuning against the DiT baseline. When directly comparing the model fine-tuned with
our loss to the model fine-tuned with the regular latent space loss, ours showed a 32.8% vs 9.3% win
rate on visual flaws and 34.8% vs 16.6% win rate on visual appeal. We also found that supervised
fine-tuning did not affect text alignment, with correct alignment rates of 74.0%, 74.3% and 74.0%
for baseline, regular latent fine-tuning, and our fine-tuning respectively, (Table 1), all within the
margin of error for the annotations. Qualitative examples in Figure 3 demonstrate that our method
generates fewer artifacts and much better fine details.

Table 2 show the results for LDM1.5 (replacement trained). Our proposed SFT with pixel loss
still improves over regular latent SFT in head-to-head comparisons (last row). Comparing with
the DiT experiments, the smaller difference between pixel and regular SFT when compared to the
baseline is due to LDM1.5’s lower image generation quality, as it was only replacement trained
with Shutterstock data. Therefore, both regularly SFT-ed and pixel SFT-ed models significantly
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Table 1: Pixel space loss improves supervised fine-tuning: DiT.
Visual Flaws Visual Appeal Text alignment

Model A Model B A Wins Tie B Wins A Wins Tie B Wins Model A Model B

Regular SFT Baseline 17.7% 74.0% 8.3% 47.9% 19.3% 32.8% 74.3% 74.0%
Ours Baseline 64.2% 26.5% 9.3% 64.7% 20.6% 14.8% 74.0% 74.0%

Ours Regular SFT 32.8% 57.8% 9.3% 34.8% 48.6% 16.6% 74.0% 74.3%

Table 2: Pixel space loss improves fine-tuning: Replacement trained LDM1.5.
Visual Flaws Visual Appeal Text alignment

Model A Model B A Wins Tie B Wins A Wins Tie B Wins Model A Model B

Regular SFT Baseline 75.0% 13.7% 11.3% 79.6% 6.9% 13.5% 72.3% 61.4%
Our SFT Baseline 74.2% 16.7% 9.1% 75.2% 10.8% 14.0% 72.1% 61.4%

Our SFT Regular SFT 29.3% 46.7% 24.0% 41.5% 24.0% 34.4% 72.1% 72.3%

Table 3: Our proposed pixel-space objective also significantly improves DPO on the DiT model.
Visual Flaws Visual Appeal Text alignment

Model A Model B A Wins Tie B Wins A Wins Tie B Wins Model A Model B

Regular DPO Baseline 27.5% 63.7% 8.8% 48.3% 39.7% 12.0% 72.8% 74.0%
Ours Baseline 43.3% 43.7% 13.0% 61.2% 24.8% 14.0% 75.7% 74.0%

Ours Regular DPO 31.0% 49.3% 19.7% 43.7% 30.4% 25.9% 75.7% 72.8%

outperform the baseline in terms of visual quality and flawlessness, and supervised fine-tuning in
this case, focuses on learning the overall style and aesthetics of the fine-tune images instead of fine
details. See Figures 1 for qualitative examples. Notably, text alignment also improved with SFT,
consistent with findings from Dai et al. (2023).

Preference-based fine-tuning. Our method also demonstrates exceptional performance in reward-
based fine-tuning, generating significantly more impressive details than the baselines. The results
are best demonstrated qualitatively in Figure 4 and 5. Quantitatively, as shown in Table 3, compared
to regular DPO, our proposed pixel objective function improves the win rate from 27.5% to 43.3%
for visual flaws and 48.3% to 61.2% for visual appeal when evaluated against the baseline DiT.
When doing head-to-head comparison between our method and regular DPO, we achieve win rates
of 31.0% vs 19.7% on visual flaws and 43.7% vs 25.9% on visual appeal. Although unintended, our
method also improves text alignment by 2.9%.

With U-Net based Emu (Figure 5), the baseline model already generates higher-quality flawless
images in most cases. Therefore, the flaw comparison will result in ties in majority of the cases.
Despite this, our proposed method still manages to improve visual flaws win rate from 2.7% to
16.0% and visual appeal from 36.3% to 42.2% as shown in Table 4.

Table 4: Pixel-space objective also improves DPO on Emu.
Visual Flaws Visual Appeal Text alignment

Model A Model B A Wins Tie B Wins A Wins Tie B Wins Model A Model B

Regular DPO Baseline 2.7% 95.3% 2.0% 36.3% 34.9% 28.8% 89.5% 89.2%
Ours Baseline 16.0% 75.5% 8.5% 42.2% 31.4% 26.5% 89.3% 89.2%

Ours Regular DPO 18.3% 70.2% 11.5% 13.7% 80.0% 6.3% 89.3% 89.5%

Additional qualitative examples. We provide additional qualitative examples for each experiment
above in the Appendix.

4.4 ABLATION STUDIES

Latent vs Pixel vs Pixel+Latent Loss. When only using the pixel space loss during supervised
fine-tuning, we noticed that the resulting images had very clear details in the main focus of the image,
but the background tends to be overly blurred as if they are photographs taken with an extremely
narrow depth of field. As shown in Table 5, using pixel space alone also significantly improves
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A bird A spider webAn Emu A pencil holder filled with pencils

A llama brewing teaA clock tower by street next to cars at night. A dog catching a Frisbee in the grass. a drawing of the skyline of New York City

A made up dinner table with a flower vase on the table.

a milk container on a table

Figure 4: Preference-based post-training with pixel-space loss: DiT. The model trained with our
proposed objective function generates more stunning fine details and fewer artifacts.

visual flaws, helping the images look more realistic and crisp. However by combining it with latent
loss, we are able to significantly improve the visual appeal as well, resulting in images with more
stunning details, especially in the background.

Decoding Methodology. Intuitively, to obtain as much image quality and details as possible, one
may consider regressing to an objective function that compares the output to the original starting
image in the pixel space. This involves two steps: first, transforming the predicted noise in the latent
space back to t = 0, then decoding into the pixel space using equation

x0 = D(z0) = D
(

1√
ᾱt

(zt −
√
1− ᾱtϵθ(zt, t))

)
. (8)
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The person is holding a treat for the catA 35 year old woman with light brown 
hair and large black framed glasses

an old man with a long grey beard and 
green eyes

A mermaid is rescuing a drowning sailor 
in a stormy sea.

A milk container on a table A snowflake gently falls to the ground, leaving a 
trail of glitter, bringing joy during the winter 
season's chill, as a flurry of snowflakes dance in 
the air.

A black cat

Woman. Portrait. Close up. Facial detail.

A winding rural road with a sign at the end that says 'dead end' and a 
hanging lantern above the sign, casting a warm glow on the surrounding 
trees. The road is surrounded by tall trees that block out most of the 
sunlight, creating a dark and eerie atmosphere. In the distance, a figure 
can be seen walking towards the sign, their silhouette eerily lit by the 
lantern's glow. The style of the image is mysterious and ominous, with a 
focus on the isolation and loneliness of the road and its surroundings.

Representation of people with collapsing 
quantum systems, very detailed
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Figure 5: Preference-based post-training with pixel-space loss: Emu. Similar to DiT, the Emu
model fine-tuned using our loss generates even better details, despite how the baseline Emu already
generates good quality images with rich details. Zoom in to see the improvements.

Although this method seems like it would be optimal in generating the detail and high quality desired
in the final image, the transformed x0 has a greater variance for larger timesteps, causing the gener-
ated images to be blurry and fuzzy (Appendix Figure 7) since the fine-tuning process was trying to
correct for the estimation error of z0.

Based on this finding, we propose comparing the output directly with the sample in the pixel space
at the current timestep to eliminate the unwanted variations in the previous method, using Equa-
tion 2. Empirically, we have found that even though noisy images are out-of-distribution for the
autoencoder, it still does surprisingly well in reconstructing them.
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Table 5: Ablation study: Supervised fine-tuning method: Latent, Pixel, vs Latent + Pixel (Ours).
Visual Flaws Visual Appeal

Model A Model B A Wins Tie B Wins A Wins Tie B Wins

Latent only Baseline DiT 17.7% 74.0% 8.3% 46.1% 20.7% 33.2%
Pixel only Baseline DiT 43.8% 42.7% 13.5% 44.8% 21.7% 33.5%

Ours (Latent and Pixel) Baseline DiT 64.2% 26.5% 9.3% 63.8% 21.5% 14.7%

Ours (Latent and Pixel) Latent only 32.8% 57.8% 9.3% 34.8% 48.6% 16.6%
Ours (Latent and Pixel) Pixel only 22.7% 60.5% 16.8% 47.5% 38.5% 14.0%

Reference Model in Reward Modeling. Traditionally, DPO (Rafailov et al., 2024; Wallace et al.,
2024) utilizes a reference model, but recently Meng et al. (2024) proposed removing the reference
model (SimPO) in LLMs and showed strong performance. Here, we tested out different combina-
tions of using latent-space loss and pixel-space loss with and without the reference model, as shown
in Table 6. We show that simply adding our proposed pixel loss term can already significantly im-
prove the visual flaws metric using the standard DPO method (53.0% vs 27.5% win rate compared to
baseline DiT model). However, by incorporating SimPO, we achieve both significant improvement
on visual flaws and visual appeal (improving from 27.5% to 43.3% in visual flaws and 47.2% to
61.2% in visual appeal). To the best of our knowledge, this is also the first paper that demonstrates
that the recent success of SimPO can also be extended to diffusion models.

Table 6: Ablation Study: Reward modeling variations vs Baseline DiT
Visual Flaws Visual Appeal

Model Win Tie Lose Win Tie Lose

DPO latent (baseline) 27.5% 63.7% 8.8% 47.2% 40.7% 12.2%
DPO latent + DPO pixel 53.0% 31.5% 15.5% 49.0% 21.0% 30.0%

DPO latent + SimPO pixel 50.7% 35.7% 13.7% 41.3% 22.8% 35.8%
SimPO latent + SimPO pixel (Proposed) 43.3% 43.7% 13.0% 61.2% 24.8% 14.0%

5 LIMITATIONS

Limitations of Baseline Models. Fine-tuning improvements are dependent on the quality of the
original baseline model, and thus fine-tuning using pixel space loss may not always produce signifi-
cant improvements. For example, if the original baseline model already has minimal flaws and high
visual appeal, fine-tuning may not achieve many improvements. In contrast, if the original baseline
foundation model generates significant structural flaws that require the global understanding of the
image composition, fine-tuning with our loss alone may not help eliminate them.

Limitations of Fine-tuning Dataset. Fine-tuning is also dependent on the quality and composition
of the dataset used. Our dataset was hand-curated and consisted of images that followed our def-
inition of high quality and style. Changing the composition of this dataset would lead to different
results.

Limitations of Human Evaluation. The images generated by the different models were evaluated
by independent annotators. Although the annotators were trained on standards for visual flaws,
visual appeal, and text alignment, these results may not fully reflect the real-world use of the models.
Human evaluation is also inherently subjective and noisy in terms of aesthetics.

6 CONCLUSIONS

In this paper, we proposed a novel post-training objective function for latent diffusion models by
incorporating a pixel-space loss with the commonly used latent-space fine-tuning loss. The resulting
model shows noticeable improvement in visual flaws and visual appeal metrics in both supervised
fine-tuning and preference-based post-training through rigorous human evaluations. The proposed
objective function is simple and can be easily plugged into existing models such as DiT and U-Net.
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A APPENDIX

A.1 FINE-TUNE DATASET

Here we show some examples of our supervised fine-tune dataset, which are selected images gener-
ated by Emu (Dai et al., 2023).

Figure 6: Fine-tune dataset. Selected images in our supervised fine-tune dataset.
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A.2 DECODING METHODOLOGY

An alternative decoding methodology would be to transform the latent space back to t = 0, and
then decode it into the pixel space to obtain x0, as discussed in Section 4.4. Figure 7 shows that
if one follows Equation 8 to decode back to t = 0, it leads to blurrier images for larger timesteps.
Therefore, we chose to decode back directly at the present timestep, as discussed in Section 4.4
using Equation 2.

Figure 7: Decoding methodology. Transforming images back to t0 causes the decoded images to
be blurrier for larger timesteps. Therefore, we choose to decode at the present timestep.
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A.3 MORE EXAMPLES
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a cat pushes a bottle from the table black kitten with white chest and yellow - brown 
eyes

A giraffe points its head towards the sky A red car and a white sheep. a motorcycle parked in an ornate bank lobby

A sunset a pair of headphones on a pumpkin a view of the Milllenium Wheel from the Thames A plastic dish with the food sectioned off. A red and white boat floating along a river.

D
PO

Figure 8: More examples: DiT with preference-based fine-tuning. We provide more examples
here to demonstrate the improvements in high-frequency details and visual flaws.
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a massive modern windmill a margarita next to a napkin A Christmas tree with lights and teddy bear A snowman in a top hat, carrot nose, and scarf, 
with coal eyes and a friendly smile, stands 
before a towering volcano, admiring its 
glittering crown from afar, in a winter 
wonderland setting with a whimsical style in 
Reykjavik, Iceland.

A middle-aged woman with curly red hair, 
wearing a green scarf and earrings.

A vintage-style illustration of Mount Everest 
towering over a mountain in the foreground, 
with a small cave visible on its base and the 
words 'Highest Peak' etched into its 
snow-capped summit, while the Rocky 
Mountains loom in the background, home to a 
stunning waterfall that cascades down its 
rugged slope.

A warm glow from a brass lamp with a red 
velvet shade illuminates a polished wooden 
desk, creating a cozy atmosphere in a 
traditional, elegant study.

A snapshot of a girl holding a book, standing in 
front of a large window with natural light 
pouring in, surrounded by a minimalist and 
modern interior design. The girl is smiling and 
lost in thought, while the book she holds is 
opened to a page with a highlighted passage. 
The atmosphere is peaceful and serene.

A realistic depiction of the Pacific Ocean, vast 
and deep, with gentle waves and a vibrant coral 
reef teeming with life, flows into the majestic 
Amazon River as it cascades over a breathtaking 
waterfall.

A pink petunia blossom with a beautiful pot 
emitting a delicate fragrance of lavender beside 
it, set in a serene garden with a soft, warm 
lighting and a romantic atmosphere.

D
PO

Figure 9: More examples: U-Net Emu with preference-based fine-tuning. Similar to the DiT
model, we also observe improvements for Emu, despite how the baseline model already generates
quite high quality images in most cases.
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A corgi wearing a purple bowtie and a 
red party hat

Turin city, high details, 8k, realistic, sharp A dog catching a Frisbee in the grass. a horse in a forest a horse reading a book

A train is traveling down the rail road tracks. A very fancy French restaurant A wine glass on top of a dog. Dog in VR helmet Incredible modern architecture, night time, stars 
in sky, starry sky, dark, lights, warm lights and 
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Figure 10: More examples: DiT with supervised fine-tuning. The model fine-tuned with our
objective function often generates sharper images, which is best appreciated when zooming in. The
model fine-tuned with regular latent loss, on the other hand, is typically blurrier, such as the animals’
furs. Also as shown in many examples here, our model tends to generate fewer flaws.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

R
eg

ul
ar

 S
FT

O
ur

s
R

ep
la

ce
m

en
t t

ra
in

ed
 L

D
M

1.
5

R
eg

ul
ar

 S
FT

O
ur

s

A person with dreadlocks hairstyle wears a 
headband and bohemian outfit with a pair of 
wings, in black and white.

A person wearing a trench coat with a folded 
umbrella visible through the pocket, in a rainy 
cityscape at dusk

A graceful female figure with iridescent wings 
glides through the air, her delicate wings 
glistening in the light, surrounded by a soft, 
dreamy glow, with a serene and peaceful 
atmosphere, as if in a mystical dream world.

A stylish face with neatly trimmed sideburns, 
wearing a pair of earrings, set against a 
minimalist black and white background.
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A table with some oranges and some cups. A robot is exploring a desolate planet on a 
mission to save humanity.

A red car and a white sheep. A herd of giraffe walking along a grassy tree 
covered plain.

A girl in a dress and shirt standing in a field.

A bowl of bananas sitting on the kitchen table.

Figure 11: More examples: U-Net LDM1.5 with supervised fine-tuning. The baseline
replacement-trained LDM1.5 often generates images with bad composition and noticeable artifacts.
Supervised fine-tuning alone helps improve the image quality significantly. Our loss further im-
proves visual quality and flaws. Again, readers can better appreciate the improvements when zoom-
ing in to notice the improvements in the overall sharpness and fine details.
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