
A Preliminaries on the Clarke subdifferential and the KKT conditions

Below we define the Clarke subdifferential, and review the definition of the KKT conditions for
non-smooth optimization problems (cf. Lyu and Li [2019], Dutta et al. [2013]).

Let f : Rd → R be a locally Lipschitz function. The Clarke subdifferential [Clarke et al., 2008] at
x ∈ Rd is the convex set

∂◦f(x) := conv
{
lim
i→∞

∇f(xi)
∣∣∣ lim
i→∞

xi = x, f is differentiable at xi

}
.

If f is continuously differentiable at x then ∂◦f(x) = {∇f(x)}. For the Clarke subdifferential the
chain rule holds as an inclusion rather than an equation. That is, for locally Lipschitz functions
z1, . . . , zn : Rd → R and f : Rn → R, we have

∂◦(f ◦ z)(x) ⊆ conv

{
n∑

i=1

αihi : α ∈ ∂◦f(z1(x), . . . , zn(x)),hi ∈ ∂◦zi(x)

}
.

Consider the following optimization problem
min f(x) s.t. ∀n ∈ [N ] gn(x) ≤ 0 , (7)

where f, g1, . . . , gn : Rd → R are locally Lipschitz functions. We say that x ∈ Rd is a feasible point
of Problem (7) if x satisfies gn(x) ≤ 0 for all n ∈ [N ]. We say that a feasible point x is a KKT point
if there exists λ1, . . . , λN ≥ 0 such that

1. 0 ∈ ∂◦f(x) +
∑

n∈[N ] λn∂
◦gn(x);

2. For all n ∈ [N ] we have λngn(x) = 0.

B Details on Example 1

We use here the notation Φ(θ;x) = Nθ(x), and denote by σ′(·) a sub-gradient of σ, namely,
σ(z) = 1[z > 0] if z ̸= 0 and σ′(0) ∈ [0, 1] (the exact value in this case is not important here). For
every j ∈ {1, 2} we have

∇wj
L(θ) = 1

2

2∑
i=1

ℓ′(yiΦ(θ;xi)) · yi∇wj
Φ(θ;xi)

=
1

2

2∑
i=1

ℓ′(v1σ(w1xi + b1) + v2σ(w2xi + b2)) · vjσ′(wjxi + bj)xi .

Likewise,

∇vjL(θ) =
1

2

2∑
i=1

ℓ′(yiΦ(θ;xi)) · yi∇vjΦ(θ;xi)

=
1

2

2∑
i=1

ℓ′(v1σ(w1xi + b1) + v2σ(w2xi + b2)) · σ(wjxi + bj)

and

∇bjL(θ) =
1

2

2∑
i=1

ℓ′(yiΦ(θ;xi)) · yi∇bjΦ(θ;xi)

=
1

2

2∑
i=1

ℓ′(v1σ(w1xi + b1) + v2σ(w2xi + b2)) · vjσ′(wjxi + bj) .

Note that if w2 = b2 = v2 = 0 then we have ∇w2L(θ) = ∇v2L(θ) = ∇b2L(θ) = 0. Since these
parameters are initialized at zero, then they remain zero throughout the training. Moreover, Suppose
that w1 = 0 and b1 = v1 = α for some α > 0, and that w2 = b2 = v2 = 0, then we have

−dw1

dt
= ∇w1

L(θ) = 1

2

2∑
i=1

ℓ′(ασ(α)) · ασ′(α)xi =
1

2

(
ℓ′(α2) · α · 4 + ℓ′(α2) · α · (−4)

)
= 0 ,

14



−dv1
dt

= ∇v1L(θ) =
1

2

2∑
i=1

ℓ′(ασ(α)) · σ(α) = 1

2

2∑
i=1

ℓ′(α2) · α ,

−db1
dt

= ∇b1L(θ) =
1

2

2∑
i=1

ℓ′(ασ(α)) · ασ′(α) =
1

2

2∑
i=1

ℓ′(α2) · α .

Hence, for every t we have w1(t) = 0 and b1(t) = v1(t) = α(t) where α(t) > 0 is monotonically
increasing.

As a result, the KKT point θ∗ is such that w∗
2 = b∗2 = v∗2 = w∗

1 = 0, and b∗1 = v∗1 = α∗ for some
α∗ > 0. Since θ∗ satisfies the KKT conditions of Problem (4), then we have

α∗ = b∗1 =

2∑
i=1

λiyi∇b1Φ(θ
∗;xi) ,

where λi ≥ 0 and λi = 0 if yiΦ(θ∗;xi) ̸= 1. Hence, there is i such that yiΦ(θ∗;xi) = 1. Thus, we
have 1 = yiΦ(θ

∗;xi) = (α∗)2 which implies α∗ = 1. Therefore θ∗ = θ(0).

C Proof of Theorem 3.1

Before we prove the theorem, we first state a few definitions that are specific for this appendix.
Let S = {(xi, yi)}ni=1 ⊆ [−R,R] × {−1, 1} be a dataset such that x1 < . . . < xn and let
I = {i ∈ [n − 1] : yi ̸= yi+1} where we denote the elements of I using i1 < . . . < ir, and
i0 = −R, ir+1 = R, where r = |I|. For all j ∈ [r + 1], define Ij = (ij−1, ij + 1) which is the j-th
interval where the instances in the data do not change their classification.5 Given some function L
and real number α, we let L+

α (L) := {θ : L(θ) ≥ α} denote the α-superlevel set of L.

Next, we state the following definitions, which establish sufficient conditions for our objective function
to be well-behaved in the sense of having a strict direction of descent in a certain neighborhood.

Definition C.1 (Separability). Under Assumption 2.2, we say that θ is separable from S with positive
constants γ,m < M, q < Q if for all j ∈ [r + 1], there exist three neurons with weights and biases
denoted by wi(Ij) and bi(Ij) for i ∈ [3], and breakpoints β1(Ij) < β2(Ij) < β3(Ij) ∈ Ij , which
satisfy the following items:

1. m ≤ |wi(Ij)| and |bi(Ij)| ≤ M for all i ∈ [3].

2. There exist four neurons, two with breakpoints in each of the intervals (−∞, 0), (0,∞),
that are distinct from the neurons in the previous item, are active on all the data instances
and whose weights w′

i, b
′
i satisfy m ≤ |w′

i| and |b′i| ≤ M for all i ∈ [4]. Moreover, their
breakpoints satisfy |βi| ≤ Q for all i ∈ [4].

3. q ≤ β2(Ij)− β1(Ij), β3(Ij)− β2(Ij) ≤ Q for all j ∈ [r + 1].

4. |β1(Ij+1)− β3(Ij)| ≤ Q for all j ∈ [r].

5. xij+1 − xij ≥ γ for all j ∈ [r].

If the triplet of neurons satisfying the above items in an interval is not distinct, we assume w.l.o.g.
that β1(·) and β3(·) return the left-most and right-most breakpoints satisfying the above, respectively.

The following definition is used to describe a neighborhood around the initialization point in which
our separability assumption above holds.

Definition C.2 (∆-hidden Neighborhood). Given a network N (·), weights θ and a constant ∆ ≥ 0,
we define the ∆-hidden Neighborhood of N at θ as the set

U∆(θ) :=
{
θ′ = [w′,b′,v′] :

∥∥(wj , bj)− (w′
j , b

′
j)
∥∥
2
≤ ∆ ∀j ∈ [k], v′ ∈ Rk

}
.

5We note that these intervals overlap and thus do contain instances that change classification with respect to
the teacher network, but not with respect to the sample.
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That is, the neighborhood of balls of radius ∆ centered at each hidden neuron of θ and where the
output neuron weights are arbitrary.

Following the above definitions, the following auxiliary lemmas will be used in the proof of the
theorem. The technical lemma below establishes that a certain binary matrix is invertible and provides
a bound on the spectral norm of its inverse.
Lemma C.1. Suppose that A ∈ {0, 1}d×d, such that the first row of A is all-ones, and each
subsequent row i is either (1, . . . , 1, 0, . . . , 0) with i − 1 leading ones or (0, . . . , 0, 1, . . . , 1) with
i− 1 leading zeros. Then A is invertible and we have

∥∥A−1
∥∥

sp ≤ d.

Proof. The invertability of A follows from the fact that the first row of A is an all-ones vector, since
we can use elementary row operations to change all subsequent rows to start with a ‘0’ and end with a
‘1’ if needed, resulting in an upper triangular matrix with all-ones on its main diagonal which is thus
invertible. To bound

∥∥A−1
∥∥

sp, let Id ∈ {0, 1}d×d denote the identity matrix. We will use Gaussian
elimination to compute the entries of A−1. We first subtract the first row from all the other rows that
do not have leading zeros and then multiply by the constant −1. Performing the same operation on Id
results in a matrix B whose rows are either standard unit vectors or the vector (1, . . . , 1, 0, 1, . . . , 1).
The resulting matrix after performing these operations on A is and upper triangular matrix with ones
in all of its diagonal and above the diagonal entries. Since it is readily seen that the inverse of such a
matrix is a matrix with all zero entries except for the main diagonal which is all-ones and the first
diagonal above it which comprises of all −1’s. Denote this matrix using B′, we have that the inverse
of A is given by B · B′. The entries of A−1 therefore must consist of dot products of a standard
unit vector and vectors (0, . . . , 0, 1,−1, 0, . . . , 0), or the vector (1, . . . , 1, 0, 1, . . . , 1) and vectors
(0, . . . , 0, 1,−1, 0, . . . , 0). In both cases the dot product is an element of {−1, 0, 1}, and therefore
we can bound

∥∥A−1
∥∥

sp by the Frobenius norm of A−1 which is at most d.

The following key lemma establishes that when θ is separable from S then there exists a direction in
weight space which strictly decreases our objective value.
Lemma C.2. Under Assumption 2.2, suppose that θ is separable from S with constants γ,m,M, q,Q,
and that L(θ) ≥ 1

2n . Then
1

2
∥∇L(θ)∥22 ≥ γ2q2m6

259200n4Q2M4
.

Proof. Since L(θ) > 1
2n , there must exist some i ∈ [n] such that ℓ(yiΦ(θ;xi)) > 1

2n . We now
consider two possible cases, depending on the location of xi with respect to the breakpoints whose
existence is guaranteed by Def. C.1, where will show the existence of a direction u which guarantees
that L(θ) is strictly decreasing.

• Suppose that xi ∈ Iℓ for some ℓ ∈ [r+1], such that xi ∈ (β1(Iℓ), β3(Iℓ)). Assume without
loss of generality that xi ∈ (β2(Iℓ), β3(Iℓ)) (the proof is symmetric otherwise), and for
ease of notation denote β2 := β1(Iℓ), β3 := β2(Iℓ), β4 := β3(Iℓ). Then by Item 2 in the
separability assumption, there exists a breakpoints β1 < β2 such that all data instances
in (β2, β4) have the same classification and the neuron with breakpoint at β1 is active on
all the data instances. Moreover, Item 2 also guarantees the existence of two breakpoints
that are distinct from the previous ones, which we denote by β5, β6, where β5 < β1 < 0
and β6 > 0 are active on all the data points. We will now show the existence of a depth-2
ReLU network which consists of six hidden neurons with weights w = (w1, . . . , w6) and
biases b = (b1, . . . , b6) (corresponding to the breakpoints β1, . . . , β6 defined above) which
computes the piece-wise linear function f : [β1, β6) → R given by

f(x) :=


0 x ∈ [β1, β2]

1
β3−β2

x− β2

β3−β2
x ∈ (β2, β3)

1
β3−β4

x− β4

β3−β4
x ∈ [β3, β4]

0 x ∈ (β4, β6)

.

The intuition behind the approximation is that we can use the first four neurons to approxi-
mate the slopes of the function f , and the last two remaining neurons to simulate a bias term
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Figure 1: The plots of f(x) (green) and Φ(θ;x) + h · f(x) (black) for various values of h. Moving
θ in the direction of u which computes f(·) strictly decreases the loss over the positively-labeled
instances in the interval (0, 2) without affecting the rest of the dataset. Best viewed in color.

which would shift the function approximated by the network to overlap f in the relevant
domain of approximation (see Figure 1 for an illustration).

More formally, define W := diag(w1, . . . , w4) ∈ R4×4, define the masking matrix A ∈
R4×4 with entries aj,j′ = 1 {j-th neuron is active on the interval starting with βj′} and let

d =

(
0,

1

β3 − β2
,

1

β3 − β4
, 0

)
.

Thus, to match the slopes computed by the a depth-2 ReLU network with weights w,b to
those of f , we first want the output neuron’s weights v = [v1,v2] ∈ R4 × R2 to satisfy
the equality A⊤Wv1 = d. To this end, we have by Lemma C.1 that A is invertible and∥∥A−⊤

∥∥
sp ≤ 4. It then follows that v1 = W−1A−⊤d, which entails

∥v1∥2 ≤
∥∥W−1

∥∥
sp

∥∥A−⊤∥∥
sp ∥d∥2 . ≤

8
√
2

qm
, (8)

where we used the separability assumption, implying that ∥d∥2 ≤
√
2q−1 due to Item 3

which guarantees that β3 − β2, β4 − β3 ≥ q, and the lower bound assumption |wi| ≥ m for
all i ∈ [4] which holds by Items 1 and 2. Next, we use the two neurons with breakpoints at
β5, β6 to shift the network by a constant so that it overlaps with f on the interval [−R,R].
To perform this shift, we first compute the magnitude by which we wish to shift which is
given by the expression

b0 := −
4∑

j=1

vjbj1 {wjx+ bj > 0 ∀x ∈ (βj′ , βj′+1)} .

Letting

P :=

(
b5 b6
w5 w6

)
,

we have that the neurons with breakpoints at β5, β6 compute a function which equals b0 on
the interval [β5, β6] when the equality P · v2 = (b0, 0)

⊤ is satisfied. We will now compute
P−1 and show that it is well-defined. The inverse of a 2× 2 matrix is given by

P−1 =
1

b5w6 − b6w5

(
w6 −b6
−w5 b5

)
=

1

β6 − β5

(
1
w5

− b6
w5w6

− 1
w6

b5
w5w6

.

)
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Using the above, we can upper bound the spectral norm of P−1 by upper bounding 1/(β6 −
β5) with 1

2R ≤ 1
2 since β5, β6 are outside the interval [−R,R] at opposite sides and R ≥ 1

by Assumption 2.2, and by upper bounding the spectral norm of the matrix with its Frobenius
norm by using Item 2, to obtain ∥∥P−1

∥∥
sp ≤ M

m2
.

Similarly, we derive an upper bound on |b0| using Cauchy-Schwartz and Items 1 and 2 to
obtain

|b0| ≤ ∥v1∥2 ∥b∥2 ≤ 2M ∥v1∥2 .

With the above, we can bound the norm of v2 as follows

∥v2∥2 =
∥∥P−1 · (b0, 0)⊤

∥∥
sp ≤ 2M2

m2
∥v1∥2 . (9)

We now define u as the all-zero vector, except for the six output neuron entries corresponding
to the neurons with breakpoints β1, . . . , β6, where the coordinates of u take the values
yiv1, . . . , yiv6. Note that this entails

∥u∥2 =

√
∥v1∥22 + ∥v2∥22 ≤ ∥v1∥2

√
1 +

4M4

m4
≤ 8

qm

√
2 +

8M4

m4
≤ 8

√
10

M2

qm3
,

(10)
where we have used Eq. (8) and the fact that 1 < M/m. Next, we have for all j ∈ [n] and
h > 0 that

yjΦ

(
θ +

h

∥u∥
u;xj

)
= yj

(
Φ(θ;xj) +

h

∥u∥
yif(xj)

)
.

Observe that all data points satisfy xj ∈ [β5, β6], and are therefore unaffected by the
value Φ(·, x) attains for x’s outside of this interval. Additionally, f(x) = 0 for all x ∈
[β1, β2] ∪ (β4,∞), which also keeps Φ(·, x) unaffected by moving in the direction of u.
Moreover, since the sign of data instances in xj ∈ (β2, β4] is always yi, we have that

yjΦ

(
θ +

h

∥u∥
u;xj

)
= yjΦ(θ;xj) +

h

∥u∥
f(xj) ≥ yjΦ(θ;xj).

Lastly, for xi we have that xi ∈ [β3, β4], and that xi is at distance at least γ from the
boundary by Item 5 in our separability assumption. By Item 3, this implies that f(xi) is at
least γ

β4−β3
≥ γ

Q , which with the above equation and our bound from Eq. (10) yields

yiΦ

(
θ +

h

∥u∥
u;xi

)
≥ yiΦ(θ;xi) + h

γ

Q ∥u∥
≥ yiΦ(θ;xi) + h

γqm3

8
√
10QM2

. (11)

• Suppose that xi ∈ Iℓ for some ℓ ∈ {1, . . . , r+1}, such that xi /∈ (β1(Iℓ), β3(Iℓ)). Assume
without loss of generality that xi ≤ β4 := β1(Iℓ) (the proof is symmetric otherwise). Then
by our separability assumption, there exist β2 := β1(Iℓ−1), β3 := β3(Iℓ−1), β5 := β3(Iℓ)
and β1 whose neuron is active on all the data points where β1 ≤ β2. Note that by the
definition of βi(·), it must hold that β4 is the smallest element in the interval Iℓ which
satisfies Items 1 and 3 (since otherwise we would have that xi ∈ (β3, β5) ⊆ Iℓ, which is
handled in the previous case), and therefore β3 /∈ Iℓ, implying that xi ∈ (β3, β4). Moreover,
we note that we may assume that ℓ > 1, since otherwise we can take the smallest two
breakpoints that are active on all the data along with β4 which reduces us to the previous
case. We thus denote the largest data instance in Iℓ−1 as xi−1 which implies xi−1 < xi.
Lastly, Item 2 also guarantees the existence of two breakpoints that are distinct from the
previous ones, which we denote by β6, β7, where β6 < β1 < 0 and β7 > 0 are active on all
the data points.

Following a similar approach as in the previous case, we will now show the existence
of a depth-2 ReLU network which consists of seven hidden neurons with weights w =
(w1, . . . , w7) and biases b = (b1, . . . , b7) and computes the piece-wise linear function
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Figure 2: The plots of f(x) (green) and Φ(θ;x) + h · f(x) (black) for various values of h. Moving
θ in the direction of u which computes f(·) strictly decreases the loss over the positively-labeled
instances in the interval (0, 2) without degrading the loss over the rest of the dataset. Unlike the
previous simpler case, since θ has no breakpoints between the negative instance at x = 0 and the
positive instance at x = 0.6, we use a function f(x) which pivots around x = 0 to prevent the
prediction over the negatively-labeled instances in the interval [−1, 0] from increasing. Best viewed
in color.

f : [β1, β7) → R given by

f(x) :=



0 x ∈ [β1, β2]
1

β2−β3
x− β2

β2−β3
x ∈ (β2, β3)

1
xi−1−β3

x− xi−1

xi−1−β3
x ∈ [β3, β4]

β4−xi−1

xi−1−β3

(
1

β4−β5
x− β5

β4−β5

)
x ∈ (β4, β5)

0 x ∈ [β5, β7)

,

where the first five neurons are used to compute the slopes of f and the remaining last two
neurons are used to simulate a bias term to shift the network to accord with f in its domain
(see Figure 2 for an illustration).

Define W := diag(w1, . . . , w5) ∈ R5×5, define the masking matrix A ∈ R5×5 with entries
aj,j′ = 1 {j-th neuron is active on the interval starting with βj′} and let

d =

(
0,

1

β2 − β3
,

1

xi−1 − β3
,
β4 − xi−1

xi−1 − β3
· 1

β4 − β5
, 0

)
.

Thus, to match the slopes computed by the a depth-2 ReLU network with weights w,b to
those of f , we first want the output neuron’s weights v = [v1,v2] ∈ R5 × R2 to satisfy
the equality A⊤Wv1 = d. To this end, we have by Lemma C.1 that A is invertible and∥∥A−⊤

∥∥
sp ≤ 5. It then follows that v1 = W−1A−⊤d, which entails

∥v1∥2 ≤
∥∥W−1

∥∥
sp

∥∥A−⊤∥∥
sp ∥d∥2 ≤ 5

∥∥W−1
∥∥

sp ∥d∥2 .
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To upper bound the above, we first bound ∥d∥2. By our separability assumption we have

∥d∥2 ≤

√
1

q2
+

1

(xi−1 − β3)2
+

4Q2

q2(xi−1 − β3)2

=

√
q2 + (xi−1 − β3)2 + 4Q2

q2(xi−1 − β3)2
≤ 1

q(xi−1 − β3)

√
8Q2 + q2

where we used Item 3 to upper bound the denominators, and Item 4 which entails β4 −
xi−1, xi−1 − β3 ≤ β4 − β3 ≤ Q. By Item 1, we have |wi| ≥ m for all i ∈ [5], and thus we
obtain

∥v1∥2 ≤ 5

mq(xi−1 − β3)

√
40Q2 + 5q2 ≤ 15

√
5Q

mq(xi−1 − β3)
. (12)

Now, similarly to the previous case, we wish to shift the function computed by the depth-2
ReLU network by a constant. This is done in the exact same manner as in the previous case,
where we shift it by a magnitude given by

b0 = −
5∑

j=1

vjbj1 {wjx+ bj > 0 ∀x ∈ (βj′ , βj′+1)} .

Bounding |b0| using its above definition, Cauchy-Schwartz and Item 1 in our separability
assumption, we obtain

|b0| ≤ ∥v1∥2 ∥b∥2 ≤
√
5M ∥v1∥2 .

From the above and Eq. (9), we can shift the network by the desired magnitude using a
vector v2 = (v6, v7) satisfying

∥v2∥2 ≤
√
5M2

m2
∥v1∥2 .

We now define u as the all-zero vector, except for the output neuron entries corresponding
to the neurons with breakpoints β1, . . . , β7, where the coordinates of u take the values
yiv1, . . . , yiv7. Note that this entails

∥u∥2 =

√
∥v1∥22 + ∥v2∥22 ≤ ∥v1∥2

√
1 +

5M4

m4
≤ 15

√
30QM2

m3q(xi−1 − β3)
≤ 90QM2

m3q(xi−1 − β3)
,

(13)
where we used Eq. (12) and the fact that 1 < M/m. We therefore have for all j ∈ [n] and
h > 0 that

yjΦ

(
θ +

h

∥u∥
u;xj

)
= yj(Φ(θ;xj) +

h

∥u∥
yif(xj)).

Observe that all data points satisfy xj ∈ [β6, β7], and are therefore unaffected by the
value Φ(·, x) attains for x’s outside of this interval. Additionally, f(x) = 0 for all x ∈
[β1, β2] ∪ [β5,∞), which also keeps Φ(·, x) unaffected by moving in the direction of u.
In the interval (β2, xi−1), the sign of Φ(·, x) is −yi, and in the interval (xi−1, β5) its sign
changes to yi. For this reason, similarly to the previous case, we have that

yjΦ

(
θ +

h

∥u∥
u;xj

)
= yjΦ(θ;xj) +

h

∥u∥
f(xj) ≥ yjΦ(θ;xj), (14)

for all xj ∈ (β2, β5). Lastly, for xi we have that xi ∈ [β3, β4], and that xi is at distance at
least γ from xi−1 by Item 5 in our separability assumption. This implies that

f(xi) =
xi

xi−1 − β3
− xi−1

xi−1 − β3
≥ γ

xi−1 − β3
,

and therefore hf(xi) ≥ γ
xi−1−β3

h, which with Eqs. (13,14) implies that

yiΦ

(
θ +

h

∥u∥
u;xi

)
≥ yiΦ(θ;xi) + h

γ

∥u∥ (xi−1 − β3)
≥ yiΦ(θ;xi) + h

γqm3

90QM2
,

(15)
which is a weaker lower bound than the one derived in Eq. (11), and thus always holds if
Eq. (11) is satisfied.
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We now turn to lower bound the norm of the gradient by analyzing the directional derivative of L(·)
in the direction of the vector u defined by the above two cases. To this end, denote ū = u

∥u∥ and
compute

∥∇L(θ)∥2 ≥ |⟨∇L(θ), ū⟩| =

∣∣∣∣∣∣ limh→0

1

hn

n∑
j=1

(ℓ(yjΦ(θ + hū;xj))− ℓ(yjΦ(θ;xj)))

∣∣∣∣∣∣
= lim

h→0

1

hn

n∑
j=1

(ℓ(yjΦ(θ;xj))− ℓ(yjΦ(θ + hū;xj)))

≥ lim
h→0

1

hn
(ℓ(yiΦ(θ;xi))− ℓ(yiΦ(θ + hū;xi)))

≥ lim
h→0

1

hn

(
ℓ(yiΦ(θ;xi))− ℓ

(
yiΦ(θ;xi) + h

γqm3

90QM2

))
= − γqm3

90nQM2
ℓ′(yiΦ(θ;xi)). (16)

In the above, the first inequality is by Cauchy-Schwartz; the second equality is due to Eq. (14),
which guarantees that each summand is non-positive; the second inequality is another application of
Eq. (14) which guarantees that we’re omitting only non-negative terms; and the last inequality is due
to Eq. (15). We now lower bound the above expression depending on whether ℓ(·) is the exponential
or the logistic loss.

First assume that ℓ(·) is the exponential loss. Then we have that −ℓ′(x) = ℓ(x) for all x ∈ R, and
therefore we can directly use the inequality ℓ(yiΦ(θ;xi)) > 1/2n.

In the case where ℓ(·) is the logistic loss, we have that

−ℓ′(x) =
1

1 + exp(x)
= 1− 1

1 + exp(−x)
.

By the inequality ℓ(yiΦ(θ;xi)) > 1/2n, we have 1 + exp(−yiΦ(θ;xi)) > exp(1/2n), implying
that

−ℓ′(yiΦ(θ;xi)) > 1− exp

(
− 1

2n

)
≥ 1

4n
,

where we used the inequality exp(−x) ≤ 1− 0.5x which holds for all x ∈ [0, 1]. Combining both
loss cases and Eq. (16), we arrived at

∥∇L(θ)∥2 ≥ γqm3

360n2QM2
.

Squaring the above and dividing by 2, the lemma follows.

The following proposition establishes the separability (Def. C.1) of a neighborhood in weight space
around our initialization point (Def. C.2) from the dataset S.

Proposition C.1 (Bounded Gradient with High Probability). Under Assumptions 2.1 and 2.2, given
any δ ∈ (0, 1), suppose that the following hold

k ≥ 6144 ·
R4 log

(
24r
δ

)
ρ

and ∆ =
δρσh

24nkCR3
. (17)

Then with probability at least 1− δ, for all θ ∈ U∆(θ(0)) ∩ L+
1/2n(L), we have that

1

2
∥∇L(θ)∥22 ≥ 3 · 10−11 δ2ρ2

n6r2C2R8
σ2

h .

Proof. To prove the proposition, we will show that for all θ ∈ U∆(θ(0)) ∩ L+
1/2n(L), θ is separable

from S with high probability. By Lemma C.2, this would imply the proposition. We will begin with
proving items 1-4 jointly, and then we will show item 5 separately.
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1-4. Under Assumption 2.1, suppose we are given some a ∈ [0, R] and ξ := (ξ1, ξ2) ∈ {−1, 1}2,
and sufficiently small ε > 0 such that

ε ≤
512R4 log

(
24r
δ

)
k

≤ ρ

6
≤ R

6
, (18)

where the first inequality is by assumption on ε, the second inequality is by the lower bound
on k in Eq. (17), and the last inequality follows from ρ ≤ 2R

r+1 ≤ R since ρ must be smaller
than the average length of an interval and since we assume r ≥ 1. We now consider the
event denoted by Ea,ε,ξ where the weights wi, bi of the i-th neuron satisfy

wi ∈
(
ξ1

σh

R
, ξ1

2σh

R

)
and − bi

wi
∈ (ξ2a, ξ2(a+ ε)), (19)

Since such an event is symmetric about 0, it is unaffected by the signs of ξ. We can therefore
assume without loss of generality that both intervals in Eq. (19) are contained in the positive
real line and omit ξ from our notation. Under this assumption, the probability of Ea,ε can
be given in terms of Owen’s T function which is defined by

T (h, a) :=
1

2π

∫ a

0

exp
(
− 1

2h
2(1 + x2)

)
1 + x2

dx

(see Owen [1956]), yielding

P[Ea,ε] = T

(
1

R
, a+ ε

)
− T

(
1

R
, a

)
−
(
T

(
2

R
, a+ ε

)
− T

(
2

R
, a

))
.

Using the definition of T (·, ·), the above can be simplified to

P[Ea,ε] =
1

2π

∫ a+ε

a

exp
(
− 1

2R2 (1 + x2)
) (

1− exp
(
− 3

2R2 (1 + x2)
))

1 + x2
dx

≥ 1

2π

(
1− exp

(
− 3

2R2

))∫ a+ε

a

exp
(
− 1

2R2 (1 + x2)
)

1 + x2
dx

≥ 3

8πR2

∫ a+ε

a

exp
(
− 1

2R2 (1 + x2)
)

1 + x2
dx

≥ 3

8πR2

∫ a+ε

a

exp
(
− 1

2R2 (1 + (R+ ε)2)
)

1 + (R+ ε)2
dx ≥ ε

512R4
. (20)

In the above, the second inequality follows from the inequality 1− exp(−x) ≥ 0.5x which
holds for all x ∈ [0, 1.5] and from the fact that 1 ≤ R; the third inequality follows from
the fact that the integrand is a monotonically decreasing function and |a| ≤ R; and the last
inequality follows from ε ≤ R which is implied by Eq. (18) and allows us to lower bound
the numerator of the integrand by exp(−2.5) and upper bound the denominator by 5R2, and
the fact that 3/(40π exp(2.5)) ≥ 1/512.

Next, given some interval Ij := (xij , xij+1+1), j ∈ [r + 1], where the classification does
not change signs on the data, we consider the three sub-intervals given by

Ij1 := (xij , xij + ε),

Ij2 :=

(
xij + xij+1+1

2
− ε

2
,
xij + xij+1+1

2
+

ε

2

)
,

Ij3 :=
(
xij+1+1 − ε, xij+1+1

)
.

We remark that due to Eq. (18), the above sub-intervals are all disjoint and the distance
between the intervals is positive. We now wish to show that Items 1 and 3 hold. We have
from Eq. (20) that the probability that a given sub-interval of length ε contains no breakpoint
is at most

(1− P[Ea,ε])
k ≤

(
1−

log
(
24r
δ

)
k

)k

≤ exp

(
− log

(
24r

δ

))
=

δ

24r
,
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where we used the inequality (1−x/y)y ≤ exp(−x) which holds for all x, y > 0. There are
exactly 3 · (r+1) ≤ 6r sub-intervals, therefore by a union bound we have that Items 1 and 3
hold for some positive q,Q,m,M with probability at least 1− δ

4 .

Next, we show Item 2. By Eq. (20), we have

P
[
ER,R/6

]
≥ 1

3072R3
.

Thus, the probability of initializing a neuron with breakpoint in (R, 7
6R) which is active on

all the data points is at least 1
6144R3 , since there’s an independent 0.5 probability that it has

the correct orientation. This entails that the probability of initializing at most one neuron
which is active on all the data points and has a breakpoint in (R, 7

6R) is upper bounded by

(
1− P

[
ER,R/6

])k
+ k

(
1− P

[
ER,R/6

])k−1 P
[
ER,R/6

]
≤ 2

(
1−

P
[
ER,R/6

]
2

)k

≤ 2

(
1− 1

6144R3

)k

≤ 2 exp

(
− k

6144R3

)
≤ 2 exp

(
−R log(24r/δ)

ρ

)
≤ 2δ

24r
≤ δ

12
.

In the above, the first inequality follows from the inequality (1− x)k + k(1− x)k−1x ≤
2(1− x/2)k which holds for any natural k and all x ∈ [0, 1],6 the third inequality follows
from (1 − 1/x)x ≤ exp(−1) for all x > 0, the fourth inequality follows from our lower
bound on k in Eq. (17), and the penultimate inequality holds due to Eq. (18) which entails
ρ ≤ R. Therefore, by the above and a union bound on the symmetric event where two
neurons are initialized in (− 7

6R,−R), we have that Item 2 holds for some m,M with
probability at least 1− δ

6 ≥ 1− δ
4 .

We will now derive explicit bounds on the constants m,M, q,Q, and in addition we will
show that Item 4 holds. Applying a union bound on the two previous cases, we have that
Items 1-3 hold with probability at least 1 − δ/2. In such a case, we get an explicit lower
bound on q as follows

q ≥ |Ij | − 3ε

2
≥ ρ− 3ε

2
≥ ρ

4
,

where in the second inequality we used the fact that |Ij | ≥ ρ for all j ∈ [r + 1] which holds
by the definition of ρ and in the last inequality we used Eq. (18). To bound Q in Item 4, we
first argue that under the realization of ER,R/6, the four neurons that are active on all the
data points have a breakpoint with absolute value at most 7

6R ≤ 2R. To upper bound Q in
Item 3, observe that under the realization of the previous events we have that

βi+1(Ij)− βi(Ij) ≤
|Ij |+ ε

2
≤ R+

ε− ρ

2
≤ R,

for all j ∈ [r + 1] and i ∈ [2], which follows from |Ij | ≤ 2R − ρ since r ≥ 1 and
Ij ⊆ [−R,R] (i.e. there exists at least one interval other than Ij which has length at least ρ),
and from the inequality ε ≤ ρ/6 which holds by Eq. (18). To upper bound Q in Item 4, we
bound the term |β1(Ij+1)− β3(Ij)|. Observe that under the realization of the above events
we have that β1(Ij+1) ∈ (x, x+ ε) and β3(Ij) ∈ (x′ − ε, x′) where x < x′ are the largest
and smallest data instances in Ij , Ij+1, respectively. We therefore have

|β1(Ij+1)− β3(Ij)| ≤ max{|x− x′|, |x− x′ + 2ε|} ≤ |x− x′|+ 2ε ≤ 7

3
R,

where the second inequality follows from the triangle inequality and the last inequality
follows from the fact that xi ∈ [−R,R] for all i ∈ [n] and from Eq. (18). Turning to bound

6To show this inequality holds, consider k i.i.d. random variables Xj ∼ U([0, 1]). Then the left-hand side
equals P[| {xj : xj ∈ [0, x]} | ≤ 1]. The occurrence of the complement of this event is implied if xi ∈ [0, x/2]
and xi′ ∈ [x/2, x] hold for some i ̸= i′, therefore to upper bound the left-hand side it suffices to upper bound
the complement of the event where xi ∈ [0, x/2] and xi′ ∈ [x/2, x] hold for some i ̸= i′. This in turn follows
from applying a union bound on P[| {xj : xj ∈ [0, x/2]} | = 0] and P[| {xj : xj ∈ [x/2, x]} | = 0].
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wi, bi, we have by Eqs. (18,19) that when Ea,ε or ER,R/6 occur then the i-th neuron satisfies
|wi| ≥ σ/R and

|bi| ≤ (R+
1

6
R)wi ≤

7

6
R · 2σh

R
=

7

3
σh,

concluding the derivation of Items 1-4.

5. It will suffice to lower bound the probability of the event denoted by A where xi /∈
(αj − γ/2, αj + γ/2) for all i ∈ [n] and j ∈ [r], where αj is the j-th sign change of the
ground truth function labelling yi. The set ∪r

j=1(αj−γ/2, αj+γ/2) has Lebesgue measure
of at most γr, and since by Assumption 2.2 we have that µ(x) ≤ C for all x ∈ [−R,R], we
lower bound the probability of the event by the expression

P[A] ≥ (1− γrC)n.

Plugging γ = δ
4nrC in the above which entails γrC ≤ 1 and using Bernoulli’s inequality

we have

P[A] ≥ 1− δ

4
.

To conclude the derivation so far, using another union bound, we have shown that with probability at
least 1− 0.75δ, θ(0) is separable from S with constants

γ0 =
δ

4nrC
, q0 =

ρ

4
, Q0 =

7

3
R, m0 =

σh

R
, M0 =

7

3
σh. (21)

We will now show that the separability also holds in a ∆-hidden neighborhood of θ(0) for an
appropriately chosen ∆ > 0. To this end, we first establish that

P
[

min
i∈[n],j∈[k]

|βj − xi| >
δ

8nkC

]
≥ 1− δ

4
.

Suppose we have n data instances in [−R,R], then a cover of radius δπ
8kn over these data points has

a (one-dimensional Lebesgue) measure of at most δπ
4k . Thus, the probability that a breakpoint will

not be initialized within distance less than δπ
8kn from any point is at least (1− δ

4k ). This is true since
Assumption 2.1 implies that the distribution of a breakpoint is a standard Cauchy distribution with
density at most 1/π. We thus have that

P
[

min
i∈[n],j∈[k]

|βj − xi| >
δ

8nkC

]
≥
(
1− δ

4k

)k

≥ 1− δ

4
, (22)

where the last inequality follows from Bernoulli’s inequality. A final union bound now implies that
the above bound holds with the previous implications with probability at least 1− δ. Define

∆ :=
δρσh

24nkCR3
,

we will now show that this implies the uniform separability of any θ ∈ U∆(θ(0)) from S, by proving
Items 1-4 jointly and Item 5 separately.

1-4. First, by Assumption 2.2, we have 1 =
∫ R

−R
µ(x)dx ≤ 2RC which with Eq. (18) implies

that ∆ ≤ δσh
24nkR ≤ σh

24R . Since the weight and bias of each neuron in U∆(θ(0)) change by
at most ∆, we have

m ≥ σh

R
− σh

24R
=

23σh

24R
and M ≤ 7

3
σh +

σh

24R
≤ 57

24
σh.

To bound q and Q, we will first show that under our assumptions the breakpoints cannot
move much. To this end, we show that for each neuron, the function f(w, b) := − b

w is
Lipschitz on U∆(θ(0)). We have

∇f(w, b) =

(
b

w2
,− 1

w

)
,

24



and therefore for any neuron (w, b) ∈ θ such that θ ∈ U∆(θ(0)) we get

∥∇f(w, b)∥ =

√
b2

w4
+

1

w2
≤
√

M2

m4
+

1

m2
≤ 24R

23σh

√
572

232
R2 + 1 <

3R2

σh
,

where the last inequality follows from 1 ≤ R2. This implies that∣∣∣∣− b

w
+

b0
w0

∣∣∣∣ ≤ ∥∇f(w, b)∥ · ∥(w, b)− (w0, b0)∥ <
3R2

σh
∆ ≤ δρ

8nkCR
.

That is, we have that the breakpoint of each neuron moves a distance strictly less than
δρ

8nkCR ≤ δ
8nkC , which along with Eq. (22) guarantees that L(·) is differentiable on

U∆(θ(0)) since no ReLU crosses a data instance. Since Q is the upper bound on the
difference between two breakpoints where each moves by at most δ

8nkC , this also yields a
bound on Q as follows

Q ≤ Q0 + 2
δ

8nkC
≤ 7

3
R+

1

8
R ≤ 2.5R,

where we used the upper bound on Q0 from Eq. (21), Eq. (17) which implies k ≥ 4 (since
ρ ≤ R by Eq. (18)), and 1/C ≤ 2R. Likewise, to lower bound q, compute

q ≥ q0 − 2
δρ

8nkCR
≥ ρ

4
− ρ

20R
≥ ρ

5
,

where again we used Eq. (21), Eq. (17) which implies k ≥ 10, and 1/C ≤ 2R.

5. Since γ depends on S and not on θ, it remains unchanged and we have γ = γ0.

We can now use the assumption θ ∈ L+
1/2n(L) and Lemma C.2 to conclude

1

2
∥∇L(θ)∥22 ≥ γ2q2m6

259200n4Q2M4
≥ 1

259200n4
· δ2

42n2r2C2
· 4ρ2

252R2
· 236

574242R6
· σ2

h .

Simplifying the above, the proposition follows.

Having established the required machinery for proving Theorem 3.1, we now turn to do so.

Proof of Theorem 3.1. We begin with bounding the loss upon initialization with high probability.
First, consider 3k i.i.d. random variables Xj ∼ N (0, 1). We have that

P
[
max
j∈[3k]

|Xj | ≤ x

]
=

(
erf

(
x√
2

))3k

≥
(
1− exp

(
−0.5x2

))3k ≥ 1− 3k exp
(
−0.5x2

)
,

where the first inequality follows from 1 − erf(x) < exp(−x2) for all x ≥ 0 (see Eq. (7.8.3) in
DLMF) and the second inequality follows from Bernoulli’s inequality since exp(−0.5x2) < 1.
Plugging x =

√
2 log(6k/δ) in the above, we have

P
[
max
j∈[3k]

|Xj | ≤
√
2 log(6k/δ)

]
≥ 1− 3kδ

6k
= 1− δ

2
.

Thus, with probability at least 1− δ
2 , we have that all the weights of θ(0) are at most

√
2 log(6k/δ)

standard deviations away from zero. With this bound, we can derive for all x ∈ [−R,R]

Nθ(0)(x) ≤
∑
j∈[k]

|vj |σ(|wj | · |x|+ |bj |) ≤ 4kRσhσo log

(
6k

δ

)
,

which for both the exponential and logistic losses implies

L(θ(0)) ≤ exp

(
4kRσhσo log

(
6k

δ

))
≤ e, (23)
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where the last inequality is by our assumption σo ≤ 1

4kRσh log( 6k
δ )

. Letting

λ := 10−11 δ2ρ2

n6r2C2R8

and observing that our lower bound assumption on σh in Eq. (3) implies it’s at least 0.5 since ρ ≤ R
and C ≥ 1/2R, we can invoke Proposition C.1 with confidence δ

2 to obtain

1

2
∥∇L(θ(t))∥22 ≥ 3 · 10−11 δ2ρ2

n6r2C2R8
σ2

h

≥ 3 · 10−11 δ2ρ2

n6r2C2R8
σ2

h · L(θ(t))
L(θ(0))

≥ λσ2
h · L(θ(t)), (24)

where the second inequality holds since L(θ(t))
L(θ(0)) ≤ 1 because the flow is non-increasing, and the

last inequality holds due to Eq. (23) which implies 1
L(θ(0)) ≥ exp(−1) ≥ 1

3 . By a union bound, the
above holds with probability at least 1− δ.

Denote D := U∆(θ(0)) ∩ L+
1
2n

(L) where ∆ is defined in Eq. (17), and define t′ ∈ [0,∞) to be
the smallest time such that θ(t′) is on the boundary of U∆(θ(0)) (where t′ = ∞ if there exists no
such time). We will now show that the flow attains loss at most 1

2n in time t0 := log(2nL(θ(0)))
2λσ2

h
, by

analyzing several different cases.

• Suppose that t′ > t0.

– If {θ(t) : t ∈ [0, t0]} ⊆ D, then by the PL-condition shown in Eq. (24) we have for all
t ∈ [0, t0] that GF enjoys a convergence rate of

L(θ(t)) ≤ exp
(
−2λσ2

h t
)
· L(θ(0)).

Plugging t = t0 in the above and simplifying, we have L(θ(t0)) ≤ 1
2n .

– If {θ(t) : t ∈ [0, t0]} ̸⊆ D, then there exists a time t′′ ≤ t0 such that θ(t′′) /∈ D. Since
t′′ ≤ t0 < t′, it must hold that t′′ /∈ L+

1
2n

(L), and therefore L(θ(t′′)) < 1
2n which

implies L(θ(t0)) < 1
2n since the flow is non-increasing.

• Suppose that t′ ≤ t0. Assume by contradiction that {θ(t) : t ∈ [0, t′]} ⊆ D. We will now
show that the length of the trajectory of GF cannot have been long enough to reach the
boundary of D, which will result in a contradiction. To this end, we use a similar technique
as in Gupta et al. [2021, Thm. 9]. Define the potential function ε(t) =

√
L(θ(t)). Taking

the derivative of ε(t) with respect to t and using the chain rule we have

ε̇(t) =
dL(θ(t))

dt

2
√
L(θ(t))

= −
∥∇L(θ(t))∥22
2
√

L(θ(t))
≤ −

√
λ

2
σh · ∥∇L(θ(t))∥2 ,

where the inequality follows from Eq. (24). We can now bound the length of the trajectory
up until time t′ by using the fundamental theorem of calculus and obtain∫ t′

0

∥∇L(θ(t))∥2 dt ≤ − 1

σh

√
2

λ

∫ t′

0

ε̇(t)dt ≤ − 1

σh

√
2

λ

[√
L(θ(t))

]t′
0

≤ 1

σh

√
2L(θ(0))

λ
≤ 1

σh

√
2e

λ
< ∆,

where in the second line, the first inequality uses the fact that L(·) > 0, the second inequality
follows from Eq. (23), and the last inequality follows from our bound on σh assumed in
Eq. (3) and the definition of ∆ in Eq. (17). In contrast, since θ(t′) is on the boundary of
U∆(θ(0)), this implies that there exists some neuron with weight and bias w(t), b(t) at time
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t ≥ 0 such that ∥(w(t′), b(t′))− (w(0), b(0))∥2 = ∆. From this and the path length upper
bound we have

∆ ≤ ∥θ(t′)− θ(0)∥2 ≤
∫ t′

0

∥∇L(θ(t))∥2 dt < ∆,

which is a contradiction. We therefore must have that {θ(t) : t ∈ [0, t′]} ̸⊆ D. When this
holds, there exists a time t′′ ≤ t′ ≤ t0 such that θ(t′′) /∈ D. Since t′′ ≤ t′, it must hold that
t′′ /∈ L+

1
2n

(L), and therefore L(θ(t′′)) < 1
2n which implies L(θ(t0)) < 1

2n since the flow is
non-increasing.

D Over-parameterization is necessary

In this appendix, we further discuss and formally prove Theorem 3.2, which establishes that in general
under Assumption 2.1, an over-parameterization of magnitude at least 1.3r is necessary for achieving
population loss below a constant. Our analysis is based on the following specific construction, where
the labels are determined by a function fr parameterized by a natural number r for all x ∈ [−1, 1],
expressible by the sign of a teacher network of width r and defined as

fr(x) := sign(sin(0.5π(r + 1)(x+ 1))). (25)

That is, fr changes value r times between −1 and 1 on the interval [−1, 1], and is constant along
intervals of length 2

r+1 . We now define the distribution D over the inputs of the dataset used in our
lower bound and its corresponding labelling rule. We have

x ∼ U [−1, 1] and y = fr(x). (26)

Recall the statement of Theorem 3.2, we have for example that if α = 1.3, then the width of the
network being trained is no more than 1.3r and GF attains loss at least 1

160 in this case. While a
lower bound of r neurons for the construction specified in Eq. (26) is trivially implied by function
approximation considerations, our lower bound merely improves upon this quantity by a constant
multiplicative factor. Nevertheless, it is interesting to compare our lower bound to other similar
settings in the literature, since it is typically difficult to derive lower bounds that require strictly
more than r neurons. For example, in a teacher-student setting where networks of the form x 7→∑r

i=1 σ
(
w⊤

i x
)

are considered, it is known that there are spurious (non-global) minima already when
r ≥ 6 [Safran and Shamir, 2018, Arjevani and Field, 2020, 2021], and that empirically we are more
likely to get stuck in those minima the larger r is [Safran and Shamir, 2018], but in spite of this ample
empirical evidence, there is no proof that optimization will fail for any natural number r ≥ 6. In
contrast, in our univariate setting, it is possible to show a non-trivial lower bound since we utilize bias
terms. This highlights the difference between settings that omit and include biases, which impacts
the associated optimization problem in a non-trivial manner.

The proof of our lower bound, which appears below in Appendix D.1, relies on the observation that
under Assumption 2.1, the breakpoints of the trained network upon initialization follow a standard
Cauchy distribution. In such a case, neurons with a breakpoint outside the support of the data and
with the wrong orientation will remain dormant throughout the optimization process, which requires
initializing at least a fraction more of the minimal number of neurons required so that sufficiently
many will be optimized and could improve the approximation of the target function. While one can
circumvent this issue by scaling the breakpoints to the support of the data, this would require (i) an
initialization scheme which is different than Assumption 2.1, which is used in our upper bounds;
and (ii) this may even prove detrimental to optimization, as our positive result requires neurons that
are active on all the data instances. We stress that our lower bound given here applies to training
over a sample of any size, since it relies on approximation arguments. Additionally, we remark
that by scaling the distribution D to be supported on a smaller interval we can increase the required
magnitude of over-parameterization up to a factor of α = 2, however due to the common practice
of scaling the data to have unit norm, we assume it is supported on [−1, 1]. We also remark that
a common initialization scheme is to set the bias terms to zero [He et al., 2015]. This results in
breakpoints that are initialized at the origin and circumvents the issue of dormant neurons upon
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initialization, however the main motivation for using such an initialization scheme is to achieve
numerical stability and avoid exploding gradients when training very deep networks, which is not
an issue for the shallow architecture we consider here. In any case, we stress that the goal of our
lower bounds is to exemplify that over-parameterization is necessary in a setting complementary to
our upper bound in Theorem 3.1, and we leave the derivation of stronger lower bounds under more
general initialization schemes as a tantalizing future work direction.

D.1 Proof of Theorem 3.2

To prove the theorem, we would need the following auxiliary lemmas. The first lemma below
establishes that if we approximate the function fr which is defined in Eq. (25) by a function which
does not change its sign over an interval of length larger than 2

r+1 , then this results in a strictly
positive loss which is roughly proportional to the length of the approximation interval.
Lemma D.1. Let fr be as defined in Eq. (25), let β1, β2 ∈ [−1, 1], N : [β1, β2] → R such that its
sign is fixed on [β1, β2], and let ℓ be either the exponential or logistic loss. Then∫ β2

β1

ℓ(N (x) · fr(x))dx ≥ 1

2
ℓ(0)

(
β2 − β1 −

2

r + 1

)
.

Proof. If β2 − β1 ≤ 2
r+1 , then the right-hand side is non-positive and the lemma follows since

ℓ(·) > 0. If β2 − β1 > 2
r+1 , then the (one-dimensional Lebesgue) measure of the set A := {x ∈

[β1, β2] : N (x) · fr(x) ≤ 0} is at least

1

2

(
β2 − β1 −

2

r + 1

)
,

since the measure of the complementary set {x ∈ [β1, β2] : N (x) · fr(x) > 0} is at most
1
2

(
β2 − β1 +

2
r+1

)
, where the upper bound is attained when N (x) · fr(x) > 0 for all

x ∈
[
β1, β1 +

2

r + 1

]
∪
[
β2 −

2

r + 1
, β2

]
.

We can therefore lower bound the integral in the lemma by∫ β2

β1

ℓ(N (x) ·fr(x))dx ≥
∫
x∈A

ℓ(N (x) ·fr(x))dx ≥
∫
x∈A

ℓ(0)dx ≥ 1

2
ℓ(0)

(
β2 − β1 −

2

r + 1

)
.

The following lemma shows that approximating fr using a ReLU network with just r′ neurons results
in loss proportional to 1− r′/r.
Lemma D.2. Suppose that fr as defined in Eq. (25). Then for any ReLU network Nθ of width at
most r′, we have

LD(θ) ≥
1

4

(
1− r′

r

)
.

Proof. Denote by β1, . . . , βr′ the set of points where N changes sign in (−1, 1). Note that this set is
always of size at most r′, and we may assume without loss of generality that it is of size exactly r′

(since otherwise we can prove a stronger claim, where the lemma holds for some r′′ < r′). Further
define the boundaries β0 := −1 and βr′+1 := 1. We compute

LD(θ) =

∫ 1

−1

1

2
ℓ(fr(x) · Nθ(x))dx =

1

2

r′∑
i=0

∫ βi+1

βi

ℓ(fr(x) · Nθ(x))dx

≥ 1

4
ℓ(0)

r′∑
i=0

(
βi+1 − βi −

2

r + 1

)
=

1

4

(
2− 2

r′ + 1

r + 1

)
=

1

2
· r − r′

r + 1
≥ 1

4

(
1− r′

r

)
,
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where the first inequality uses Lemma D.1, the equality that follows is due to the sum telescoping
and since ℓ(0) = 1 for both the exponential and logistic losses, and the final inequality is due to
r ≥ 1.

With the above auxiliary lemmas, we can now turn to the proof of the theorem.

Proof of Theorem 3.2. By Assumption 2.1, the breakpoints of N at initialization follow a standard
Cauchy distribution. Since D is supported on [−1, 1], we have with probability exactly 0.5 that the
breakpoint of a given neuron falls outside of [−1, 1]. Moreover, with an independent probability
of 0.5, the orientation of the neuron is such that it is off on all the data instances. I.e., such a
neuron remains dormant throughout the optimization process of GF with probability 0.25. It can be
verified that for any integer k ≥ 1, at least ⌈0.25k⌉ neurons will be dormant upon initialization with
probability at least 0.25.7 Thus, with probability at least 0.25, we have that out of αr neurons, there
are at most r′ = ⌊0.75αr⌋ neurons that are effectively being trained with breakpoints in [−1, 1]. By
Lemma D.2, this results in a lower bound on the population loss of

LD(Nθ(t)) ≥
1

4

(
1− ⌊0.75αr⌋

r

)
≥ 1

4
(1− 0.75α) ,

for any time t ≥ 0.

E Proof of Theorem 4.2

By Theorem 4.1, if there exists time t0 such that L(θ(t0)) < 1
n then GF converges to zero loss, and

converges in direction to a KKT point of Problem (4). We denote Nθ(x) =
∑

j∈[k] vjσ(wjx+ bj).
Thus, Nθ is a network of width k, where the weights in the first layer are w1, . . . , wk, the bias terms
are b1, . . . , bk, and the weights in the second layer are v1, . . . , vk. We denote J := {j ∈ [k] : vj ̸= 0},
J+ := {j ∈ J : vj > 0}, and J− := {j ∈ J : vj < 0}. Since neurons with output weight vj = 0
do not affect the function that the network computes, then in this proof we ignore them. We also
denote I := [n], and I ′ = {i ∈ I : yiNθ(xi) = 1}. Thus, I ′ are the indices of the examples where
Nθ attains margin of exactly 1.

Assume that Nθ satisfies the KKT conditions of Problem (4). Thus, there are λ1, . . . , λn such that
for every j ∈ J we have

wj =
∑
i∈I

λi
∂

∂wj
(yiNθ(xi)) =

∑
i∈I

λiyivjσ
′
i,jxi , (27)

where σ′
i,j is a subgradient of σ at wj ·xi+bj , i.e., if wj ·xi+bj ̸= 0 then σ′

i,j = 1[wj ·xi+bj > 0],
and otherwise σ′

i,j is some value in [0, 1] (we emphasize that in this case σ′
i,j may be any value in

[0, 1] and in this proof we do not have any further assumptions on it). Also we have λi ≥ 0 for all
i ∈ I , and λi = 0 if i ̸∈ I ′. Likewise, we have

bj =
∑
i∈I

λi
∂

∂bj
(yiNθ(xi)) =

∑
i∈I

λiyivjσ
′
i,j . (28)

We say that Nθ has an activation point at x if there is j ∈ [J ] with wj ̸= 0 such that wj · x+ bj = 0.
In this case we say that the activation point x corresponds to the neuron j. Note that if wj = 0 then
the neuron computes a constant function and thus it does not affect the number of linear regions in
Nθ.

Lemma E.1. We denote I ′ = {i1, . . . , iq} where 1 ≤ i1 < . . . < iq ≤ [n]. For every ℓ ∈ [q − 1] the
network Nθ has at most two activation points in the open interval (xiℓ , xiℓ+1

). Moreover, Nθ has at
most one activation point in (−∞, i1) and at most one activation points in (iq,∞).

7Essentially, this holds true since the median of a binomially-distributed random variable B(n, k) is ⌈nk⌉ or
⌊nk⌋, and since deviating from the median by at most 1 never increases the probability of the tail to more than
0.75.
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Proof. Let x ∈ (xiℓ , xiℓ+1
) be an activation point, and let j ∈ J such that wj ̸= 0 and wj ·x+bj = 0.

Suppose first that wj > 0. Since wj · x + bj = 0 then for every x′ > x we have wj · x′ + bj > 0,
and for every x′ < x we have wj · x′ + bj < 0. By Eq. (27) we have

wj =
∑
i∈I

λiyivjσ
′
i,jxi =

∑
i∈I′

λiyivjσ
′
i,jxi .

Since x ̸= xi for all i ∈ I ′ then wj ·xi+bj ̸= 0, and we have σ′
i,j = 1(wj ·xi+bj > 0) = 1[xi > x].

Therefore, the above displayed equation equals∑
i∈I′

λiyivj1[xi > x]xi =
∑

i∈I′, i≥iℓ+1

λiyivjxi . (29)

Likewise, by Eq. (28) we have

bj =
∑
i∈I

λiyivjσ
′
i,j =

∑
i∈I′

λiyivjσ
′
i,j =

∑
i∈I′

λiyivj1[xi > x] =
∑

i∈I′, i≥iℓ+1

λiyivj . (30)

By Eq. (29) and Eq. (30), the activation point x satisfies

x =
−bj
wj

=
−
∑

i∈I′, i≥iℓ+1
λiyivj∑

i∈I′, i≥iℓ+1
λiyivjxi

=
−
∑

i∈I′, i≥iℓ+1
λiyi∑

i∈I′, i≥iℓ+1
λiyixi

.

Therefore if x and x′ are two activation points in (xiℓ , xiℓ+1
) that correspond to wj > 0 and wj′ > 0

respectively, then x = x′. Thus, there is at most one activation point x ∈ (xiℓ , xiℓ+1
) that corresponds

to some wj > 0.

Moreover, by similar arguments there is at most one activation point x ∈ (xiℓ , xiℓ+1
) that corresponds

to wj < 0. Overall, in the interval (xiℓ , xiℓ+1
) there are at most two activation points.

If x ∈ (−∞, i1) then from similar argument we get that there is at most one activation point that
corresponds to a neuron j with wj > 0. Also, an activation point in (−∞, i1) that corresponds to
a neuron with wj < 0 does not exist, since such neuron is not active for any input xi with i ∈ I ′,
and hence by Eq. (27) we must have wj = 0. The proof of the claim for the interval (iq,∞) is
similar.

Let 1 ≤ a < b ≤ n be indices such that for every a ≤ i < i′ ≤ b we have yi = yi′ . Thus the labels do
not switch signs for the inputs xa, xa+1, . . . , xb. Intuitively, the proof follows by showing that in the
interval [xa, xb] the network Nθ has a constant number of linear regions, and then concluding that the
overall number of linear regions in Nθ must be O(r). We first consider the case where xb > xa ≥ 0
and for all a ≤ i ≤ b we have yi = 1. In the following lemmas we analyze the activation points in
this case and obtain a bound on the number of linear regions. Then, we will extend this result also
to the cases where yi = −1 and where xa < xb ≤ 0. For a given activation point x we say that the
derivative of the network increases (respectively, decreases) in x if for every sufficiently small ε > 0
the derivative of the network at x− ε is smaller (respectively, larger) than the derivative at x+ ε.
Lemma E.2. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = 1. In the interval
[xa, xb] the network Nθ has at most two activation points where the derivative decreases.

Proof. If the derivative decreases at an activation point x ≥ 0, then there is at least one neuron j ∈ J
where wj · x+ bj = 0 and the derivative (of the function computed by this neuron) decreases in x.
There are two types of such neurons: either (a) wj > 0, bj ≤ 0 and vj < 0; or (b) wj < 0, bj ≥ 0
and vj < 0.

We now show that in the interval [xa, xb] there is at most one activation point that corresponds to a
neuron of type (a) and at most one activation point that corresponds to a neuron of type (b). We note
that an activation point might correspond to multiple neurons, namely, to a set Q ⊆ J of neurons of
size larger than 1. However, we show that if x, x′ are activation points in [xa, xb] that correspond to
sets Qx and Qx′ of neurons (respectively) and both sets Qx, Qx′ contain neurons of type (a) then
x = x′. Likewise, if both sets Qx, Qx′ contain neurons of type (b) then we also have x = x′.

Suppose towards contradiction that x ∈ [xa, xb] is an activation point that corresponds to a neuron
j of type (a), and x′ ∈ [xa, xb] is an activation point with x′ > x that corresponds to a neuron j′
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of type (a). Since both neurons j, j′ are of type (a), then we have wj · z + bj > 0 iff z > x and
wj′ · z + bj′ > 0 iff z > x′. By Eq. (27) we have

1

vj′
· wj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′xi

)
=
∑
i∈I

λiyiσ
′
i,j′xi ≤

∑
i∈I

λiyi1[xi ≥ x′]xi ,

where the last inequality is since σ′
i,j′ = 1[xi ≥ x′] if xi ̸= x′, and when xi = x′ we have

σ′
i,j′ ≤ 1[xi ≥ x′] (and recall that for a ≤ i ≤ b we have yi = 1, xi ≥ 0 and λi ≥ 0). The above

RHS equals∑
i∈I

λiyi1[xi > x]xi −
∑
i∈I

λiyi1[x < xi < x′]xi ≤
∑
i∈I

λiyi1[xi > x]xi

≤
∑
i∈I

λiyiσ
′
i,jxi

=
1

vj

(∑
i∈I

λiyivjσ
′
i,jxi

)

=
1

vj
· wj .

Since vj < 0 we conclude that

wj ≤
vj
vj′

· wj′ . (31)

Likewise, by Eq. (28) we have

1

vj′
· bj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′

)
=
∑
i∈I

λiyiσ
′
i,j′ ≤

∑
i∈I

λiyi1[xi ≥ x′]

=
∑
i∈I

λiyi1[xi > x]−
∑
i∈I

λiyi1[x < xi < x′]

≤
∑
i∈I

λiyiσ
′
i,j =

1

vj

(∑
i∈I

λiyivjσ
′
i,j

)
=

1

vj
· bj .

Hence, we conclude that

bj ≤
vj
vj′

· bj′ . (32)

Since 0 ≤ x < x′, then by using Eq. (31) and (32) we have

0 < wj · x′ + bj ≤
vj
vj′

· wj′ · x′ +
vj
vj′

· bj′ =
vj
vj′

(wj′ · x′ + bj′) = 0 .

Thus, we reached a contradiction.

Next, suppose that x ∈ [xa, xb] is an activation point that corresponds to a neuron j of type (b), and
x′ ∈ [xa, xb] is an activation point with x′ > x that corresponds to a neuron j′ of type (b). We will
reach a contradiction using similar arguments to the case of type (a) neurons, with some required
modifications.

Since both neurons j, j′ are of type (b), then we have wj · z + bj > 0 iff z < x and wj′ · z + bj′ > 0
iff z < x′. By Eq. (27) we have

1

vj′
· wj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′xi

)
=
∑
i∈I

λiyiσ
′
i,j′xi ≥

∑
i∈I

λiyi1[xi < x′]xi ,
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where the last inequality is since σ′
i,j′ = 1[xi < x′] if xi ̸= x′, and when xi = x′ we have

σ′
i,j′ ≥ 1[xi < x′]. The above RHS equals∑

i∈I

λiyi1[xi ≤ x]xi +
∑
i∈I

λiyi1[x < xi < x′]xi ≥
∑
i∈I

λiyi1[xi ≤ x]xi

≥
∑
i∈I

λiyiσ
′
i,jxi

=
1

vj

(∑
i∈I

λiyivjσ
′
i,jxi

)

=
1

vj
· wj .

Since vj < 0 we conclude that
wj ≥

vj
vj′

· wj′ . (33)

Likewise, by Eq. (28) we have

1

vj′
· bj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′

)
=
∑
i∈I

λiyiσ
′
i,j′ ≥

∑
i∈I

λiyi1[xi < x′]

=
∑
i∈I

λiyi1[xi ≤ x] +
∑
i∈I

λiyi1[x < xi < x′]

≥
∑
i∈I

λiyiσ
′
i,j =

1

vj

(∑
i∈I

λiyivjσ
′
i,j

)
=

1

vj
· bj .

Hence, we conclude that
bj ≥

vj
vj′

· bj′ . (34)

Since 0 ≤ x < x′, and by using Eq. (33) and (34), we have

0 > wj · x′ + bj ≥
vj
vj′

· wj′ · x′ +
vj
vj′

· bj′ =
vj
vj′

(wj′ · x′ + bj′) = 0 .

Thus, we reached a contradiction.

We denote Ia,b := {a, a+ 1, . . . , b} ⊆ I and I ′
a,b := {i ∈ Ia,b : yiNθ(xi) = 1} = Ia,b ∩ I ′. Thus,

I ′
a,b are the indices of the examples in the interval [xa, xb] where Nθ attains margin of exactly 1. We

denote I ′
a,b = {i1, . . . , im}, where a ≤ i1 < . . . < im ≤ b.

Lemma E.3. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = 1. There are at most 2
indices ℓ ∈ [m− 1] such that Nθ(x) > 1 for some x ∈ [xiℓ , xiℓ+1

].

Proof. Assume that Nθ(x) > 1 for x ∈ [xiℓ , xiℓ+1
]. Since Nθ(xiℓ) = Nθ(xiℓ+1

) = 1, then we have
x ∈ (xiℓ , xiℓ+1

). Now, since Nθ(xiℓ) = Nθ(xiℓ+1
) = 1 and Nθ(x) > 1 for some x ∈ (xiℓ , xiℓ+1

),
then there must be an activation point in (xiℓ , xiℓ+1

) where the derivative decreases. Since by
Lemma E.2 there are at most two such activation points in [xa, xb] then the lemma follows.

Lemma E.4. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = 1. There are at most 5
indices ℓ ∈ [m− 1] such that Nθ(x) < 1 for some x ∈ [xiℓ , xiℓ+1

].

Proof. Assume that Nθ(x) < 1 for x ∈ [xiℓ , xiℓ+1
]. Since Nθ(xiℓ) = Nθ(xiℓ+1

) = 1, then
x ∈ (xiℓ , xiℓ+1

). If ℓ ̸= m− 1 then we have Nθ(x) < 1 and Nθ(xiℓ+1
) = Nθ(xiℓ+2

) = 1. Hence,
the interval (x, xiℓ+1

) contains a point with positive derivative, and the interval (xiℓ+1
, xiℓ+2

) contains
a point with non-positive derivative. Thus, there must be an activation point in (x, xiℓ+2

) where
the derivative decreases. Therefore, there is an activation point with decreasing derivative either
in the interval (xiℓ , xiℓ+1

] or in the interval [xiℓ+1
, xiℓ+2

) (and possibly in both). Thus, an interval

32



[xiℓ , xiℓ+1
] for ℓ ̸= m− 1 might contain some x with Nθ(x) < 1 only if there is an activation point

with decreasing derivative in (xiℓ , xiℓ+1
] or [xiℓ+1

, xiℓ+2
). Since by Lemma E.2 there are at most two

such activation points in [xa, xb], then there are at most 4 intervals [xiℓ , xiℓ+1
] with ℓ ̸= m− 1 that

contain some x with Nθ(x) < 1. The interval [xim−1
, xim ] might also contain such x. Overall, there

are at most 5 indices ℓ ∈ [m− 1] such that Nθ(x) < 1 for some x ∈ [xiℓ , xiℓ+1
].

Lemma E.5. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = 1. There are at most 30
boundaries between linear regions in [xi1 , xim ].

Proof. By Lemmas E.3 and E.4 there are at most 7 indices ℓ ∈ [m−1] such that Nθ(x) ̸= 1 for some
x ∈ [xiℓ , xiℓ+1

]. We denote the set of these indices by R. Let x ∈ (xi1 , xim) be a boundary between
two linear regions. Note that if x ∈ (xiℓ , xiℓ+1

) for some ℓ ∈ [m− 1] then ℓ ∈ R. Also, if x = xiℓ
for some 2 ≤ ℓ ≤ m− 1 then either ℓ ∈ R or ℓ− 1 ∈ R. In any case, we have x ∈ [xiℓ , xiℓ+1

] for
some ℓ ∈ R. Note that each boundary between linear regions is also an activation point. Therefore,
the number of boundaries between linear regions in (xi1 , xim) is at most the number of activation
points in the intervals [xiℓ , xiℓ+1

] with ℓ ∈ R. By Lemma E.1 each interval [xiℓ , xiℓ+1
] contains at

most 4 activation points: two points in (xiℓ , xiℓ+1
) and two in {xiℓ , xiℓ+1

}. Overall, there are at most
|R| · 4 ≤ 28 boundaries between linear regions in (xi1 , xim). Thus, there are at most 30 boundaries
between linear regions in [xi1 , xim ].

In the above lemmas we considered the case where xb > xa ≥ 0 and for all a ≤ i ≤ b we have
yi = 1, and proved that I ′

a,b is such that there are at most 30 boundaries between linear regions in
[xi1 , xim ]. In Subsection E.1 we show analogous results for the case where xb > xa ≥ 0 and for all
a ≤ i ≤ b we have yi = −1. Thus, if xb > xa ≥ 0 and the labels do not switch sign in the interval
[xa, xb] (i.e., either all labels are 1 or all labels are −1) then there are at most 30 boundaries between
linear regions in [xi1 , xim ]. The case where xa < xb ≤ 0 (and the labels do not switch sign in the
interval [xa, xb]) can be handled in a similar manner. Thus, even where the inputs are negative, I ′

a,b

is such that there are at most 30 boundaries between linear regions in [xi1 , xim ]. The proof for this
case is similar and for conciseness we do not repeat it.

We are now ready to finish the proof of the theorem. Consider the set I ′ of indices where Nθ attains
margin 1 and denote I ′ = {i1, . . . , iq}. Note that if I ′ is an empty set, then by Eq. (27) and (28)
all neurons have wj = bj = 0 and hence the network Nθ is the zero function. Let ℓ ≤ ℓ′ be such
that the labels of the examples in the dataset do not change sign in the interval [xiℓ , xiℓ′ ], and either
0 ≤ xiℓ ≤ xiℓ′ or xiℓ ≤ xiℓ′ ≤ 0. Thus, the interval [xiℓ , xiℓ′ ] contains at most 30 boundaries
between linear regions. Also, by Lemma E.1 the interval (xiℓ−1

, xiℓ) (or (−∞, xiℓ) if ℓ = 1) contains
at most two boundaries between linear regions. Likewise, the interval (xiℓ′ , xiℓ′+1

) (or (xiℓ′ ,∞) if
ℓ′ = q) contains at most two boundaries between linear regions. Recall that the labels in the dataset
switch sign at most r times. Overall, we get that the number of boundaries between linear regions in
the whole domain R is at most 30(r+2)+2(r+3) = 32r+66. Indeed, if one of the r+1 intervals
where Nθ do not switch sign contains 0 then we split it into two intervals, and thus we obtain r + 2
intervals. Each of these intervals includes at most 30 boundaries, and outside of these intervals there
are at most 2(r + 3) boundaries. Thus, that are at most 32r + 67 linear regions.

E.1 Lemmas for the case yi = −1

Lemma E.6. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = −1. In the interval
[xa, xb] the network Nθ has at most two activation points where the derivative increases.

Proof. If the derivative increases at an activation point x ≥ 0, then there is a least one neuron j ∈ J
where wj · x+ bj = 0 and the derivative (of the function computed by this neuron) increases in x.
There are two types of such neurons: either (a) wj > 0, bj ≤ 0 and vj > 0; or (b) wj < 0, bj ≥ 0
and vj > 0.

We now show that in the interval [xa, xb] there is at most one activation point that corresponds to a
neuron of type (a) and at most one activation point that corresponds to a neuron of type (b). We note
that an activation point might correspond to multiple neurons, namely, to a set Q ⊆ J of neurons of
size larger than 1. However, we show that if x, x′ are activation points in [xa, xb] that correspond to
sets Qx and Qx′ of neurons (respectively) and both sets Qx, Qx′ contain neurons of type (a) then
x = x′. Likewise, if both sets Qx, Qx′ contain neurons of type (b) then we also have x = x′.
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Suppose towards contradiction that x ∈ [xa, xb] is an activation point that corresponds to a neuron
j of type (a), and x′ ∈ [xa, xb] is an activation point with x′ > x that corresponds to a neuron j′

of type (a). Since both neurons j, j′ are of type (a), then we have wj · z + bj > 0 iff z > x and
wj′ · z + bj′ > 0 iff z > x′. By Eq. (27) we have

1

vj′
· wj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′xi

)
=
∑
i∈I

λiyiσ
′
i,j′xi ≥

∑
i∈I

λiyi1[xi ≥ x′]xi ,

where the last inequality is since σ′
i,j′ = 1[xi ≥ x′] if xi ̸= x′, and when xi = x′ we have

σ′
i,j′ ≤ 1[xi ≥ x′] (and recall that for a ≤ i ≤ b we have yi = −1, xi ≥ 0 and λi ≥ 0). The above

RHS equals∑
i∈I

λiyi1[xi > x]xi −
∑
i∈I

λiyi1[x < xi < x′]xi ≥
∑
i∈I

λiyi1[xi > x]xi

≥
∑
i∈I

λiyiσ
′
i,jxi

=
1

vj

(∑
i∈I

λiyivjσ
′
i,jxi

)

=
1

vj
· wj .

We conclude that
wj ≤

vj
vj′

· wj′ . (35)

Likewise, by Eq. (28) we have

1

vj′
· bj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′

)
=
∑
i∈I

λiyiσ
′
i,j′ ≥

∑
i∈I

λiyi1[xi ≥ x′]

=
∑
i∈I

λiyi1[xi > x]−
∑
i∈I

λiyi1[x < xi < x′]

≥
∑
i∈I

λiyiσ
′
i,j =

1

vj

(∑
i∈I

λiyivjσ
′
i,j

)
=

1

vj
· bj .

Hence, we conclude that

bj ≤
vj
vj′

· bj′ . (36)

Since 0 ≤ x < x′, then by using Eq. (35) and (36) we have

0 < wj · x′ + bj ≤
vj
vj′

· wj′ · x′ +
vj
vj′

· bj′ =
vj
vj′

(wj′ · x′ + bj′) = 0 .

Thus, we reached a contradiction.

Next, suppose that x ∈ [xa, xb] is an activation point that corresponds to a neuron j of type (b), and
x′ ∈ [xa, xb] is an activation point with x′ > x that corresponds to a neuron j′ of type (b). We will
reach a contradiction using similar arguments to the case of type (a) neurons, with some required
modifications.

Since both neurons j, j′ are of type (b), then we have wj · z + bj > 0 iff z < x and wj′ · z + bj′ > 0
iff z < x′. By Eq. (27) we have

1

vj′
· wj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′xi

)
=
∑
i∈I

λiyiσ
′
i,j′xi ≤

∑
i∈I

λiyi1[xi < x′]xi ,
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where the last inequality is since σ′
i,j′ = 1[xi < x′] if xi ̸= x′, and when xi = x′ we have

σ′
i,j′ ≥ 1[xi < x′] (and yi = −1). The above RHS equals∑

i∈I

λiyi1[xi ≤ x]xi +
∑
i∈I

λiyi1[x < xi < x′]xi ≤
∑
i∈I

λiyi1[xi ≤ x]xi

≤
∑
i∈I

λiyiσ
′
i,jxi

=
1

vj

(∑
i∈I

λiyivjσ
′
i,jxi

)

=
1

vj
· wj .

We conclude that
wj ≥

vj
vj′

· wj′ . (37)

Likewise, by Eq. (28) we have

1

vj′
· bj′ =

1

vj′

(∑
i∈I

λiyivj′σ
′
i,j′

)
=
∑
i∈I

λiyiσ
′
i,j′ ≤

∑
i∈I

λiyi1[xi < x′]

=
∑
i∈I

λiyi1[xi ≤ x] +
∑
i∈I

λiyi1[x < xi < x′]

≤
∑
i∈I

λiyiσ
′
i,j =

1

vj

(∑
i∈I

λiyivjσ
′
i,j

)
=

1

vj
· bj .

Hence, we conclude that
bj ≥

vj
vj′

· bj′ . (38)

Since 0 ≤ x < x′, and by using Eq. (37) and (38), we have

0 > wj · x′ + bj ≥
vj
vj′

· wj′ · x′ +
vj
vj′

· bj′ =
vj
vj′

(wj′ · x′ + bj′) = 0 .

Thus, we reached a contradiction.

We use the notations Ia,b := {a, a+1, . . . , b} ⊆ I and I ′
a,b := {i ∈ Ia,b : yiNθ(xi) = 1} = I ∩ I ′.

Thus, I ′ are the indices of the examples in the interval [xa, xb] where Nθ attains margin of exactly 1.
We denote I ′

a,b = {i1, . . . , im}, where a ≤ i1 < . . . < im ≤ b.

Lemma E.7. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = −1. There are at most
2 indices ℓ ∈ [m− 1] such that Nθ(x) < −1 for some x ∈ [xiℓ , xiℓ+1

].

Proof. Assume that Nθ(x) < −1 for x ∈ [xiℓ , xiℓ+1
]. Since Nθ(xiℓ) = Nθ(xiℓ+1

) = −1, then we
have x ∈ (xiℓ , xiℓ+1

). Now, since Nθ(xiℓ) = Nθ(xiℓ+1
) = −1 and Nθ(x) < −1 for some x ∈

(xiℓ , xiℓ+1
), then there must be an activation point in (xiℓ , xiℓ+1

) where the derivative increases. Since
by Lemma E.6 there are at most two such activation points in [xa, xb] then the lemma follows.

Lemma E.8. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = −1. There are at most
5 indices ℓ ∈ [m− 1] such that Nθ(x) > −1 for some x ∈ [xiℓ , xiℓ+1

].

Proof. Assume that Nθ(x) > −1 for x ∈ [xiℓ , xiℓ+1
]. Since Nθ(xiℓ) = Nθ(xiℓ+1

) = −1, then
x ∈ (xiℓ , xiℓ+1

). If ℓ ̸= m − 1 then we have Nθ(x) > −1 and Nθ(xiℓ+1
) = Nθ(xiℓ+2

) = −1.
Hence, the interval (x, xiℓ+1

) contains a point with negative derivative, and the interval (xiℓ+1
, xiℓ+2

)
contains a point with non-negative derivative. Thus, there must be an activation point in (x, xiℓ+2

)
where the derivative increases. Therefore, there is an activation point with increasing derivative either
in the interval (xiℓ , xiℓ+1

] or in the interval [xiℓ+1
, xiℓ+2

) (and possibly in both). Thus, an interval
[xiℓ , xiℓ+1

] for ℓ ̸= m− 1 might contain some x with Nθ(x) > −1 only if there is an activation point
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with increasing derivative in (xiℓ , xiℓ+1
] or [xiℓ+1

, xiℓ+2
). Since by Lemma E.6 there are at most two

such activation points in [xa, xb], then there are at most 4 intervals [xiℓ , xiℓ+1
] with ℓ ̸= m− 1 that

contain some x with Nθ(x) > −1. The interval [xim−1 , xim ] might also contain such x. Overall,
there are at most 5 indices ℓ ∈ [m− 1] such that Nθ(x) > −1 for some x ∈ [xiℓ , xiℓ+1

].

Lemma E.9. Suppose that xb > xa ≥ 0 and for all a ≤ i ≤ b we have yi = −1. There are at most
30 boundaries between linear regions in [xi1 , xim ].

Proof. The proof is similar to the proof of Lemma E.5. The only difference is that here we use
Lemmas E.6 and E.7 in order to conclude that there are at most 7 indices ℓ ∈ [m − 1] such that
Nθ(x) ̸= −1 for some x ∈ [xiℓ , xiℓ+1

], and denote the set of these indices by R.

36


	Preliminaries on the Clarke subdifferential and the KKT conditions
	Details on Example 1
	Proof of Theorem 3.1
	Over-parameterization is necessary
	Proof of Theorem 3.2

	Proof of Theorem 4.2
	Lemmas for the case yi=-1


