
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Dr. CLIP: CLIP-Driven Universal Framework for Zero-Shot Sketch
Image Retrieval
Anonymous Authors

ABSTRACT
The field of Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR)
is currently undergoing a paradigm shift, transitioning from spe-
cialized models designed for individual tasks to more general re-
trieval models capable of managing various specialized scenarios.
Inspired by the impressive generalization ability of the Contrastive
Language-Image Pretraining (CLIP) model, we propose a CLIP-
driven universal framework (Dr. CLIP), which leverages prompt
learning to guide the synergy between CLIP and ZS-SBIR. Specifi-
cally, Dr. CLIP is a multi-branch network based on the CLIP image
encoder and text encoder, which can perfectly cover four variants
of ZS-SBIR tasks (inter-category, intra-category, cross-datasets, and
generalization). Moreover, we decompose the synergy into classifi-
cation learning, metric learning, and ranking learning, as well as in-
troduce three key components to enhance learning effectiveness. 𝑖)
a forgetting suppression idea is applied to prevent catastrophic for-
getting and constrains the feature distribution of the new categories
in classification learning. 𝑖𝑖) a domain balanced loss is proposed
to address sample imbalance and establish effective cross-domain
correlations in metric learning. 𝑖𝑖𝑖) a pair-relation strategy is in-
troduced to capture relevance and ranking relationships between
instances in ranking learning. Eventually, we reorganize and redi-
vide three coarse-grained datasets and two fine-grained datasets
to accommodate the training settings for four ZS-SBIR tasks. The
comparison experiments confirmed our method surpassed the state-
of-the-art (SOTA) methods by a significant margin (1.95%~19.14%,
mAP), highlighting its generality and superiority. Source code link:
https://github.com/xxxxxx.git.

CCS CONCEPTS
• Information systems→ Image search; •Computingmethod-
ologies →Matching.

KEYWORDS
Sketch-based image retrieval, Zero-shot learning, Contrastive language-
image pre-training (CLIP), Universal Framework

1 INTRODUCTION
Image retrieval is an important area in multimodal data retrieval
[11, 14–16]. With the widespread use of handwriting input devices,
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Figure 1: ZS-SBIR research is primarily categorized into
four scenarios: (a) zero-shot coarse-grained sketch-based im-
age retrieval (ZS-CGSBIR), (b) zero-shot fine-grained sketch-
based image retrieval (ZS-FGSBIR), (c) zero-shot cross-dataset
sketch-based image retrieval, and (d) Generalized zero-shot
sketch-based image retrieval (GZS-SBIR).

sketch-based image retrieval (SBIR) have gained popularity. Ex-
isting SBIR methods typically require training for each category,
which becomes impractical when dealing with a large number of
categories [27]. Therefore, recent efforts have primarily focused on
zero-shot sketch-based image retrieval (ZS-SBIR). This task trains
on samples from seen categories and retrieves photo from unseen
categories by using sketches as queries.

Existing ZS-SBIR scenarios can be classified into four types
based on the gallery settings. As shown in Figure. 1(a), zero-shot
coarse-grained sketch-based image retrieval (ZS-CGSBIR) aims
to retrieve photos from a multi-category photo gallery where the
categories of these photos are not seen during the model training
[17, 19, 24, 25, 28, 29, 31, 38]. ZS-CGSBIR struggles to distinguish
intra-category diversity, leading to the development of zero-shot
fine-grained sketch-based image retrieval (ZS-FGSBIR) [2, 3, 20–
22, 36]. As illustrated in Figure. 1(b), ZS-FGSBIR focuses on retriev-
ing photos from gallery with fine-grained subcategories. In practi-
cal applications, we often encounter the need for image retrieval
across different sources and styles of datasets. As depicted in Figure.
1(c), the model is first trained on one dataset and then tested on
another dataset with non-overlapping categories. Zero-shot cross-
dataset sketch-based image retrieval (ZS-CDSBIR) [17, 19, 21, 32]
is designed to simulate this scenario more realistically. Generalized
zero-shot sketch-based image retrieval (GZS-SBIR) [4–6, 10, 13, 40]
extends the task to encompass both seen and unseen categories
simultaneously. This means that during the query process, it is nec-
essary not only to match sketches and photos from seen categories

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: The loss andprecision curves of theCLIP-allmethod
during training on five datasets.

but also to accurately retrieve photos from unseen categories, as
shown in Figure. 1(d). Despite the fact that most existing retrieval
models are designed with a focus on specific tasks, there has been a
noticeable lack of exploration in the development of a comprehen-
sive framework that can effectively address these tasks collectively.

The CLIP model demonstrates remarkable cross-modal repre-
sentation learning and the ability to construct a shared semantic
space in multiple visual tasks [8, 25, 33, 39, 41]. It effectively reasons
in zero-shot tasks. Therefore, we propose a CLIP-driven general
framework for ZS-SBIR tasks targeting four specialized scenarios.
Based on the aforementioned research, we identifiy two major chal-
lenges that constrain the synergy performance between CLIP and
ZS-SBIR. i) During training, we notice that the loss consistently
decreases across five datasets, but the validation accuracy shows a
declining trend (Figure 2). We attribute this to disparity between
CLIP’s pre-training task and the specific requirements of ZS-SBIR
hampers its adaptability, resulting in overfitting. ii) The imbalance
between the number of samples in the photo domain and the sketch
domain, both in terms of categories and overall quantity, can lead
to a sample imbalance between the domains, which has been a
lingering sample problem in SBIR.

To tackle the challenges mentioned above, we devise suitable
objective functions and utilize a balanced cross-domain sampling
strategy. We split the training objective of the Dr. CLIP model
into classification learning, metric learning, and ranking learning,
adopting the training approach of prompt learning [1]. The main
contributions are as follows:

• We propose a novel CLIP-driven universal framework for
multiple zero-shot sketch-image retrieval tasks, which aims
to thoroughly explore the synergy between CLIP and ZS-
SBIR. To the best of our knowledge, this is the first universal
framework that covers four different ZS-SBIR subtasks.

• We introduce CLIP’s existing knowledge distribution to con-
strain the distribution of new class semantic knowledge dur-
ing training, and design a quadruplet loss to measure the
similarity between sketch pairs and sketch-photo pairs, effec-
tively mitigating catastrophic forgetting and domain sample
imbalance issues.

• We utilize a fusion representation that combines textual fea-
tures and image features to measure the semantic correlation
between different categories. Multimodal feature represen-
tation enhances the model’s ability to capture relevant and
ordered relationships among images, resulting in more rea-
sonable and logical search result rankings.

• We establish four ZS-SBIR experimental scenarios on three
coarse-grained datasets and two fine-grained datasets. By
comparing with state-of-the-art methods, the results demon-
strate that our approach achieves the best retrieval accuracy
in each task, showcasing its effectiveness and versatility.

2 RELATEDWORK
2.1 Preliminaries Overview of CLIP
CLIP is a vision-language model developed by OpenAI [23], which
is trained by performing contrastive learning on large-scale im-
age and text data. It has the ability to understand both images
and text simultaneously. The structure of the CLIP model is based
on a shared vision-language encoder, denoted as F(·). Images are
input to the image encoder as a sequence of K uniformly patch
tokens, along with a class token and positional encoding, rep-
resented as [𝐸I,𝐶𝐿𝑆 I] ∈ 𝑅 (𝑘+1) ·𝑑 , and feature projection is per-
formed on the class token to obtain the final visual representation
𝑓 I = FI (𝑉 I). Sentences are input to the text encoder as embeddings
of words, and they are encoded into fixed-length vector repre-
sentations 𝑓 T = FT (𝑉 T). Furthermore, CLIP exhibits potential in
zero-shot learning as it learns shared semantic representations be-
tween images and text. By contrasting the description text of new
categories with images, it enables zero-shot recognition of these
new categories. This presents a novel solution for addressing ZS-
SBIR tasks. Therefore, we aim to explore a CLIP-driven universal
retrieval framework for multiple SBIR tasks in zero-shot scenarios.

2.2 ZS-CGSBIR
In recent years, several remarkable works have been proposed in ZS-
CGSBIR. For instance, SAKE [19] advocates preserving inter-class
relationships obtained from the original domain to achieve sketch-
photo matching tasks. SketchGCN [38] and ACNet [24] both aim
to reduce domain gaps and knowledge gaps for effective retrieval.
TVT [29] and PSKD [31] introduce knowledge distillation, with the
former aligning modalities through distillation and multimodal hy-
persphere learning, and the latter optimizing the student network
using teacher signals extracted from a teacher network. Similar to
TVT, TCN [30] also enhances the transferability of the network
by aligning modality features effectively. Sketch3T [28] proposes a
meta-learning framework that combines discriminative learning
with auxiliary tasks, achieving high accuracy even without any
additional training sketch-photo pairs. The methods most similar
to our proposed approach are ZSE [17] and CLIP-all [25], both of
which propose frameworks capable of simultaneously addressing
coarse-grained and fine-grained ZS-SBIR tasks. The former is a con-
volutional model based on attention mechanisms, while the latter
is based on the CLIP model. This work extends the ideas from [25]
by optimizing the objective function through task decomposition,
not only improving coarse-grained retrieval performance but also
adapting to a wider range of ZS-SBIR tasks.
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2.3 ZS-FGSBIR
This task requires the model to observe subtle differences among
different subcategories, making it more challenging. In recent years,
several outstanding works have been proposed in the field of FGS-
BIR [2, 3, 20–22, 36]. For example, CC-DG [21] learns a universal
fine-grained visual feature descriptor, enabling query sketches to
provide appropriate auxiliary learning for the retrieval network.
Triplet-RL [3] introduces a new reward scheme and proposes a
reinforcement learning-based retrieval framework. MPA [18] in-
troduces a discriminator-guided mechanism that treats generation
and retrieval as two conjugate problems for joint learning. Progress
has also been made in more challenging ZS-FGSBIR tasks. ZSE [17]
is a more general retrieval framework that learns discriminative
features at a finer granularity by establishing local patch correspon-
dences and computing distance scores. CLIP-all [25] is also a more
general retrieval framework that relies on the powerful category
semantic knowledge of the CLIP model. Our work is inspired by
these two general frameworks and modifies the original training
objective of the CLIP-all model to enable it to align fine-grained
features across domains.

2.4 ZS-CDSBIR
ZS-CDSBIR works [17, 19, 21, 32] have demonstrated higher usabil-
ity and reliability in practical applications. For example, CC-DG
[21] plays a crucial role in cross-dataset retrieval tasks by extracting
instance-specific fine-grained features. DSN [32] effectively reduces
the intra-class diversity in the sketch domain by mining relation-
ships among additional augmented samples, smoothing the domain
gap. The ZSE [17] model, known for its excellent ability to extract
general features, is also suitable for sketch retrieval tasks across
datasets. The setting of ZS-CDSBIR allows for a comprehensive
evaluation of the model’s generalization capabilities on completely
different datasets. We have also validated our proposed method and
obtained remarkably promising results.

2.5 GZS-SBIR
Compared to ZS-CDSBIR, the more generalized task of GZS-SBIR
presents greater challenges and is more relevant to real-world ap-
plications. For example, SEM-PCYC [5], Doodle2Search [4], and
OCEAN [40] all alleviate the domain gap by mapping sketches or
photos into a shared semantic space. SEM-PCYC and OCEAN es-
tablish mapping relationships through adversarial training, while
Doodle2Search introduces a novel strategy for mining inter-domain
mutual information. STL [10] proposes a hybrid metric learning
strategy to establish semantic-aware ranking attributes and cali-
brate the joint embedding space. There are also methods that differ
from the above ideas. AMF [13] explores a novel knowledge discov-
ery module to simulate new knowledge unseen during training, cou-
pling the cross-domain distribution between photos and sketches in
the visual space. StyleGuide [6] presents a detection method based
on precomputed unseen class prototypes, where query sketches are
compared only with photo data that is more likely to belong to un-
seen classes, thereby improving retrieval performance. Inspired by
the above methods, we combine the ideas of constructing a shared
semantic space and aligning cross-domain distributions to learn

new knowledge while retaining the original experience, thereby
achieving effective retrieval.

3 THE PROPOSED METHOD
3.1 Zero Shot Setting
The dataset we utilized consists of sketches and photos 𝐼 = {(𝑆𝑖 , 𝑃 𝑗 ) |𝑖 =
0, · · · , 𝑁𝑆 . 𝑗 = 0, · · · , 𝑁𝑃 }. The categories, denoted as𝐶 , are divided
into two distinct sets 𝐶 =

{(
C𝑗

seen,C𝑗
unseen) | 𝑗 = 1, · · · , 𝑁𝐶

}
: visi-

ble classes 𝐶𝑠𝑒𝑒𝑛 and unseen classes 𝐶𝑢𝑛𝑠𝑒𝑒𝑛 , with no overlap be-
tween them (𝐶𝑠𝑒𝑒𝑛 ∩𝐶𝑢𝑛𝑠𝑒𝑒𝑛 = ∅). In the zero-shot scenario, the
training set comprises sketches and photos of the visible classes, rep-
resented as𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑆𝑠𝑒𝑒𝑛, 𝑃𝑠𝑒𝑒𝑛}. Here, 𝑆𝑠𝑒𝑒𝑛 = {(𝑠𝑖 , 𝑦𝑖 ) |𝑦𝑖 ∈ 𝐶𝑠𝑒𝑒𝑛}
represents the sketch of the visible classes, and 𝑃𝑠𝑒𝑒𝑛 represents the
corresponding photos. The test set comprises sketches and photos
of the unseen classes, denoted as 𝐷𝑡𝑒𝑠𝑡 = {𝑆𝑠𝑒𝑒𝑛, 𝑃𝑠𝑒𝑒𝑛}. Similarly,
𝑆𝑢𝑛𝑠𝑒𝑒𝑛 = {(𝑠𝑖 , 𝑦𝑖 ) |𝑦𝑖 ∈ 𝐶𝑢𝑛𝑠𝑒𝑒𝑛} represents the sketch of the un-
seen classes, while 𝑃𝑢𝑛𝑠𝑒𝑒𝑛 represents the corresponding photos.

3.2 Overall Architecture
As shown in Figure. 3. To guide CLIP in learning the distributions
of sketches and photos effectively, we introduce sketch and photo
prompts in the input, represented as 𝑉 =

{
(𝑉 𝑠 ,𝑉 𝑝 ) |𝑉 ∈ 𝑅𝑁𝐶×𝑑

}
.

Through backpropagation, the knowledge learned by CLIP is in-
corporated into the weights of the prompts. During the training
process, while the parameters of layer normalization layers and
prompts weight in the transformer encoder layers are trainable,
and the remaining weights of the CLIP model are keep frozen.
So, specific prompts inject the model to generate sketch features
𝑓S = FS (𝑆,𝑉 𝑠 ) and photo features 𝑓P = FP (𝑆,𝑉 𝑝 ).

To mitigate the risk of overfitting during the training, we also
feed the inputs to the frozen original CLIP image encoder to obtain
the raw features

(
𝑓 ′
𝑆
, 𝑓 ′
𝑃

)
, which are then used to supervise the

training of both branches. Additionally, unlike traditional retrieval
models with classification heads, Dr. CLIP differs in that we at-
tempt to utilize the text encoder of CLIP to further leverage natural
language features fT for obtaining category semantic information.
This enables a richer semantics representation of the textual data
and enhances the model’s ability to understand and interpret the
underlying semantics of the photos and sketches. We utilize the
prompt template ’a photo of a [𝑐𝑙𝑎𝑠𝑠]’ to obtain sentences related
to the labels, where [𝑐𝑙𝑎𝑠𝑠] needs to be replaced with the real class
name. Finally, we employ the acquired image and text features to
undertake a series of learning tasks, including classification learn-
ing, metric learning, and ranking learning. These tasks collectively
improve the model’s ability to generalize and enhance its capability
to represent discriminative features during the training process.

3.3 Forgetting Suppression Classification Loss
For classification learning, we utilize cross-entropy (CE) loss to
encourage the image features to be closely aligned with their cor-
responding ground truth labels. As for the sketch features, we
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Figure 3: The workflow of our method. Dr. CLIP employs a multi-branch network to handle sketches and photos separately,
both initialized with the image encoder (ViT-B/32) of CLIP.

consider their probability distribution:

(𝑦𝑖 |𝑠𝑖 ) =
exp

(
𝑠𝑖𝑚

(
𝑓𝑆𝑖 , 𝑓𝑡𝑖

)
/𝑡
)∑𝑁𝑇

𝑗=1 exp
(
𝑠𝑖𝑚

(
𝑓𝑆𝑖 , 𝑓𝑡 𝑗

)
/𝑡
) (1)

Where 𝑡 represents temperature, and 𝑠𝑖𝑚 (·) denotes cosine sim-
ilarity. The classification loss for sketches :

𝐿𝑆cls =
1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

−log (𝑃 (𝑦𝑖 |𝑠𝑖 )) (2)

The probability distribution of photo features is 𝑃 (𝑦𝑖 |p𝑖 ). The
classification loss of the photos:

𝐿𝑃cls =
1
𝑁𝑃

𝑁 𝑃∑︁
𝑖=1

−log (𝑃 (𝑦𝑖 |p𝑖 )) (3)

To effectively suppress catastrophic forgetting, we aim to main-
tain relative consistency between the distribution of newly learned
class features and the distribution of class features from existing
knowledge [9]. The Encoder’s predicted probability distribution for
different classes as 𝑑𝑖 = 𝑙𝑜𝑔 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑠𝑖𝑚 (𝑓𝑖 , 𝑓𝑡 ))), the predicted
probability distributions for sketches and photos as 𝑑𝑠 and 𝑑𝑝 , and
the distribution from existing knowledge as 𝑑

′
𝑠 and 𝑑

′
𝑝 . Minimizing

the KL divergence between the relative distance distributions of
sketches for different classes:

𝐿𝐹𝑆 =
1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

𝐾𝐿(𝑑s, 𝑑
′
𝑠 ) +

1
𝑁𝑃

𝑁 𝑃∑︁
𝑖=1

𝐾𝐿(𝑑𝑝 , 𝑑
′
𝑝 ) (4)

The sum of the aforementioned losses is referred to as the for-
getting suppression classification loss (𝐿𝐹𝑆𝐶 ).

𝐿𝐹𝑆𝐶 = 𝐿𝑆
𝑐𝑙𝑠

+ 𝐿𝑃
𝑐𝑙𝑠

+ 𝜆1𝐿𝐹𝑆 (5)

𝜆1 is a weight hyperparameter. 𝐿𝐹𝑆𝐶 can assist the model in
learning category semantic knowledge, guiding the model to cor-
rectly recognize the categories of images.

3.4 Domain Balanced Quadruplet Loss
Triplet loss is commonly used to measure the similarity between
positive and negative samples. A triplet typically consists of an
anchor, a positive sample (a different instance of the same category
as the anchor), and a negative sample (an instance from a different
category than the anchor). The anchor is a sketch, and positive and
negative samples are selected from the photo domain, denoted as
(𝑓𝑠 , 𝑓 +𝑝 , 𝑓 −𝑝 ). The triplet loss is represented as follows:

𝐿𝑃𝑇𝑟𝑖 =
1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

max
{
𝑠𝑖𝑚

(
𝑓𝑠 , 𝑓

+
𝑝

)
− 𝑠𝑖𝑚

(
𝑓𝑠 , 𝑓

−
𝑝

)
+𝑚, 0

}
(6)

Where m=0.3 is a margin parameter, and 𝑁𝑆 represents the num-
ber of triplets. Taking domain-balanced sampling into account, the
quadruplet loss extends the triplet framework by adding negative
sketch samples (sketch instances from different categories than the
anchor), creating new quadruplets (𝑓𝑠 , 𝑓 +𝑝 , 𝑓 −𝑝 , 𝑓 −𝑠 ). The new item
as follows:

𝐿𝑆𝑇𝑟𝑖 =
1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

max
{
𝑠𝑖𝑚

(
𝑓𝑠 , 𝑓

+
𝑝

)
− 𝑠𝑖𝑚

(
𝑓𝑠 , 𝑓

−
𝑠

)
+𝑚, 0

}
(7)
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The new domain balanced quadruplet loss (𝐿𝐷𝐵𝑄 ) is represented
as follows:

𝐿𝐷𝐵𝑄 = 𝐿𝑃𝑇𝑟𝑖 + 𝐿
𝑆
𝑇𝑟𝑖 (8)

𝐿𝐷𝐵𝑄 can guide the model in generating embedding represen-
tations where samples within the same category have smaller dis-
tances, while samples from different categories have larger dis-
tances. Such embedding representations facilitate accurate similar-
ity measurement during the testing phase.

3.5 Relation Pair Loss
To facilitate the learning of semantic relationships between sketches
and photos, it is essential to obtain sketch visual features that carry
semantic associations. Following the domain-balanced approach, a
set of image feature lists can be constructed.

𝐿𝑜𝑔𝑖𝑡𝑠𝑆 =

{[
𝑓𝑠𝑖 · 𝑓 𝑇𝑖 , · · · , 𝑓

−
𝑠𝑖

· 𝑓 𝑇𝑖 , · · ·
]
, 𝑖 = 1, · · · , 𝑁𝑆

}
(9)

The photo visual features are represented as 𝐿𝑜𝑔𝑖𝑡𝑠𝑝 . We score
the similarity between each pair of features, resulting in a relation-
ship matrix capturing the relationships between image pairs.

𝑆𝑐𝑜𝑟𝑒 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝑠𝑖𝑚 (𝐿𝑜𝑔𝑖𝑡𝑠𝑆 , 𝐿𝑜𝑔𝑖𝑡𝑠𝑃 )) (10)

Following the rules for constructing the image feature lists, we
can easily obtain the corresponding label lists. Assigning a value
of 1 to indicate the same category and 0 for different categories
results in the relation labels (𝑅𝐿). The relation pair loss (𝐿𝑅𝑃 ) can
be represented as:

𝐿RP =
1
N

N∑︁
i=1

(𝑆𝑐𝑜𝑟𝑒𝑖 , 𝑅𝐿𝑖 )2 (11)

Where 𝑁 represents the number of images in the list.
𝐿𝑅𝑃 can guide the model in learning the similarity relationships

between pairs of samples, aiding the model in capturing the rele-
vance and ranking relationships between images more effectively.

3.6 Overall Objective
The complete loss function for the proposed method can be ex-
pressed as follows:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐹𝑆𝐶 + 𝜆2𝐿𝐷𝐵𝑄 + 𝜆3𝐿𝑅𝑃 (12)

Where 𝜆2 and 𝜆3 are the weight hyperparameters. The optimiza-
tion objective of the model is to find (𝜃𝑆 , 𝜃𝑃 ,𝑉 𝑆 ,𝑉 𝑃 ) that satisfy:(

𝜃𝑆 , 𝜃𝑃 ,𝑉 𝑆 ,𝑉 𝑃
)
= arg𝑚𝑖𝑛

𝜃𝑠 ,𝜃𝑝 ,𝑉 𝑠 ,𝑉 𝑝

𝐿𝑡𝑜𝑡𝑎𝑙 (13)

4 EXPERIMENTS
4.1 Implementation Details
Initialization. The experiments are performed using PyTorch on a
single 16GB Tesla V100 GPU. For the four zero-shot tasks, the input
images are resized to 224*224. The encoder learning rate is 1e-4,
prompt learning rate is 1e-3, batch size is 64, and prompts number
is 3. To ensure that the initial values of each loss component are
around 1.00, the weight hyperparameters 𝜆1, 𝜆2, and 𝜆3 are set to15
, 4, and 4, respectively. In all of the result tables, the red values
indicate the best performance, while the blue values represent the
second-best performance.

Dataset. Table 1 presents detailed quantity information and
partition rules for the five datasets. All the comparative methods
follow the same data partitioning protocol. For the ZS-CGSBIR task.
TU-Berlin Ext [37]: It consists of 20,000 sketches from the TU-
Berlin [7] dataset and an additional 204,489 real photos. This dataset
exhibits significant class imbalance. Sketchy Ext [18]: To facilitate
zero-shot tasks, 21 categories that do not overlap with the ImageNet
dataset were designated as the test set [34], while the remaining 104
categories were used for training. QuickDraw [12]: The sketches
are created by volunteers from around the world within a speci-
fied time limit. For the ZS-FGSBIR task. QMUL-ChairV2 [26] and
QMUL-ShoeV2 [35] are two commonly used fine-grained sketch
datasets. For the ZS-CDSBIR task, the same dataset settings as [17]
were employed. S, T, and Q represent the Sketchy Ext, TU-Berlin
Ext, and QuickDraw datasets, respectively. S→T(21) indicates train-
ing on the Sketchy Ext training set and testing on the TU-Berlin
Ext dataset, selecting 21 categories from TU-Berlin Ext that do not
appear in the Sketchy Ext training set. There are no overlapping
categories between the test and training sets, fulfilling the require-
ments of zero-shot learning. For the GZS-SBIR task, the dataset
processing method from work [13] was adopted. The images of 20%
of the seen categories in the training set were augmented into the
test set, creating generalized retrieval datasets ( TU-Berlin Ext-G,
Sketchy Ext-G) containing both seen and unseen categories.

Evaluation Metrics. To ensure fairness, we adopt three evalu-
ation metrics that are consistent with previous works [13, 17, 25].
Retrieval Precision on Top K (e.g., P@100, P@200) measures the
proportion of correct results that match the query sketch among the
top k retrieval results. Retrieval Accuracy (e.g., acc.@1, acc.@10)
measures the accuracy of the best matching result for a given query
sketch. Mean Average Precision (e.g.,mAP@100,mAP@all) quan-
tifies a comprehensive assessment of the average accuracy across
different numbers of retrieval results.

4.2 Experimental Analysis of ZS-CGSBIR Task
Competitors. The select competitors are ZS-TVT, ZS-PSKD[ViT],
ZS-Sketch3T, TCN, STL, ACNet, ZSE-Ret, and CLIP-all, which are
the ZS-CGSBIR SOTA methods. These methods are based on zero-
shot settings. The experimental results for CLIP-all are from the
public code, while others are from original papers.

It is evident from Table 2 that our proposed method achieves the
highest results across all metrics and three datasets. For example,
our method outperforms the second-best value with a 3.1% im-
provement in P@100 on the TU-Berlin Ext dataset, a 2.7% increase
in mAP@200 on the Sketchy Ext dataset, and a 4.8% enhancement
in mAP@all on the QuickDraw dataset.

We select the top-performing three methods to showcase real
retrieval cases, as illustrated in Figure. 4. It is visually evident that
our proposed method exhibits fewer erroneous results compared
to the other two methods. Furthermore, our retrieval results are
visually more similar to the query sketches. For example, for the
’𝑑𝑢𝑐𝑘’ query sketch, our method prioritizes returning photos with
consistent poses and actions, rather than solely focusing on pho-
tos with matching categories. For the ’𝑠𝑐𝑖𝑠𝑠𝑜𝑟𝑠’ query sketch, our
method mistakenly returns an photo of a sword. However, upon
closer observation, it is apparent that this sword photo bears a high
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Table 1: Datasets used in four ZS-SBIR tasks: quantity, partition information, * denotes computed mean values, not actual values.

Items ZS-CGSBIR ZS-FGSBIR ZS-CDSBIR GZS-SBIR
TU-Berlin Ext Sketchy Ext QuickDraw ChairV2 ShoeV2 S→T(21) S→Q(11) T→S(8) T→Q(10) TU-Berlin-G Sketchy-G

Classes 250 125 110 400 2,000 125 115 228 230 250 125
Training classes 220 104 80 300 1,800 104 104 220 220 220 104
Testing classes 30 21 30 100 200 21 11 8 10 74 42

Sketches 20,000 75,471 330,000 1,275 6,730 64,467 95,798 22,127 47,600 20,000 75,471
Sketches per class 80 600* 3,000 2∼4 1∼4 603*/80 603*/3,000 80/566* 80/3,000 80 600*

Photos 204,489 73,002 204,000 400 2,000 79,084 82,106 182,156 197,380 204,489 73,002
Photos per class 818* 584* 1,854* 1 1 600*/787 600*/1,778* 811*/474* 811*/1,902* 818* 584*

Table 2: Comparison of the proposed method and competitors on the TU-
Berlin Ext, Sketchy Ext and QuickDraw datasets in the ZS-CGSBIR task.

TU-Berlin Ext Sketchy Ext QuickDrawCompetitors mAP@all P@100 mAP@200 P@200 mAP@all P@200
ZS-TVT(AAAI2022)[29] 0.484 0.662 0.531 0.618 0.149 0.293

ZS-PSKD[ViT](ACM MM2022)[31] 0.502 0.662 0.560 0.645 0.150 0.298
ZS-Sketch3T(CVPR2022)[28] 0.507 0.671 0.579 0.648 - -

TCN(TPAMI2022)[30] 0.495 0.616 0.516 0.608 0.140 0.231
STL(AAAI2023)[10] 0.402 0.498 0.634 0.538 - -

ACNet(TCSVT2023)[24] 0.577 0.658 0.517 0.608 - -
ZSE-Ret(CVPR2023)[17] 0.569 0.637 0.504 0.602 0.142 0.202
CLIP-all(CVPR2023)[25] 0.656 0.732 0.713 0.680 0.194 0.225

Our 0.685 0.763 0.74 0.706 0.242 0.312

Figure 4: Comparative analysis of query sketches and top 5
results on two coarse-grained datasets. Correct results are
marked in green, while incorrect results are marked in red.

resemblance to the local features of the query sketch. In contrast,
the erroneous results returned by other methods do not exhibit
such visual similarity.

4.3 Experimental Analysis of ZS-FGSBIR Task
Competitors. We chose CC-Gen, Triplet-RL, and MPA as competi-
tors, which are the FGSBIR methods. And consider two variants
of ZSE (ZSE-Ret, ZSE-Rn) and CLIP-all as competitors, which are
the ZS-FGSBIR SOTA methods. ZSE and CLIP-all results are from
public code, while others are from original papers.

The proposedmethod achieves ideal results across all metrics and
two fine-grained datasets. Compared to the ZS-FGSBIR method, our
approach also performs admirably. For example, on the ChairV2
dataset, the difference in acc.@10 compared to the best mAP is
only 1.28%, but compared to the baseline model CLIP-all, acc.@1
and acc.@10 have improved by 19.94% and 13.19%, respectively.
On the ShoeV2 dataset, acc.@10 is 4.23% higher than the second-
best mAP. Although our method is not optimal, it still achieves
comparable performance to the best methods. We select the top
three performing methods and showcase real retrieval cases in

Table 3: Comparison of the proposed method and competitors on the ChairV2
and ShoeV2 datasets in the ZS-FGSBIR task.

ChairV2 ShoeV2Task Competitors acc.@1 acc.@10 acc.@1 acc.@10
CC-DG(CVPR2019)[21] 0.5421 0.8823 0.338 0.7786
Triplet-RL(2020 CVPR)[3] 0.5654 0.8961 0.341 0.7882FGSBIR

MPA(2021CVPR)[2] 0.533 0.875 0.334 0.807
ZSE-Ret(CVPR2023)[17] 0.6431 0.926 0.3171 0.6733
ZSE-RN(CVPR2023)[17] 0.6334 0.9453 0.2206 0.6977
CLIP-all(CVPR2023)[25] 0.3183 0.8006 0.1216 0.4895ZS-FGSBIR

Our 0.5177 0.9325 0.255 0.740

Figure 5: Comparative analysis of query sketches and top
5 results on two fine-grained datasets. Correct results are
marked in green, while incorrect results are marked in red.

Figure. 5. It is evident that our method exhibits higher accuracy
in TOP-1 and TOP-5 results compared to the other two methods.
Additionally, in the TOP-5 results, our method consistently ranks
correct results higher. For example, in the ChairV2 dataset, with a
query sketch of "leg makeup chair," our method retrieves the correct
result in the first position, while the other two methods are ranked
third and fifth, respectively.

4.4 Experimental Analysis of ZS-CDSBIR Task
Competitors.We select DSN, ZSE-Rn, and CLIP-all, which are the
ZS-CDSBIR SOTA methods. CLIP-all results are from public code,
while others are from original papers.

It is evident that the proposed method achieves the highest re-
sults across all metrics and the three datasets. As shown in Table 4,
our method exhibits an average improvement of 9.02% and 8.85%
in P@100 and mAP@all, respectively, across the four datasets. The
most significant improvement is observed in the S→T(21) dataset,
where our method outperforms the second-best method by 15.38%
in P@100 and 19.14% in mAP@all, achieving highly favorable re-
trieval performance. On the T→Q(10) dataset, our method achieves
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Table 4: Comparison of the proposed method and competitors on the newly generated datasets in the ZS-CDSBIR task.

S→T(21) S→Q(11) T→S(8) T→Q(10)Competitors P@100 mAP@all P@100 mAP@all P@100 mAP@all P@100 mAP@all
CC-DG(CVPR2019)[21] 0.434 0.308 0.227 0.156 0.693 0.624 0.296 0.231
DSN(IJCAI2021)[32] 0.469 0.356 0.178 0.149 0.654 0.613 0.246 0.218

ZSE-RN(CVPR2023)[17] 0.59 0.476 0.228 0.338 0.816 0.746 0.376 0.273
CLIP-all(CVPR2023)[25] 0.5519 0.4799 0.3595 0.3584 0.8573 0.8306 0.5192 0.4621

Our 0.7438 0.6713 0.5149 0.4733 0.8901 0.8588 0.5380 0.4816

Table 5: Comparison of the proposed method and competitors on the Sketchy-G, and TU-Berlin-G datasets in the GZS-SBIR task.

Sketchy-G TU-Berlin-GCompetitors P@100 P@200 mAP@200 mAP@all P@100 P@200 mAP@200 mAP@all
SEM-PCYC(CVPR2019)[5] 0.3405 0.3229 0.3749 0.2355 0.2192 0.2098 0.2411 0.1415

Doodle2Search(CVPR2020)[4] 0.3747 0.3348 0.4214 0.3104 0.0491 0.0448 0.0685 0.0439
OCEAN(ICME2020)[40] 0.548 0.443 0.547 0.445 0.341 0.319 0.369 0.312
STL(AAAI2023)[10] 0.584 0.541 0.636 0.533 0.503 0.472 0.532 0.406
AMF(TIP2022)[13] 0.4383 0.4249 0.4545 0.38 0.2376 0.2255 0.2587 0.1622

CLIP-all(CVPR2023)[25] 0.6986 0.6862 0.6593 0.6593 0.6846 0.6545 0.7063 0.6077
Our 0.7288 0.7135 0.739 0.6836 0.7219 0.6894 0.7432 0.6529

Table 6: Different variants in the ZS-CGSBIR task are evaluated based on four metrics on the category-level dataset.

TU-Berlin Ext Sketchy Ext QuickDrawCompetitor P@100 P@200 mAP@200 mAP@all P@100 P@200 mAP@200 mAP@all P@100 P@200 mAP@200 mAP@all
baseline 0.732 0.697 0.7564 0.656 0.704 0.6802 0.7131 0.6427 0.225 0.2254 0.1913 0.1943
𝑤/𝑜 FSC 0.7598 0.7129 0.7744 0.6798 0.7282 0.7025 0.7384 0.6697 0.2892 0.2858 0.3104 0.2312
𝑤/𝑜 DBQ 0.7512 0.7073 0.7654 0.6766 0.7175 0.6932 0.7283 0.6633 0.2721 0.2675 0.2946 0.2119
𝑤/𝑜 RP 0.7403 0.6934 0.7557 0.6542 0.7095 0.6825 0.7197 0.6467 0.2886 0.2855 0.3103 0.2228
Our 0.7634 0.7174 0.7756 0.6847 0.7311 0.7064 0.7395 0.6761 0.2911 0.286 0.3125 0.2424

a relative improvement of 1.88% in P@100 and 1.95% in mAP@all
compared to the second-best method. Furthermore, we discover
an interesting phenomenon. On the QuickDraw dataset, models
trained on the T→Q(10) and S→Q(11) datasets surprisingly ex-
hibit better retrieval performance than models trained solely on
QuickDraw itself. Upon analysis, we find that the sketch quality
in QuickDraw is significantly lower compared to the other two
datasets. QuickDraw provides a larger number of sketch samples,
but it also introduces a considerable amount of noise.

4.5 Experimental Analysis of GZS-SBIR Task
Competitors.We select SEM-PCYC, Doodle2Search, OCEAN, STL,
AMF, and CLIP-all as competitors, which are the GZS-SBIR SOTA
methods. CLIP-all results are from public code, while others are
from original papers.

As shown in Table 5, it is obvious to observe that the proposed
method achieves the highest result on all metrics and two datasets.
On the two datasets, our method achieves an average improvement
of 3.38%, 3.11%, 5.83%, and 3.48% in P@100, P@200, mAP@200,
and mAP@all, respectively, compared to the second-best value.
Compared to the AMF method, our method achieves highly favor-
able retrieval performance. Surprisingly, combining the results in
Table 2 and Table 5, our method does not significantly decrease
the retrieval accuracy when additional seen classes are introduced
in the test data. This indicates that our method possesses stronger

Table 7: Different variants in the ZS-FGSBIR task are evaluated based on four
metrics on the fine-grained datasets.

ChairV2 ShoeV2Competitor acc@1 acc@5 acc@10 acc@1 acc@5 acc@10
baseline 0.3183 0.6656 0.8006 0.1216 0.3423 0.4895
𝑤/𝑜 FSC 0.4598 0.8135 0.9196 0.2252 0.5375 0.6982
𝑤/𝑜 DBQ 0.3923 0.7781 0.9164 0.1967 0.515 0.6802
𝑤/𝑜 RP 0.434 0.8006 0.9035 0.2267 0.5225 0.6907
Our 0.5177 0.8457 0.9325 0.255 0.565 0.74

learning and adaptation capabilities, enabling it to handle the simi-
larities and differences between seen and unseen classes and address
the challenges of complex task scenarios.

4.6 Ablation Study
The symbol ’𝑤/𝑜’ indicates the removal of a specific loss term. We
evaluate the importance of each loss term. Table 6 and Table 7 pro-
vide a statistical comparison of these variants across five different
metrics, both on the category-level and the fine-grained dataset.

According to the results in Table 6, our method achieve an av-
erage improvement of 2.49%, 2.83%, and 7.40% over the baseline
method on the TU-Berlin Ext, Sketchy Ext, and QuickDraw datasets,
respectively. This indicates the effectiveness of our optimization
strategies, specifically highlighting the contribution of each loss
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Figure 6: The loss and precision curves of the proposed
method during training on five datasets

Figure 7: The class feature distributions (t-SNE) generated
by the𝑤/𝑜 DBQ and our method on the TU-Berlin Ext and
Sketchy Ext validation sets.

term in enhancing category-level sketch retrieval performance.
Analyzing the average improvement across different datasets, we
observed that the impact on the final retrieval accuracy followed the
order of RP>DBQ>FSC. This suggests that improving the matching
between image-text pairs is particularly beneficial for enhancing
the semantic understanding ability of the model on coarse-grained
data. It is worth noting that the design objective of the FSC loss is
to prevent forgetting knowledge during the training process and
mitigate overfitting. As shown in Figure 6, we visualize the curve
for verifying accuracy during the training process again.

As shown in Table 7, our method achieve an average improve-
ment of 4.99% and 4.45% over the baseline on the ChairV2 and
ShoeV2 datasets, respectively, demonstrating the effectiveness of

Figure 8: Visualization of the feature correlation matrix for
sketch-photo pairs of ten classes on the Sketchy Ext.

our approach. Specifically, each loss term contributed to better
fine-grained sketch retrieval performance. Analyzing the average
improvement across different datasets, we observed that the impact
on the final retrieval accuracy followed the order of DBQ>RP>FSC.
This indicates that enhancing the matching between sketch-photo
pairs is particularly beneficial for improving the discriminative abil-
ity of the model on fine-grained data. Additionally, we attempted
to illustrate the impact of each loss term on the model through
visualizations. Figure. 6 shows that the FSC loss eliminates the
overfitting phenomenon of the CLIP model during training on the
ChairV2 and ShoeV2 datasets. In Figure. 7, we visualize the feature
projections of two validation sets using the 𝑤/𝑜 DBQ model and
our model (with 100 randomly select return samples per class for
Sketchy). Our model successfully differentiated the overlapping
class data that the𝑤/𝑜 DBQ model could not. In Figure. 8, we select
the mean features of sketches and photos for 10 classes from the
validation set and plot the correlation matrix between sketch-photo
pairs. The𝑤/𝑜 RP model achieve a higher correlation for intra-class
pairs compared to inter-class pairs. Therefore, our method not only
achieve a higher correlation for intra-class pairs but also capture
similarities between similar pairs, such as ’𝑑𝑜𝑜𝑟 ’ and ’𝑐𝑎𝑏𝑖𝑛’, ’𝑚𝑜𝑢𝑠𝑒’
and ’𝑟𝑎𝑐𝑐𝑜𝑜𝑛’, which have inherent visual similarities. This strategy
helps align the ordering of the returned results more closely with
the principles of human visual sorting.

5 CONCLUSION AND FUTUREWORK
Most existing ZS-SBIR models are primarily tailored for specific
tasks. This limitation poses a significant barrier to their widespread
implementation in real-world environments. The CLIP-driven uni-
versal framework (Dr. CLIP) is an attempt to lift zero-shot sketch-
based image retrieval into the era of universal models. Our principal
contributions are a new task (all variants of ZS-SBIR with just one
network) and model (Dr. CLIP) that make this leap possible. The
model is evaluated on five datasets across four experimental envi-
ronments, and comparisons are made with recent state-of-the-art
methods. The experimental results unequivocally demonstrate the
versatility and superiority of our approach. In future research, we
will further explore and exploit the synergies between visual lan-
guage models and retrieval tasks to delve deeper into this field.
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