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A APPENDIX

A.1 AN EXAMPLE TO ILLUSTRATE HOW NCRL LEARNS RULES

Fig. 3 in the main content gives an example to illustrate how our NCRL learns logical rules. In this
example, we consider a sampled path p = [r1, r3, r4, r5, r3], and predict the relations that directly
connect the sampled paths (i.e.,r6). First of all, we split path p into short compositions using a
sliding window with a size of 2. Then, NCRL reasons over all the compositions and select the second
window w2 = [r3, r4] as the first step. After that, NCRL uses a recurrent attention unit to transform
w2 into a single embedding ̂(r3, r4). By replacing the embedding sequence [r3, r4] with the single
embedding ̂(r3, r4), we reduce the p from [r1, r3, r4, r5, r3] to [r1, ̂(r3, r4), r5, r3]. Following the
same process, we continually reduce p into [r1, ̂((r3, r4), r5), r3] and [r1, ̂(((r3, r4), r5), r3)]. In the
final step of the prediction, we compute the attention θ following Eq. 4. θ collects the predicted
probability that the rule body can be closed by each of the head relations. We compared the learn θ
with the ground truth one-hot vector [0, 0, 0, 0, 0, 1] (i.e., one-hot encoded vector of r6) to minimize
the cross-entropy loss. Algorithm 1 in the main content also outlines the learning procedure of
NCRL.

A.2 EXPERIMENTAL SETUP

NCRL is implemented over PyTorch and trained in an end-to-end manner. Adam Kingma & Ba
(2014) is adopted as the optimizer. Embeddings of all predicates are uniformly initialized and no
regularization is imposed on them. To fairly compare with different baseline methods, we set the
parameters for all baseline methods by a grid search strategy. The best results of baseline methods
are used to compare with NCRL. All the experiments are run on Tesla V100 GPUs.

A.3 HYPERPARAMETER SETTINGS

Adam (Kingma & Ba, 2014) is adopted as the optimizer. We set the parameters for all methods by
a grid search strategy. The range of different parameters is set as follows: embedding dimension
k ∈ {128, 256, 512, 1024, 2048}, batch size b ∈ {500, 1, 000, 5, 000, 8, 000}, learning rate lr ∈
{0.00001, 0.000025, 0.00005, 0.0001, 0.0005} and epochs i ∈ {1, 000, 2, 000, 5, 000, 10, 000}. Af-
terward, we compare the best results of different methods. The detailed hyperparameter settings can
be found in Table 1. Both the relation embeddings are uniformly initialized and no regularization is
imposed on them.

∗work was done when author was an intern at Intel Labs
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Table 1: The best hyperparameter setting of NCRL on several benchmarks.

Dataset
Batch
Size

# Open Paths
Sampling Ratio

Embedding
Dim Epoches

Maximum
Length

Learning
Rate

Family 500 0.1 512 1,000 3 0.0001
Kinship 1,000 0.1 1024 2,000 3 0.00025
UMLS 1,000 0.1 512 2,000 3 0.00025

WN18RR 5,000 0.1 1024 2,000 3 0.0001
FB15K-237 5,000 0.1 1024 5,000 3 0.0005
YAGO3-10 8,000 0.1 1024 5,000 3 0.00025

A.4 KNOWLEDGE GRAPH COMPLETION

A.4.1 DATASETS

The detailed statistics of three large-scale real-world KGs are provided in Table 2. FB15K237,
WN18RR, and YAGO3-10 are the most widely used large-scale benchmark datasets for the KG
completion task, which don’t suffer from test triple leakage in the training set. In addition, three
small-scale KGs are also included in our experiments. The Family dataset is selected due to better
interpretability and high intuitiveness. The Unified Medical Language System (UMLS) dataset is
from bio-medicine: entities are biomedical concepts, and relations include treatments and diagnoses.
The Kinship dataset contains kinship relationships among members of the Alyawarra tribe from
Central Australia. Because inverse relations are required to learn rules, we preprocess the KGs to
add inverse links.

Table 2: Data statistics of widely used benchmark knowledge graphs.

Dataset # Data # Relation # Entity

Family 28,356 12 3007
UMLS 5,960 46 135
Kinship 9,587 25 104

FB15K-237 310,116 237 14,541
WN18RR 93,003 11 40,943

YAGO3-10 1,089,040 37 123,182

A.4.2 ABLATION STUDY
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Figure 1: KG completion per-
formance w.r.t. sparsity ratio on
UMLS dataset.
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Figure 2: KG completion perfor-
mance w.r.t. # logical rules on
WN18RR dataset.
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Figure 3: KG completion perfor-
mance w.r.t. # sampled paths on
Family dataset.

Performance w.r.t. Data Sparsity We present more analysis about the performance of NCRL
against other baseline methods on UMLS dataset w.r.t. Data Sparsity in Fig. 1. We have a similar
observation as we did on Kinship dataset. The performance of NCRL does not vary a lot with
different sparsity ratios θ.

2



Published as a conference paper at ICLR 2023

Table 3: KG completion performance w.r.t. random deduction order v.s. hierarchical structure learning

Methods Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

NCRL w/o Hierarchical
Structure Learning 0.84 74.6 92.6 0.34 20.1 69.3 0.55 37.7 88.7

NCRL 0.92 85.6 99.6 0.65 49.4 93.6 0.78 66.1 95.2

Table 4: KG completion performance w.r.t. randomness caused by random sampling

Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Mean 0.91 85.1 99.1 0.64 48.7 92.5 0.78 65.9 95.0
Standard Deviation 0.005 0.374 0.216 0.000 0.250 0.287 0.005 0.327 0.262

WN18RR FB15K-237 YAGO3-10
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Mean 0.66 56.2 85.0 0.29 20.4 46.8 0.38 27.2 53.3
Standard Deviation 0.005 0.262 0.205 0.005 0.374 0.411 0.005 0.478 0.340

KG completion performance w.r.t. the Number of Learned Rules We present more analysis
about the performance of NCRL against other baseline methods on WN18RR dataset w.r.t. the
number of learned rules in Fig. 2. We have a similar observation as we did on Kinship dataset.

Performance w.r.t. # Sampled Paths To investigate how the number of sampled paths affects the
performance, we vary the number of sampled paths among {288, 1003, 1617, 3450, 38816, 411750}
and report performance in terms of KG completion task on Family dataset in Fig. 3. We observe that
the performances increase severely when the number of sampled closed paths increases from 288 to
1003. After that the performance stay steady. This is attractive in real-world application as a small
number of sampled closed paths can already gives great performance.

Hierarchical Structure Learning As stated earlier, learning an accurate hierarchical structure is
significant for rule discovering. To investigate how the hierarchical structure learning affects the
performance, we follows a random deduction order to induce rules and compare against NCRL
in term of KG completion performance. From Table 3, we can observe that the KG completion
performance drastically decreases if we didn’t follow a correct order to learn the rules.

Performance w.r.t. Randomness Caused by Random Sampling Since the random path sampling
may result in unstable performance, to investigate how the randomness affects the performance, we
report the results of different runs of the proposed NCRL in terms of KG completion task using the
same hyperparameter. From Table 4, we can observe that the KG completion performance is hardly
affected by the randomness caused by random sampling, which is attractive in practice.

Performance w.r.t. Size of Sliding Windows To investigate how the size of sliding windows affect
the performance, we set the window size to {2, 3} and present the performance of NCRL in term of
KG completion on Family, Kinship, and UMLS datasets in Table 5. We can see that we consistently
achieve the best performance by setting the window size as 2. The major reason is that we apply
rules with a maximum length of 3 for the KG completion task. In this case, NCRL cannot leverage
the compositionality by setting window size as 3 and thus results in worse performance.

Performance w.r.t. Different Types of Sliding Window Encoder To investigate how different
sliding window encoders affect the performance, in addition to RNN, we also encode the sliding
window using (1) a Transformer; and (2) a standard MLP, which takes the concatenation of all pred-

Table 5: KG completion performance w.r.t. size of sliding windows

Window Size Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

2 0.92 85.6 99.6 0.65 49.4 93.6 0.78 66.1 95.2
3 0.90 82.3 99.5 0.60 43.1 88.9 0.72 59.9 89.3
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Table 6: KG completion performance w.r.t. types of sliding window encoder

Encoder Family Kinship UMLS
MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

MLP 0.88 80.2 98.0 0.56 38.0 84.9 0.69 55.8 87.4
Transformer 0.84 75.6 95.3 0.50 33.7 79.1 0.62 48.8 81.2

RNN 0.92 85.6 99.6 0.65 49.4 93.6 0.78 66.1 95.2

Table 7: Data statistics of CLUTRR datasets.

Dataset # Relation # Train # Test

CLUTRR 22 15,083 823

icates covered by the sliding window as the input and outputs a new embedding wi ∈ Rd. We
present the performance of NCRL with different sliding window encoders in terms of KG comple-
tion on Family, Kinship, and UMLS dataset in Table 6. We can observe that the RNN encoder, as the
most effective and efficient sequence model, gives the best performance due to the sequential nature
of the subsequences extracted by the sliding windows. Although Transformer is also a sequence
model, it suffers from an overfitting issue caused by the large parameter space, which results in bad
performance.

A.5 SYSTEMATICITY

A.5.1 DATASETS

Clean Data CLUTRR Sinha et al. (2019) is a dataset for inductive reasoning over family relations.
The goal is to infer the missing relation between two family members. The train set contains graphs
with up to 4 hops paths, and the test set contains graphs with up to 10 hops path. The train and test
splits share disjoint set of entities. The detailed statistics of CLUTRR is provided in Table 7.

Noisy Data Graphlog Sinha et al. (2020) is a benchmark dataset designed to evaluate systematicity.
It contains logical worlds where each world contains graphs that are created using a different set of
ground rules. The goal is to infer the relation between a queried node pair. GraphLog contains more
bad examples than CLUTRR does. The detailed statistics of Graphlog is provided in Table 8. When
the ARL is larger, the dataset becomes noisier and contains more bad cases.

A.5.2 SYSTEMATIC GENERALIZATION ON CLUTRR

Baseline methods. We evaluate our method against several SOTA algorithms, including (1) logical
rule learning methods (e.g., CTP (Minervini et al., 2020b), R5 (Lu et al., 2022) and RLogic (Cheng
et al., 2022)); (2) sequential models (e.g., Recurrent Neural Networks (RNN) (Schuster & Paliwal,
1997), Long Short-Term Memory Networks (LSTMs) (Graves, 2012), GRU (Chung et al., 2014)
and Transformer (Vaswani et al., 2017)); (3) embedding-based models (e.g., GAT (Veličković et al.,
2017) and GCN (Kipf & Welling, 2016)); (4) neural theorem provers, including GNTP (Minervini
et al., 2020a).

Table 8: Data statistics of GraphLog datasets. NC: number of classes. ND: number of distinct resolution edge
sequences (distinct descriptors). ARL: average resolution length. AN: average number of nodes. AE: average
number of edges.

Dataset NC ND ARL AN AE #Train #Test

World 2 17 157 3.21 9.8 11.2 5000 1000
World 3 16 189 3.63 11.1 13.3 5000 1000
World 6 16 249 5.06 16.3 20.2 5000 1000
World 8 15 404 5.43 16.0 19.1 5000 1000
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Figure 4: Visualization of the attention learned on Family dataset.

A.5.3 INTERPRETABLE SELF-ATTENTION

This section discusses whether the attention correctly captures the semantic of relations. The visu-
alization of the attention learned over Family dataset and WN18RR dataset are given in Fig. 4 and
Fig. 5.

A.6 COMPLEXITY ANALYSIS

To theoretically demonstrate the superiority of our proposed NCRL in terms of efficiency, we
compare the space and time complexity of NCRL and backward-chaining methods - NeuralLP
as presented in Table 9. We denote |E|/|R|/|O|/l/a/d as the number of entities/relations/observed
triples/length of rule body/number of sampled paths/dimension of the embedding space. We can
observe that: (1) For space complexity, our proposed NCRL is more efficient compared to NeuralLP
since d ≪ |E|2; (2) For time complexity, our proposed NCRL is also more efficient than NeuralLP.
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Figure 5: Visualization of the attention learned on WN18RR dataset.

Table 9: Comparison of Space and Time Complexity for Model Training.

Method Space Complexity Time Complexity
NeuralLP O(|R||E|2 + 3|O|) O(|R|l|E|3(l−1))

NCRL O(|R|d+ al) O(2ad2)
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