Supplementary Materials for ‘“Robust and Faster
Zeroth-Order Minimax Optimization: Complexity and
Applications”

In this Appendix, we first provide detailed explanations for some descriptions in the main paper
in Section[A] Then, we provide the complexity analysis of our ZO-GDEGA algorithm for solving
NC-C and NC-SC problems in Section [B] Finally, we supplement the experiments in more detail and
provide more experimental results in Section

A Detailed Explanations for some Descriptions
This section provides some detailed explanations for the main paper.

A.1 Properties of the max function ®(z)

Compared with existing nonconvex minimax optimization methods such as [31]], Assumption [2]
can still guarantee the ¢-weak convexity of the max function ®(x). Specifically, existing works
rely on the compactness assumption of the maximization domain, thus applying Danskin’s theorem
for convenience, which implies the weak convexity of the max function ®(x). Some machine
learning models can satisfy the compactness assumption, e.g., Wasserstein GAN [2] with weight
clipping, but some models are difficult to satisfy it, e.g., [L7]. Thus, similar to [4]], we also use the
extensmn of the classical Danskin’s theorem based on Assumptlon @ which means that the solution
set Y*(z) := {y*|y* € arg max, cga, {f(z,y) — (y)}} is non-empty for Vz € R% and the max
functlon <I>( ) is £-weakly convex.

A.2 Stochastic ZO-GDEGA for solving NC-C and NC-SC problems

To analyze the stochastic ZO-GDEGA, we first restate the stochastic version of the zeroth-order
randomized gradient estimators as follows:

o

1

Vol (2,9 Th) = Zvlf 2,y () = % d:[f(x+“1”j’@ijfj)f(z’y;gj)]uj, (A.1a)
j=1
b . . — . .
V, f 2,y To) = Zvyf Ty s) = blzdy[f(x,y+uzvify) f(x,y,fj)]vj. (A.1b)

According to [19] 47], we know that for given random variables ¢ and &, Eu,c[@w flz,y; Q)] =
Vol (z,y) and E, ¢ [V, f(z,y;€)] = Vyfu(z,y). The smoothed functions associated to

function f(z,y;&) can be defined as: f,, (z,y;¢) = Eu[f(z + pau,y; Q)] and f,(z,y;8) =
E,[f(x,y + pov;§)]. Then, according to [24] Lemma 5], the ZO estimators (A.1) are unbiased, i.e.,

Ev.z, [Vaf(z, y,L)] = Vo fur (z,y) and Ev,r, [V, f (2,43 T2)] = Vi fu, (z,y) with U = {u;},
and V = {vZ +—1- Moreover, we suppose that the variance of zeroth-order stochastic gradient
estimation is bounded for any random variables ¢ and &, i.e.,

Eu,qnﬁpf(lﬁ Y; C) - vxqu (CL’, y)H2 < 0%7
Ev,&Hvyf(za Y; f) - vyfuz (‘Ta y)||2 < U%'

In addition, we also need the following assumptions. Note that these assumptions are common in
stochastic optimization [31}[19]].

(A2)

Assumption 6. We assume that the variance of stochastic gradient is bounded, i.e., there exist a

constant o3 such that E||V . f(x,y;¢) — Vo f(2,y)||* < 03 and E|V, f(z,y;€) — Vy f(z,9)[* <

2
o5.

Assumption 7. Each component function f(x,y; Z) is {-smooth, i.e., for all z,x' and y,y'
IVf(2,y:E) = Vf(, ,E)II <Al(z,y) — @', y)l, (A3)
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For notational simplicity, let 0 = max{cy, 02}. According to [[19], we have

2

~ ag
E||Vof(z,y;T1) — Vo fu (2, y)]* < o
Lo
b

(A4)
E[Vyf(@,y;T2) = Vyfua (@, 9)|* <

Based on the properties mentioned above, we propose our stochastic ZO-GDEGA algorithm, as
shown in Algorithm 2] and the complexity of Algorithm 2]can be analyzed successfully.

Algorithm 2 Stochastic Zeroth-Order Gradient Descent Extragradient Ascent Algorithm

Initialize: x, zo = yo, step sizes 1, and n,.
1: fort=0,1,...,7T —1do
2: Drawiid. Z; = {CJ} t,and 7y = {53 2 | stochastic samples, respectively;

Vo f (e, 2e;T1) for NC C case;
3 VeF(enT) =14« 215
(= 1) {sz(xt, y4; Z1) for NC-SC case;

4 xp41 = proxy (z¢ — N:VeF(z5;11));
5 Rt+1 = prOXZy (yt + vayf(zta yt§I2));

6:  Yry1 = proxf]y (ye + 0y Vy (@41, 20415 L2));

7: end for

8: Randomly draw & from z1, ...,z at uniform;
Output: .

A.3  Proofs of Propositions|[T]and 2]

For analyzing our ZO-GDEGA algorithm solving Problem (), we extend the Propositions 4.11 and
4.12 in [31]]. Detailed analysis is as follows.

Proposition 3 (A detailed description of Proposition|[I]- the generahzed version of Proposition 4.12
in [31]). Under Assumptlam and[2} if a point (z 7)) is an €2 /L Dy,-stationary point in terms of
Definition E] a point & is an O(e)-stationary point in terms of Definition |2} Conversely, if a point & is
an e-stationary point in terms OfDeﬁnmon an O(¢)-statinary point (z',y') in terms ofDeﬁmtlonI
can be obtained using additional O(e~?) gradients or O(e~*) stochastic gradients.

Proof. We have the facts that the objective function g(z) + f(x,y) + £||x — Z||? is strongly convex in
x and concave in y, and x* (%) = arg mingcga. g(x)+®(z) + £z —2||? = prox‘f?ﬁ(ﬁ:) is uniquely

defined.
o If a point (Z, §) is an ie.,

ZD

1 2 2
66— proxt (&~ §Vaf @GN < 7516 = proxl (3 + 39, f @I < 750 (A5)
By definition, we have

V1 )20(2)[|* = 462(|2 — 2™ (2) . (A.6)
Since () + £|| - —&||? is £-strongly convex, we have

9(2)+ max {f(Z,y) —h(y)} —g(z"(2)) - max {f(a"(2 ),y) = h(y)} — L|E — 2*(2)]?
yedom h yEdom

bz — 2 \% )|
(A7)
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Furthermore, we define §+ = prox” / 9+ +V, f(2,9)) and we have

g(#) + max {f(&,y) —h(y)} —g(z"(2)) = max {f(z"(2),y) — h(y)} — LIz — 2" (@)]*

yedom h yEdom h
=g(@ )+y6151§7§§ {f(@y) — @)} = [f@97) = h@D)] + [f(@51) — h@T)] — g(a*(2))
= max {f(@"(2),y) = hly)} = | -2 (@)

< 9@+ max {[(@y) = h@)} = [[@,5°) = hG)) + [/(@.57) = hGH)] - 9" (@)
(7)) - e — 2 (@)

—{f(z"(#),97) — (g
max {f(x y) —h(y)} — [f(@&97) — h(@h)]

= yedom
F (= 2 @IV @, 5) + o] - S1E — 2" (@)])
< max () )~ G 5%) — h) GBI
My

(A.8)
where w € Og(#), the second inequality follows from the ¢-strongly convexity of g(z) + I'(z, §+) +
¢||z — 2||* and Cauchy-Schwarz inequality, and the last inequality holds due to Young’s inequality.

Next, we consider the part M in . By the definition of §j*, the first-order optimality condition
yields that

h(y) = h(@T) + ey —57) (5 fy—fv f(2,9)) > 0forally € domh.  (A.9)

Together with the ¢-smoothness and concavity of the function f(Z, -), we have

4
—f(@97) + f(@y) <=Vl @9), 9" —y) +5lly - UM b (A.10)

Letting y = ¢ in (A.10), we have
14
—f@57) + @, 9) < (=Vyf(2,9),57 =)+ 55— 5711 (A-12)

Adding inequality (A.TT)) and (A:12), we have

F@) ~ £ 3*) < (T fG0)y 5%+ 5l — 5"
<hy)—h@)+y—-9t97 —9) + ny R (A.13)

=h(y) —h(G") - §||y -9t P+ §Hy 9%,

where the second inequality holds due to (A.9) and the last equality holds due to (a — b,a — ¢) =
2lla = bl|% + &]la — ¢||* = 1||b — ¢||*. Thus, together with the boundedness of dom h, we have

F@,y) = hy) = [f@,57) = h(E)] < 50y =917 = lly = §711°) < Dullg™ — gl (A14)

I\DM’\
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Putting these pieces together yeilds that

9(%) + yrgﬂgé{f(i, y) — h(y)} —g(="(2)) - yrgﬁg{f(x*(i), y) — h(y)} — 0@ — =*(2)|?

Vo f(@,57) +wl?

< Dp)ly" =3l +

20
) . Vo f(2,9) +wl|? Vaof(2,97) — Vaf(@,9)|?
< gt — il + LG D [V 1(63%) Vo)
~ A vx :i‘vA +UJ 2 ~ ~
< ey — gl 4 VT ED T g e
62 64
< = Hyp —
<7 + O(e )+€3Di21’

(A.15)
where the second inequality holds due to Young’s Inequality and the third inequality holds due to
£-smoothness. According to [3], Theorem 3.1] and the properties of the subgradient descent method in

2 ..
150, |1¢(& —proxf/e(:i: — 3V f(@,9)] < 7p, means that |V, f(Z, ) +w||? = O(e*). Combining
(A.7) and (A.15) yeilds that ||V 90(%)|| = O(€). Thus, the point & is a O(e)-stationary point in
terms of Definition

o Conversely, we let a point & satisfy that || V1), /2¢(2)|| < . We can apply the proximal extragradient
algorithm for solving x* (%) and obtain a point (z’, 3') satisfying that

dist(—0g(x™), Vaf(a',y") + 202" — 2)) < ¢ |lyT —V'|| < €/t, 2" — 2*(2)] < €/l, (A.16)
where y* = prox{ ,(y' + ¢V, f(2',y')) and 2F = prox{ (' — 3V f(2',y')). Thus, we obtain

[e(y" — PTOX’f/g(y' + %Vyf(x’, y')))|| < e. Next, we prove the part of z. Since 2¢||z* (&) — Z|| =
| Vip12¢(2)]| < €, we have

1
16(z" = proxy (2" — 5V fa', y"))I
1
< |16 = prox] (2" = 5V f(2',9))) + 26" = )| + 2¢]}" — 2]
1 N
< 16" — prox] (@' = 5V f(2'y))) + 202" = 2)]
+ 202" — ¥ (2)]| + 2¢]|=* (&) — &

(A.17)

1
< e’ = prox{ (' — 5V (',y')) + 2002’ — #)]| + 3¢
1 1
< 0@ = (T + 509)7 (@' = 5V f (@' y)) + 20" = )] + 3¢,

where (I +78g)~(z) = argmin,{g(z) + 5 ||z — z|*}). According to [3| Theorem 3.1] and the
properties of the subgradient descent method in [3], there exists a go € dg(x™) such that

1
||£(x’ - PYOXf/g(fC/ - szf(xlayl)))H

1
< Nl = (2" = 5(g0 + Vaf (2, y"))] + 26" = 2)] + 3¢
1 (A.18)
< e’ = (@' = (g0 + Vaf (@, y ")) + 20" = &) + 1y =y || + 3e
< €+ 4e
= 0(6)’
where the second inequality holds due to the Triangular Inequality and the smoothness of f(z,y), and
the last inequality holds due to (A-16). Thus, if a generalized e-stationary point of f is obtained, the

required number of gradient evaluations is O(e~2) [36]]. This argument holds for applying stochastic
mirror-prox algorithm and the required number of stochastic gradient evaluations is O(e~%) [26].

In summary, the e-stationary point definition in terms of v is stronger than the e-stationary point
definition in terms of f. This completes the proof.
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Proposition 4 (A detailed description of Proposition [2|- the generalized version of Proposition 4.11
in [31])). Under Assumptiond} if a point (&,7) is an €/k-stationary point in terms of Definition
a point & is an O(e)-stationary point in terms of Definition [2} Conversely, if a point i is an
e-stationary point in terms ofDeﬁnition an O(¢)-stationary point (&,y') in terms of Definition E]
can be obtained using additional O(klog(1/€)) gradients or O(1/€?) stochastic gradients.

Proof. e 1If a point (Z, ) is an <-stationary point in terms of Deﬁnition ie.,

. . 1 A € . .1 L €
666 — prox (i — +V.FE I < 166 — proxt (9 + 19, (&) < S (A19)
Then, there exists w € Jv(Z) such that
N .1 A €
lwll < [lw — £(& — prox] (& — 7V f(2,9)))I| + —
PPN PN €
< IVaf(@,y7(2)) = Vo f(@,9)] + (A.20)

€
<|§ — y* (@ z.
<!y y(w)ll+ﬁ

Similar to [31} Proposition 4.11], since f(Z, ) is pu-strongly concave over dom h, the global error
bound condition [[10] holds true and we have

. L1 . € €
<ty — proxt (5 + 9, ) + < < et < = 0(0). (a2
Thus, the point & is an O(e)-stationary point in terms of Definition 2]

o Conversely, if & is an e-stationary point in terms of v, thus dist(0, 0y (Z)) < €, where dist(z,C) =
mingco ||z — ¢||. Thus, there exists w € 9y (&) such that ||w| < e. The optimization problem
maXyedom h f(&,y) — h(y) is strongly concave and y* (&) is uniquely defined. We apply proximal
gradient descent for solving such problem and obtain a point 3’ € dom h satisfying that

1 . "
y* = proxiy (v + 5V f (@), 16 =yl < e lly" =y @) < e (A22)

Then, for x, we have
. U .
[6(2— prox{ (& — Z%f(mﬁ)))ll

. L1 .
< (@ = prox{ (2 = 5V f (#,y7))) — wl| + [|w]

N L1 N
— 1@ — prox, (& = 5V f(5,51) — w] + ¢

. . 14 .1 N
= 162 — argming(z) + 5lle = &+ 72 @y )} — vl + e

(A.23)

Thus, according to the properties of the subgradient descent method in [5], we have ||£(Z—prox] / (T~

%fo(aé, YN S IV f(2,y7) — Vo f(2,9%(2))| + €. According to the ¢-smoothness of f, we
ave

1 . . o e

7Vl @y < IV f(@y7) = Vaf (&,y7(@))]| +
<Lly" =y (@)l +e=O(e).

Thus, if a generalized e-stationary point of f is obatined, the required number of gradient evaluations

is O(klog(1/€)) [48]. This argument holds for applying proximal stochastic gradient with proper

stepsize and the required number of stochastic gradient evaluations is O(1/¢2) [T1]. This completes
the proof.

|e(z — proxfl’/é(i’ — (A24)

In summary, the e-stationary point definition in terms of ) is stronger than the e-stationary point
definition in terms of f. O

A4 First-Order Gradient Descent Extragradient Ascent Algorithm
As by-products, we also provide the first-order variants of our ZO-GDEGA algorithm, as shown in

Algorithms [3]and 4] respectively. The two algorithms can also reduce the per-iteration complexity of
the standard first-order EG algorithms in [35] while maintaining their theoretical advantages.
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Algorithm 3 Deterministic FO-GDEGA: First-order Gradient Descent Extragradient Ascent Algo-
rithm (the first-order variant of Algorithm|I))

Initialize: xq, zo = yo, step sizes 1, and n,.

1: fort=0,1,..., 7 —1do

Vo f (x4, z) for NC-C case;
2 VoF(z) {V f x¢,y;) for NC-SC case;
30 wyqr = proxd (zy — ne Vo F(24));
h

4 241 = prox, (yt + 1y Vy f (@1, 1))

50 Y1 = prox)y (e + 0y Vy f(@er1, 2e41));

6: end for

7: Randomly draw & from x1, ...,z at uniform;
Output: 7.

Algorithm 4 Stochastic FO-GDEGA: Stochastic First-order Gradient Descent Extragradient Ascent
Algorithm (the first-order variant of Algorithm 2))

Initialize: x, zo = yo, step sizes 1, and n,.
1: fort=0,1,..., 7 — 1do
2:  Drawiid. 7, = {CJ} pand I = {§;}; b2 | stochastic samples, respectively;

) oy Ve f(e, 2 Th) forNC C case;
3 VeF(enTh) = {wa(xt, ys; 1) for NC-SC case;
4 mpyg = prox (xe = Vo F(245Th))s
5 zpp1 = prox LW+ 0y Vy (e, s Z2));

6 Yer1 = proxy (ye + 1y Vy f(Te41, 26415 12));

7: end for

8: Randomly draw & from x1, ...,z at uniform;
Output: z.

B Proofs of Overall Complexities for Our ZO-GDEGA Algorithm

This section provides detailed proofs of the complexity results for our ZO-GDEGA in various settings.
We first provide several key lemmas and propositions as follows.

Definition 4 (Another form of smoothness). The smoothness of f means that f(x,y) has Lipschitz
continuous gradients, i.e., there also exist L, and Ly such that

IVaf(z1,9) = Vaf(@2,y)|l < Lallzr — 22|
IVaf(z,y1) = Vo f(z,y2)|| < Lallyr — el
IVyf(@1,9) = Vyf(@2,y)]| < Lyllzr — 22|
IVyf(z,y1) = Vyf(@,y2)ll < Lyllyr — yel|-
Lemma B.1. [31] Definition[I|means that f is also (-weakly convex in the first component , i.e.,

(B.25)

L
fly)+ §|| || is convex for all y € dom h. (B.26)

Lemma B.2. [I4 Lemma 4.1(c)] If f(x,y) is concave on y, then f,,(x,y) is concave on y. If
f(z,y) has Lipschitz continuous gradients with constant ¢, then both f,,, (x,y) and f,,(z.y) have
Lipschitz continuous gradients with constant L,,, < { and L,,, < {, respectively.

Proposition 5. /8| Proposition 4.1] For all v, € R", ifw = prox# (r — ¢), where  is a stochastic
gradient, then for all z € R™, we have

1 1 1 1
E(—C,w—2) + J(w) — J(2) < —E||r — z||> = —E||r — w|* — —E||w — 2| (B.27)
(£Cw =)+ J(w) = J(2) € 3Bl = 2l = Bl —w]? - 5B — 2|

Proposition 6. Ifp = prox,J,(r —u),q= proxi(r —v), and E||lu —v||? < C?E||p — r||? + C3, then
for any z € R™ we have

1 1 1 1 C? C?
E(=v.p—2)+J(p)=J(2) < —E|r—z||>——El|lg—z|?= | — — =L ) E|lr—p||>+=2. (B.28
(osp=2) 4 ()=J () < 5 Bllr =2~ 5 Ellg— (2,7 5 ) Elr=plP 50 B28)
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Proof. Applying Proposition[5]to p and g, respectively, for any z € R™ we have

1 1 1 1

E(=u,p—2) +J(p) = J(2) < —Ellr — 2> = —Ellr —p|* = —~Ellp— 2>,  (B29)
; 2 | o 2 |

E(Z0,q - 2) +J(q) — J(s) < —E|lr — 2> = —E|jr — gl — —E[lg — 2[°>.  (B30)
—v,q— 2 q) — J(z) < =E|r —z||* — —E||r —q||” — —El||lq¢ — 2||". .
n 2n 2n 2n

Let z = ¢ in (B:29), and we have

1 1 1 1

E(=u,p—q) +J(») — J(q) < —E|r —q|* = —E|r —p|*> — —E|lp — q|*. (B.31)
(0 =)+ ) = J0) € 5 Bl — a5 Elr ol ~ 5 Elp g

Combining (B.30) and (B.31), then

1 1

”1 "1 . . (B.32)
<7]E _ 2—7]E _ 2_7E _ 2—7]E _ 2
<3 [r — z|| o llg — z| 2 |7 — pll o lp — qll*,

which is equivalent to

1
E<5v,p—2>+J(p)—J(2)

1 1 1 1 1
<E(=(v—u),p—q)+ —E|r —z||*> = —E|jg — 2||> = —E||r — p||> = —E|p —q|]?

<n( ) ) o [ [ 2 [ | o [ | 2 [ |
<E|2(0 - w)lllp— qll + —Ellr — 21 — —Ellg — 21| — —E|lr — pl|* — —Ellp — ||
- n 2n 2n 2n 2n

1 1 1 1 1 1
< —Ellv —ul|>+ —E|p—q||* + —E|r — 2||*> = —E|jq — 2||*> = —E||r — p||> = —E|p —q|]?
<% v — ull +277 lp— qll +277 [r —z|| o llg — z| 2 [r —pll 2 lp — 4l

1 1 1 1
:7E _ 2 7]}3 _ 2—7]E _ 2_7E _ 2
Bl = ull + 3Bl = 2|7 — 5 Bl — 2|7 - Bl =l

1 1 1 C? C3
< —E|r—z|?> = =E|jg— 2| — (= — =D)E|r —p|> + =2
< goBllr = 2I” = 5 Ellg — 2l ~ (5 — 5Bl —pl + 52,

(B.33)
where the second inequality holds due to the Schwartz inequality and the third inequality holds due
to the Young’s inequality. O
Lemma B.3. [51| Lemma 2.3] For {-smooth function f(x,y), let g1 = dy, g2 = dyy. Then we have

272 272
IVef@y) = Vaf @yl < === IV f(a.y) = Vo fe )| < =5 (B.34)

Lemma B4. [[[4 Lemma 4.1(b)] Suppose that f(x,y) is smooth. In general, it holds that

242 1,2 2d2 L2
Hvrfm(xay) - fo($>y)||2 < % and ||vyfu2(x7y) - vyf(CE?y)HQ < ”#
Lemma B.5. f, (z,y) is weakly-convex.

Proof. According to [31]], smoothness ensures weak convexity of f(z,y) w.r.t. x. Moreover,
F(z,y) = f(z,y) + @ is convex w.rt. z, so Fy,, (z,y) := E,F(z + pu,y) = E,f(z +
i, y) + M is convex. Let z = x + pu, so E, F(z,y) = E.f(z,y) + “2“2 is con-
vex w.r.t. z, thus, E, f(z,y) is weakly-convex. Thus, E, f(x + piu,y) is weakly-convex and

E.f(x + piw,y) = fu, (z,y). In fact, the smoothness of f,, (x,y) can directly ensure weak
convexity of f,,, (z,y) w.rt. x [31] Lemma A.1]. O

Based on the lemmas and propositions above, we provide the complexity analysis for our ZO-GDEGA
algorithm as follows.

All analyzes are organized as follows. We first provide a complexity analysis of our ZO-GDEGA
algorithm for solving NC-SC problems in Subsection [B.1] Then based on this analysis, we provide
a continuity-agnostic analysis (more relaxed condition) in Subsection[B.2|for ZO-GDEGA solving
NC-C problems. Finally, we provide tighter results for the NC-C setting in Subsections[B.3|and [B-4]
under the Lipschitz continuity assumption.
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B.1 Complexity Analysis of ZO-GDEGA for Solving Nonconvex-Strongly Concave Problems

We provide detailed derivation for the complexity results of the deterministic ZO-GDEGA to solve
NC-SC problems. Because the derivation of the stochastic ZO-GDEGA is similar to that of the
deterministic ZO-GDEGA, we only give some key results for the stochastic setting.

Lemma B.6 (Lipschitz continuity of the solution mapping). [4 Lemma 4.1] The solution map y*(x)
which fulfills I'(z, y* (z)) = max,cga, I'(z,y) forall x € R% s k-Lipschitz.

Lemma B.7. For determinisitic ZO-GDEGA algorithm solving the NC-SC problems, the iterates
{2 YL, satisfies the following inequality when q; = d,,

{4+ ke
2

n

Nup3dy L2
21,

2

%E\\thHQ < E[p(x) = (we41)]+( (k4 1200, — o Bz 1~ | +20, 026, +

(B.35)
Similarly, for stochastic ZO-GDEGA algorithm solving the NC-SC problems, the iterates {x;}1_,
satisfies the following inequality,

771‘72

2by

!+ kl
2

z 1
%EuthHQ S E[ () (i) +( +(k + 1)262772?7§)EH$1€+1_$t||2+2£277x6t+.u%dil’i77x+
(B.36)

where w, € (0g + V) (zy).

Proof. From the optimality condition of the proximal operator under the NC-SC setting in Algorithm

[0l we deduce that .
0 € g(w41) + Vi f (T, ye) + TT(%Hrl — xy). (B.37)

Then, we let w41 = n%(xt — Zy41) + VO(z41) — ?xf(:rt,yt) € 0g(x¢41) + VO(x441) and
bound the ||w;1||* as follows:

1 2 . N
wesr || = ?||$t—$t+1|\2+n*<1‘t—$t+17 VO(2141)—Vaf (e, ye))+VO(2e41) = Vo f (e, 1) 1>

x x

(B.38)
The (¢ + x{)-smoothness [31, Lemma 4.3] of ®(x) implies that
{+ Kl

(VO(zt41), ¢ — Tey1) — 5 241 — e]|? < @(24) = B(141)- (B.39)

Since the proximal operator minimizes a ni-strongly convex function, we have that

R 1
9(@er1) + (Vo f(2e, 40), 241 — @) + 5|41 — wol|” + 5 llwerr — 2
Tz 20y
1 (B.40)
< g(@) + (Vaf (@, yp), w — x1) + 5—llo — a)?

20y

for Vo € R% . Combining (B.39) and (B.40) and letting = = x,, taking the expectation of both sides
yields that

{4+ Kkl 1
- n) Ellzi11 — 0]

’ (B.A1)

E(V®(zs41)— @aff(xhyt)a vy —xi11) < E[Y(xs) —h(@eq1)] + (

Lastly, by the Young’s inequality, we deduce that

E[V®(2s11) — %f(:vt,yt)\lz
= E|V®(z141) — VB(x4) + VO(21) — Vo f (w1, 40|
< 2(k + 1)*CE|wig1 — wl|® + 2B V(1) — Vo f (e, y0) I
<2(k+ 1)°CE|zi1 — x| + 4VO(21) — Vo f (w0, 4) |* + 4BV f (26, v) — Vo f (e, y2) ||

< 2(k + 1) PR |1 — 2|)® + 4026, + pid, L2,
(B.42)
where 0, := ||y*(z¢) — y¢||*. Plugging (B.42) and (B.41) into (B.38) yeilds the desired result.  [J
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Lemma B.8. For deterministic ZO-GDEGA algorithm solving NC-SC problems, the following
statement holds for the generated sequence {ziy1}, {yi+1} when we choose g3 = d,:

E(=Vy f(xt+1, 2041)s 2e41 — Y) + h(2e41) — h(y)

1 1 1 3n, 02
< __F 2_7E _ 2 _ (- Y E _ 2
< Bl = ol = 5Bl o1 - (G~ OBl - sl (g

N 302y |wes1 — x]|? n 377y.“§L32/dy
2 4 7

Similarly, for stochastic ZO-GDEGA algorithm solving NC-SC problems, the following statement
holds for the generated sequence {2411}, {yt+1} during algorithm proceeding:

E(- Vyf($t+1, Zi41), Ze+1 — Y) + h(zeg1) — h(y)
1 s 1 9 1 3,2 )
T Elly: — ylI” - %EH%H —yll” - (% T o Ely:e — ze41| (B.44)
30, |werr — xe|* 3 L2d2 302
+ Myl|Te41 al + Ty 2 y 997
2 2 bo

Proof. According to Proposition |§|, we set r = Y, ¢ = Yit1, P = 2441, N = 10y and
v=—nyVyf(@es1, 2e41), w = =y Vy f (@4, y¢). We can verify that:
Eflu — U”2 = E”ny@yf(x?%la Zig1) — ny@yf(xtv yt)H2
“E[3IVyf (g1, 2e401) — Vi f (@eg1, 2e4 )11 4 3|V f (@, 1) — Vi f (2, 90 ||?
+3||\Vy f(xig1, 2041) — Vyf(ft,yt)H?]

3uiL2d
<, (22‘1’1/ + 3| Vy f (@41, 2e41) — Vy f (e, yt)||2>

3n2usL2d
<3Cn2lp —rl|* 4 30 |z — x| + %7
(B.45)
where the second inequality holds due to Lemma L and the third inequality holds due to the
{-smoothness of f. Thus, if we set C7 = 3n;¢?, and O3 = 30°n2 [|z;41 — 2 ||* + M ,J =h,
according to Proposition[6] we have the followmg 1nequahty holdlng for any y:
B(=Vyf (2141, 2041)s 2041 — ¥) + hlzer1) — h(y)
1 1 1 3n, 02
< —E|y: —y||* - =—E —y|]? = (=— — “LE|ly; — 2
= llye — vl o lye+1 =yl (277y 9 JE[lye — 2ol (B.46)
3nyusLidy
N 30y |[we1 — @ + T
2
O

Lemma B.9. Let 6; = ||y*(z¢) — y:|* and n, < min{%, %} the following statement holds true,

Z d; < 8ady + 8a Z )(1+ 8a)k? + 3202 E|x; — zisa ||* + M], (B.47)

3n2u3Lid
where a = ﬁ M £ 2nyLyp 2+ M for deterministic setting and M = QUyLuMQ +

3y, 22 L2 d2 Gny for stochastic setting.

Proof. About deterministic ZO-GDEGA for solving nonconvex-strongly concave problems, accord-
ing to Lemma[B.8] the following statement holds for the generated sequence {11}, {y+1} during
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algorithm proceeding:

E(—Vy f(2t11, 2641), 2641 — Y) + h(ze41) — h(y)

1 1 1 3n,0?
< —FE|y —y||* — —E —y||? = (=— — =L E|jys — 2
= 2, llye —yll 20, [ye+1 =yl (277y 9 JE[lye — 2e41l (B.48)
3nyualid,
| 30yl — P+

2

for Vy € dom h. The strong concavity of f(z,-) ensures that the solution set Y *(z) := {y*|y* €
arg maxyedom h{f(x,y) — h(y)}} is a singleton and consists of a single element y* () for a given
x. Letting y = y*(x4+1), we have

Ellyit1 —y*(th)HQ

<Ellys — y* (@) 1P + 20y [(Vy f(@er1, 2001), 200 — 47 (2041)) — hlzer1) + (Y (we41))]
3n2u2L2d
— (L =3n20)Elys — ze41]|* + 360, [|meqq — ze|” + W
(B.49)
Taking the expectation of both sides of the above inequality conditioned on (2+41, 2¢+1) yields that

Elllyer1 — ¥ (@e1) P [zes1s 2e41]

< E[llys — y* @) P |@041, ze01] + 20y [(Vy Fro (Te115 2641)s 2041 = ¥F (@041)) = P2011) + h(y* (641))]
22 2 2,2 2 3y p3Lydy
= (=3 Ellye — zeral7|zerr, 2] + 3EE[wesr — wellPwes, o] + ————

(B.50)
Taking the expectation of both sides deduces that

Ellysr1 — v (ze41)]?

<E|lye — y* (@) | +200E [(Vy fro (i1, 2041), 2041 — Y (@051)) — B(ze41) + h(y* (241))]
—_—

J1 Jo
3n2uiLl2d
— (1 =3n20*)Ellys — ze41]* + 3Bz 41 — z||* + W
(B.51)
Now, we bound J; and J5 as follows:
1 * 1 *
Ji=0-lye—y (o)1 + 1l —v (zr1)]I?
1 1 * * *
< (1= A+ Dl — v @) 1? + (14 8a)[ly* (z1) — y* (we41)]I]
4a 8a
1
g llye =zl + llzees = o7 @e) I (B.52)

1 § 1
<(1- @)Hyt —y ()P + (1 - @)(1 + 8a)k” ||z — o4
1 *
+ %[Hyt =zl + llzeg1 — y* (@) 1P,

where we let a = ﬁ, the first inequality holds due to the Young’s inequality, and the last inequality
holds due to the x-Lipschitz continuity of y*(-) in Lemma[B.6]

Jo = (zep1 — Y (Te41), Vi fruo (Teg1, 2e01)) — M(2zeg1) + h(Y" (041))

< - §||Zt+1 =y (@) + fro(@eg1, ze41) = B(zeg1) = [fuo (@eg1, " (Te41)) — B(y* (T241))]
< - %||Zt+1 =y (@)1 + F(@esr, 2e41) — h(zeg1) = [F(@eg1, ¥ (@011)) — h(y* (ze41))] + Lyu
< = Slleern =y (@) 2 + Ly,

(B.53)
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where the first inequality holds because the y strong concavity of f(z, -) implies p strong concavity
of f,,(z,-) [39], the second inequality holds due to [14, Lemma 4.1 (b)], and the third inequality

holds due to the definition of y*(z), i.e., y*(x) = arg max,{ f(x,y) — h(y)}. Plugging (B.52) and

(B:33) into (B.3T)), we have

Ellyesr =y (@e) |

1 . 1
< (1= )Ellye — v (@o)|I? + (1 — —) (1 + 8a)k’E||my — moy1 ||

8a 4a
~ (1m0~ g7 ) Bllar =y @) - (1= 3026 = DBl s P
+ 20y Lytid + 3Cn2El |z — 2|2 + w.
According to the setting of a = ﬁ we choose 1, = 2% < %’ so we have
Ellys1 — y* (@er1)[”

1
sa—@mmwmeW+wwﬂaﬁ]Mw—mﬂn+%wwf+
B.55)

To simplify the analysis, we let M £ 2ny Lyp3 + M By recursively applying (B , we
obtain for V¢ > 1

1\ t 1\t
5, < <1 - 8a> 8o + ; (1 - Sa) [(8ar? + 3C92)E|z; — x> + M].  (B.56)
Summing this inequality from ¢ = 1 to T" — 1 deduces that
1 T-1 t j
Z o < Z (1 - a) o + ; z; <1 - ) [(8ar? + 3C*n2)E|z; — xj41]* + M].
(B.57)
We can write that
T-1 ¢ 1\t
> (1 - 8) [(8ar? + 3°n2)E|z; — j41]|* + M].
t=1 j=1 a
T—1 T—i—1 j
= [(8ar? + 362775)EH3@ —zi1||* 4+ M| Z (1 - ) (B.58)
i=1 j=0
T-1
<8a ) [(8ar®+30%n )EHLEZ —2i1]]? + M),
i=1
and .
= 1\" 1-(1-&)7
> (1 — ) = (78“1) < 8a (B.59)
prd 8a 1-(1- 871)

with 8a > 2 <= 7, < -.. Adding § on both sides of (B.57) and plugging (B.58) and (B.59) into
(B37) yeilds that

T-1 T-1
> 6 < 8ady + 8a Z ((8ar? + 30202 E|x; — wia||* + M. (B.60)
t=0

O

Theorem B.5 (Detailed description of Theorem . We choose n, < m (we hope that
”—2’% + (k+1)20%n, — i + 16al*n,[8ar? + 30%n,] < 0, thus we can get 1, < i3 <

\/9(€+n£)2+128a€2(8an2+3€2ny)—(€+n€) 1 41 4 1
1= 0)7 F64al® (8arn? F301,) ) My = o (due to n, < mln{ﬁ, 57} and % > 5g)- Under
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Assumptions Bl F Bland[7} our ZO-GDEGA converges to an e-stationary point for solving Problem
, i.e., miny << dist(—0g(x;), V®(x1)) < € with iteration number T bounded by

2 2
O<n Ay + KE 5())7 B6D)

2
for both deterministic and stochastic settings, where Ay, = 1(xo) — ming ¥(x). Thus, the overall

complexity is bounded by O(k*(d,, + d,,)e~2) for the deterministic setting and O(k?(d, + rdy)e~*)
for the stochastic setting.

Proof. Taking summation from ¢ = 0 to t = T'— 1 of (B33) in Lemma[B.7} we get that

n T-1
?:1: > Efwiga |
t=0

Tnpid,L?
< E[p(z0) — $(wr)] + 16an,0 + —H1==2
L+ Kl 1 T-1
+ ( + (k +1)2%n, — + 16a¢%n, [8ax? + 362775]) Z Ellzip1 — x|
e = (B.62)
3 L2d
+16al?n, T (20, Lyp3 + %)
T N 2dmL2
< E[(zo) — (z7)] + 3266%1,60 + %
2u3L 12 L2d
Jr,igzan(S Ha Ly 4 ﬂ22 ),
14 l
where the second inequality holds due to the choice of 7,;, and a = ,U':7y = %‘3 = 2k. Thus
1 2E[)(x0) — P(a7)] | 64rl%y 8u2L, 3p3Ld,
— E 2 < 24 12 2 2y Y
T Z lwipr||* < T, + T + pid. Ls 4 8kl7( 7 + 7 )
2 - 25
< o) V)] LA | o
(B.63)

for deterministic settting.

1 T—1
T > Efwin |
t=0

oF - 64r625 2
< W’(xﬁf)% Yler)] | A 2%1 + 8kl2(
i) ~ o) £l o

Susly | 3usLydy 1202)
¢ 2 bl

<O(
(B.64)

for stochastic settting. Choosing p; = O(e), pa = O(ek™'/?), ¢ = d,, and ¢ = d,, for
deterministic setting, and p; < m to < m, b1 = O(dye?), and by = O(d, ke ?) for
stochastic setting, we can get the desired results. O

B.2 Continuity-Agnostic analysis for Our ZO-GDEGA Solving Nonconvex-Concave Problems

Theorem B.6 (A detailed description of Theorem[2). Under Assumptionsmand 2l forany given e > 0

and arbitrary §j € dom h, letting x. be such that dist(—dg(z.), V®(z.)) < 2f’ fx,y) = fz,y)—

% ly—9|1% ®(x) £ max,{f(z,y) —h(y)}, our ZO-GDEGA algorithm applied to solve approximate

. = P . A~ . 62 y € .

NC-SC model: min, max, ¥(z,y) = g(z) + f(z,y) — h(y) with i = mm{WDi, % NI } =
2

O(45z7), is guaranteed to generate a point x. such that E[||NV)y/2,(zc)|]] < € for solving NC-C
h
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problem (I) wzth total complexity (9( (dy + d y)e?) = O((dy + dy)e~®) for the deterministic

setting and (9(# (dy + £ ady)e” 4 = (’)(dme_8 + dye=10) for the stochastic setting (in this setting,
we also need Assumptlons l [Bland[7).

Proof. Below we state some useful relations that will be used later in the proof. The definition of W
implies that for all (z,y), we have

V.I(2,y) = Vil'(2,y), [IVyf(z.y) = Vyf(z.y)| < D, (B.65)

where I'(z,y) = f(z,y) — h(y). We define j*(x) £ arg max, I'(z,y). Following [60, Lemma 11],
we have that X

§* (xe) = prox(y(§* (we) + aV f(we, §" (xc)
Now we are ready for the proof of Theorem Let y* 2 prox" (g
then we have

)). (B.66)
“(we) + aVy f(ze, 7" (2c))),

ly™ — 9" ()|
= [lprox” (5" (ze) + aV, f(ze, §" (x))) — proxL: (5™ (ze) + aVy f(ze, 5 (xc)))| (B.67)
< al|Vyf (e, 9" (@) — Vyf (e, 3" ()|
< ajtDp,

where the first equality is by the definitions of §*(x) and y*; the first inequality holds due to the
non-expansiveness of proximal operators, and the last inequality holds due to (B:63)). Recall that

our ultimate goal is to show that || Vi (z¢)|| < e. Now, considering proxf(xﬁ) = argmin, ¢ (v) +
5x|lv — z||?, where A = ;. According to [31 Lemma A.1], we have

1
IVoa(zll® = 3z llee = prox} (z.) | *. (B.68)

Since ¥(z) is weakly convex and A = &, ¥(x) + 55 ||z — x| is L-strongly convex with the unique
minimizer prox; ¥ () (the definition of proximal operator); we have

1
() +maxT(w.,y) = g(prox (@) — max I (prox§ (z.),y) = 5 llproxy (z.) — .
1
= ¥la0) — wlproxy (z.)) — 55 Iprox (@) — 2.
14 )\26
> 5 llze = prox (z)|[2 = - |V @),

(B.69)
where the last inequality holds due to the (-strongly convex ¢ (z) + 55 ||z — z||?. In the following

analysis, we will continue to polish the upper bound on ||V (x.)||? on the left hand side of Eq.

(B:69). Indeed,

1
g(xe) + myaxl’(xe,y) — g(prox’f(me)) — myax F(proxf(me),y) — 5||proxz<’(x€) —x

I?

1
= myaxl"(xe,y) —T(ze,y™) + g(xc) + T(ze, y™) — g(prox¥ (z.)) — myaxl“(proxf(xe)w) — —|lprox¥ (z) — x|

2\
1
< maxT (e, y) = N ™) + (o) + Twe,yt) = gprox () = T(prox (w), ™) — o5 Iproxy () — el
14
< max (e, y) = Do y™) + Iproxt () = el [VaT (s ) + well = 5 lproxt (o) = el

Vol (e, ™) + we|?
20 ’

< max (., y) — T(ze,yt) +
y

(B.70)
where w, € 0Jg(x.). Since dist(—0g(ze),VP(z.)) < 55 We can choose we =
b (x.)||2, the second inequality follows from the (-strongly convexity of

arg Mily,epg(z
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g(z) + T(z,y") + 55|l — z||* and Cauchy-Schwarz inequality, the last inequality holds due to
Young’s inequality. Then, using the smoothness of f(x,y) and Eq. , we have

Vol (e, y™) + well
< Vel (26, y) 4+ we — (we + Vo ®(z))|| + ||we + Vo ® ()|
< Vol (2e,y") = Vol (@, y" (@) || + [ Va®(e) + we|
< LajiDy + ||V ®(zc) + wel),

where the second inequality holds due to the Danskin’s theorem and (B-63)), and last inequality holds
due to (B.67)). Thus, using (a + b)? < 2(a? + b?) for any a, b € R, we get

(B.71)

2
IVaD (e, y*) +w|? < 2L26%0°D} + [|Vod(eo) +we|? < 2L26*0°D} + 5, (BT2)

. Next, we bound
(e, 7" (2c))), the

where the last inequality holds due to the fact that dist(—0g(z.), V®(z.)) < 5

max, I'(z¢,y) — T'(z,y") in (B.70). Recall that y© = prox” (§*(z.) + aV,
first-order optimality condition yields that

Lyt~ () — AV i ()] € Dby,

Therefore, for Vy € dom h, we have that
1 A~k A~k
hy) = hly") =y —y" =~y =97 (z) — aVy fze, 97 (20)))), (B.73)

which is equivalent to
1

hy™) =h(y) < —ly—y"y" =97 (@)) = ly —y" Vo (@ i7" (). (B4
Now, we are ready to provide an upper bound on maxyedom n I' (e, y) — I'(ze, y™). Indeed, given

any y € arg maXyedom h L' (Ze, y), we have

max T(wey) = T(rey™) = (e §) = Do 3 (@) + T i (w) = T(eay®)

= f(2e,9) = f(ze, 9" (2e) —h(@) + MG () + f (e, 9" (2)) = flze,y) —h(§" (ze)) + h(y™)
My Ms

S0

(B.75)
We use concavity and smoothness of f(z., -) for My and M5, respectively. Thus,

r € =T € *
jdax, D(ze,y) —T(ze,y™)

< <Vyf(xe,g*(me))vg_ g*(me» - h(@ + h(y+) =+ <Vyf($e,ﬁ*(l'€)),g*(fﬂe) - y+> + %”g*(xe) - Z»/Jr”2

= (V3 (e (20), 5 = 4 = B(@) + hly®) + 2 ) — P
< (- y " Gelwd) + () — P

L, . -
— = (e~ I+ Ly~ Byt~ (@)

S Ly-Dh||y+ - g*(‘re)Hu

(B.76)
where the second inequality holds due to the above optimality condition (B.74); in the last equality,
we set = L/ L the last inequality holds due to Cauchy-Schwarz inequality and the fact that

mMaXy, y,edom h ||Y1 — Y2|| < Dy. Next, we plug (B.76) into (B.70) and it follows that

1
glw) + max T(ze,y) — glprox}(wc)) — max T(proxy (), y) — oy lproxy (zc) — x|
yedom h m h 2\

yEdo
A~k ||V$F(x65y+) +’U)€||2
< LyDplly™ = 9" (zo)| + 57
2 2 ~n2
~r2 ., € Ly p 2
TR R
Y

(B.77)
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where the last inequality follows from (B.67) and (B.72) with @ = L, *. Combining (B.69) and
(B77), we have

%IIW&(%E)H2 < aDj + 2% + %%Di. (B.78)
y
Thus,
IVa(zo)||? < 804D} + g + 8LL;2” [2D3. (B.79)
y
Thus, we get|| V1 jo¢(c)|| < € when setting fi = min{ﬁi)ﬁ’ é; 2\/§Dh } 0

B.3 Continuity-dependent Analysis of Deterministic ZO-GDEGA for Solving
Nonconvex-Concave Problems

Lemma B.10. For NC-C problems, we bound ||xi+1 — x||? in our deterministic ZO-GDEGA
algorithm as follows:

Proof.

@1 — 24| < 2|[prox? (z — NV f (@1, 2)) — (0 — 0V f (@, 20)) |12+ 202V £ (e, 20) ||

< QniL?J + 277:%”$:Ef<xt’zt)”2a
(B.80)
where the second inequality holds due to Assumption 2] [

Lemma B.11. We bound E,, ||V, f(z,y)| when ¢, = d,.

Proof.

Jensen’s Inequality

Eu[IVaf(@,9)| = Euy/ IV f (2, )] Eu|[Vaf(z,y)|?

< \/QEuIIWf(JJ, y) = Vaf (@, 9)|? + 2|V f(z,y)lI? (B.81)

i 2
Lemma@an%AssumptlonE "y d;Lg n 2G2 .

Lemma B.12 ([4]]). The Lipschitz continuity of f(x,y) in its first component implies that ®(x) is
Lipschitz as well with the same constant G.

Lemma B.13. We suppose that Assumptions |2| and |5| hold. For the deterministic ZO-GDEGA
algorithm solving the NC-C problem , the iterates {xt}tTZO satisfies the following inequality:

O

Bl j2e(ze41)] < E[th1/2¢(4)] + 202 BEE[A] — %I]Eﬂv%/ze(xtﬂﬁ + 20, B0 pF + nzpidy L0+ 6, G,
(B.82)
where f =1 — 20n, and Ay = ®(xy) — T'(zy, 2).

Proof. We define &, := prox?" N (z¢). According to the definition of Moreau envelope, we have that
2¢

V1 /20(Te41) = mrln{w(ﬂﬁ) + |z — 21 [P} S (&) + |2 — o1, (B.83)
and further taking an expectation of both sides of the above inequality,

Epy jop(2i41) < Bap(@) + CE(| 2y — 2441 (B.84)
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According to [4, Lemma 3.2], we have &y = prox) (2nyxy — npve + (1 — 20n,) &), where v, €
O (). Thus, with 5 = (1 — 2¢n,,),

& — 2441 ||?
W llprox? (2em,w, — mevy + Bér) — prox? (wr — nuVaf (@i, 2))]1>

(b) R

<[|B(&: — 1) + 0 (Vo f (20, 20) — vo)|? (B.85)
:52”@1& - ftHz + 277@:5<@mf($t,2t) — Vg, By — fEt> + 77£||@acf($t, Zt) - ’Ut||2

(ZC)BQHi“t — 24))? + 20BNV f (e, 2) — V1, Bt — @) + 202V f (24, 20)||2 + 202G,

where v, € 0®(;), the equality (a) holds due to the definitions of z;; and &, the inequality (b)
holds due to the non-expansiveness of the proximal operator, and the inequality (c) holds due to

Lemma Then, according to [14, Lemma 4.1 (a)], we have that B[V, f(z,y)] = Va fu, (2, )

and E[V, f(z,y)] = Vyfu(z,y). Taking an expectation of both sides of the above inequality,
conditioning on (x4, z;), together with Lemma|[B.11] yield that
E [[|2: — @1 |?|2e, 2]
< B3| & —e])* + 2128V o fuy (T4, 2¢) — v, Ty — T4)
+ 22 E[| Vo f (0, 20) |1 |0, 24] + 203G
< B3 — mel|® + 2028V fun (e, 2¢) — ve, & — @) + n2p3d, L2 + 602G

(B.86)

Taking the expectation of both sides yields that
Ell& — 2 l|” < BBl — 2l|” + 200 BE(V o fiuy (€0, 20) — 01, B0 — 1) +13p7de LY + 602G,

J1
(B.87)
According to the (-weak convexity of f,,, in Lemma[B.5] we obtain
) (a) R . 9
(Vafur @es 20), Bt — 24) < [y (Bts 20) — fog (2, 26) + §||$t — x|

® s L 5

< f(@e,20) = fle, 2e) + 0ui + 5”% — x|
(B.88)

. e
= f(&,2¢) — h(ze) = [f (@4, 2¢) — h(ze)] + 03 + §H9Ct — z?
© 0. .
< O(2y) — Dy, 2¢) + §H~Tt — x||* + Lu,

where the inequality (a) holds due to Lemma the inequality (b) holds due to [[14, Lemma 4.1 (b)],
and the inequality (c) holds due to the definitions of ® (&) and T'(z, y). And by the ¢-weak convexity
of ®(z), we have

X . an
—<’Ut,$t - th> < (I)(th) - (I)(J)t) + §||$t - .13,5”2. (B89)
Combining and and taking an expectation of both sides, we have
Ji < E[®(x,)] — E[D (x4, 20)] 4+ (B2 — 4]|* + . (B.90)

By plugging into (B.87), we have
E|&; — e ]
< BPE|dr — x4||? + 200 BE(V o fruy (w4, 20) — v, &0 — 0) 02 pdd LY + 603 G°
)
< BPE||& — m¢)® + 2%/3[1[‘:[‘1)(%)] — E[ (4, 2¢)] + (E|| & — ¢ ||” + é#ﬂ +napid, LY + 6n3G?
< (1= 20, 0B & — @4l|* + 20, BE[A] + 20, 80p3 + nfpido LY + 602G,

(B.91)
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where A; = ®(x;) — I'(4, 2;) and the last inequality holds due to 32 + 2n,£8 = B(B + 2n.L) = B.
Thus,

E[wl/ze(ﬂftﬂﬂ
S B (&) + LB & — 444
< Bap(@¢) 4 CE|| & — 24> + 200 BOE[A] — 20 K| &y — 241> + 200 B0 1T + i pida L20 + 6m2GE
= Eprja0(w1) + 200 BCE[A] — %Enww(muz + 20, 803 + o pid. L3+ 602 G2,

(B.92)
where the last equality holds due to the definitions of Z; and v, /5¢(2¢) and [31, Lemma A.1]. This
completes the proof. O

Lemma B.14. For deterministic ZO-GDEGA to solve the NC-C problem (), the following statement
holds for the generated sequences {zi 1}, {yt+1} when g1 = dy and g2 = d;:

E(=Vyf (2141, 2041)s 2041 — ¥) + hlzer1) — h(y)
1 1 1 3n, L2
< —E|y: —y||* - =—E —y|]? = (=— — “LE|ly, — 2
< g Bl =yl = 5Bl —ol — (= A Bl =l (g,
2d, L? 3uzLid,
(M52 4262 4+ 1) 4 SRS,
Proof. According to Proposition |§|, we set r = Yy, ¢ = Yir1, P = Zty1, N = 1y and

v =0, Vyf(xii1,z1), u = 1y Vy f (x4, 9:). We can verify that:

Eflu — U”Q = E||77y@yf(xt+1a Ziq1) — ny@yf(xtv yt)HQ
<EBIIVyf (@41, 2041) = Vo f (@erns 20 ) 1P 4+ 3V f (20, 90) — Vi f (2, 90|
+3||\Vy f(wig1, 2041) — vyf(mtayt)”ﬂ

BusLyd
< 77?3 (21/1/ + 3EVy f (#e41, 2e41) — Vi f (e, 30|

3uiL2d
<, (2 YV 4 30%E| 241 — yel|? 4 3K ||z — :vt||2>

2
N 3u3Lid,n?

<1y (B3CE|p — () + G CE| Vo (wr, 20)|* + 607 L36%) + ==
24. L2 3 27124 n2

< n2(3CE|p — r|)? + 6231 5 267 +6niLgl%) + Al 5 o

(B.94)
where the first inequality holds due to the Young’s inequality, the second inequality holds due to
Lemma [B.3] the third inequality holds due to the /-smoothness of f, the forth inequality holds due to
Lemma |B.10} and the last inequality holds due to Lemma Thus, if we set C7 = 3n;/*, and

2712 2
C3 = 67]577362(% +2G*+L2) + %, J = h, we have the following inequality holding

for any y:

E(=Vy f(@er1, 2041)s 2001 — ¥) + B(zi11) — h(y)
1 1 1 3n,02
< 7]E _ 2 7E _ P Yy ]E _ 2
= 2, llye — vl 2, lye1 — vl (2% 9 Elly: — ze41l (B.95)
24, L2 3u3L2dyn,
. 677“7352(% +2G?% + Lg) + M
2
O

Lemma B.15. We suppose that Assumption[I|holds. For deterministic ZO-GDEGA solving NC-C
problems, denoting Ry = 1/ “%di;Li +2G? and Ay = ®(x) — (4, 2), and letting 1, = ﬁ, the

31



following statement holds true for Vs <t — 1,y € dom h and q1 = d,,
1 3n, 02

1 1
__F o * s 2_7]E o * s 2 -
+ 5Bl = @l — 5Bl — v 017 - (e — 2

)EHyt - Zt+1||2

3nypzdy L, 7

+ 3771,17262 (R2 + L2) + 1

(B.96)

Proof.
Appr = Q(wp41) — T(@g1, 4" (25)) + D@41, 4™ (25)) — D@41, 2641)

@ feir, v (@) — by (@) — f@e, 7 (2)

+h(y"(z5)) + f(@e11, 9" (@5)) — M(y™(2s)) — f(@es1, 2001) + h(2041)
= f(@i1, ¥ (X141)) — f(@s, ¥ (@51)) + f(@s, Y™ (2141)) — Ry (2441))

= f(@er1, 9" (2s)) + Wy (25)) + f(@e41, 9" (25)) — h(y™(2s)) — f(Tes1, 2e41) + P(2041)
(®)

< f@ep, v (@) = f(@s, y" (we1)) + f(2s, " (25)) — Wy (24))
= f(zer1,y"(2s)) + h(y*(@s)) + f(@eg1, ¥ (25)) — My (25)) — f(@et1, 2e401) + h(2e41)
= f@er1, Y (2e41)) = f(2s, ¥ (@e1)) + [(@s, ™ (25)) — f(@e41, 97 (25))
M Ms
+ f(xer1,y"(25)) — f(@e41, ze41) — h(y" (25)) + h(ze41),

M3

(B.97)
where the equality (a) holds due to the definitions of ®(-) and I'(+, -) and the inquality (b) holds due
to the definition of ®(x,). Then, we bound M;, My and M3 as follows:

t
E[M] <GE|z11 — 2.l < GEY lless — i

l=s

(a) & R
<G> (Bllprox? (a — nsVaf (2, 21)) — proxd, (z)|| + Ellproxd (z1) — 1)

l=s

® & .
SGZ(”LEHva(xlv Zl))” + Ung) (B98)

l=s

© & N
2GS o \EIV. flar 20) 2+ 10Ly)

l=s

(d) 2d, L?
<(t— s+ Una(\| FS=E 4267 + L,)G,

where the inequality (a) holds due to the Triangle inequality, the inequality (b) holds due to the
non-expansiveness of the proximal operator and Assumption[2] and the inequality (c) and (d) hold due

to Lemma|B.11] Similarly, it can be concluded that E[My] < (£ —s+1)n,(1/ “1%2% 4+ 2G2 4 L,)G.
About M3, we have the following derivation

E[Ms] <fuy (@41, ¥ () = Fuo (Tes1s 2e41) — By (25)) + h(ze41) + L

(a)
< — (Vyfus (@41, 2041)s 2041 — Y7 (@) — B(y* (25)) + h(2e41) + L

®) 1 1 1 3n,02
< E o s 2 ) o s 2 - Y E _ 2
<o lye =y~ (z5)]] o, yer1 — ™ (xs) |l (2% 5 Ely: = ze4ll
2q, L2 3u3L2d,
o (M 4062+ 12) + W 40,

(B.99)
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where the first inequality holds due to [14, Lemma 4.1 (b)], the inequality (a) holds due to the concavity
of f,., (z,-) in Lemma|B.2|and the inequality (b) holds due to Lemma withy = y*(zs). Plugging
My, M5 and M3 into (B.97) yields the desired result. O

Lemma B.16. For deterministic ZO-GDEGA algorithm, letting A1 = ®(x411) — T(Te41, 2641)s
the following statement holds:

=0 (B.100)

1
B

D? 2L2d
20 B0+ Lg)C g et 380, (2R + 250 + %)M;@B].

Proof. According to Lemma and 7, < f ; by splitting the summation into blocks we get that

(T+1)/B—1 [(j+1)B—1

1 ) 1
M(;E[At“]):m > > E[Ag4] |- (B.101)

3=0 t=jB
By using (B.96) with s = —1 for j = 0, we get that

B—1
24, L2 1 .
3 E[A] <B%(y FEETE 4262 4 L,)G + —Enyo —y' ()P = 5 Elys — v (@)
Y

2
t=0
2d,L? 3n,uid, L2 B
+ 3By, (FT=E 267 + 1) + 777‘1’“241’ Y=+ 3 B.
(B.102)
Analogously, for ;7 > 0 and s = j B we have that
(j+1)B-1
Y E[Aw]
t=jB
2 :u%dZL?c 2 1 * 2 * 2
<n.B*( 5 +2G? + Ly)G + o (Ellyiz — v (@B)|I* — lyg+ns — v (@;8)|%)
y
2d, L2 3n,BuiL?d
+ 3By (MU 0G24 2) 4 TPV g,
(B.103)
Plugging (B.102)) and (B.103) into (B.101) yields that
1 T
T+1 (ZE[At+1]>
t=0
2d, L2 D?
<= |on, B2(\/ M52 | 9G24 )G + 1
B 2 2ny
(B.104)
2d,.12 3n,BuiL? d,
+3Bnyn§€2(% +2G2 4 12) + % 40428
al 2 Dj, 2R2 4 27202 1 p3Lydy 2
=—=[2n.B*(R1 + Lg) y (R RY + 17 Lo0% + —2—=) + (u3B],
B 2n, 4
where Ry £ “1d L 492, O

Theorem B.7 (Restatement of Theorem [3). We suppose that Assumptions[I} [2| and 5| hold. If we
€4

1 —
choose e = min{ qoss e m by G T L,) 16T [ZT126G7) 161’\/R2+L2} v
g2 = dy, 1 = O(€) and po = O(€), the deterministic ZO-GDEGA algorithm can be guaranteed to
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find e-stationary point, i.e., T%rl ZtT:O E|[V1 j20(21)||? < €2, with the iteration number T bounded

by:
(G(Ry + Ly)A, D3

where Aw = 1/20(w0) — ming 1y jo0(x). Thus, the overall complexity is bounded by O((d, +
dy)e®).

Proof. Summing up the inequality (B-82) in Lemma[B.13|from 0 to 7", together with Lemma[B.16]
we have

T
1 2
7T+ 1 ;E”V%/Qz(ﬂ%)”

<2(¢1/2£($0) — Y1 /20(T741))
N ﬁz(TJr 1)

2

1 2 D;, 22 p2 2722 F‘%dey
+ 4565[27713 G(R1+ Ly) + 2, +3Bny (N "Ry + nyLyt” + ———
Yy

) + €5 B)
(B.105)
+ 4802t + 2nppid, L20 4+ 120, G20
_ 2(41/20(20) = Yrjae(r741))
ne(T +1)

D;. 242 2 27242 M%Lidy 2
+ 4B€[277IBG(R1 + Lg) + 27773 + 3’17y(T]w£ RY + 77ng€ + T) + K,MQ]
y
+4B02 13 + 2nppid, D20 + 120, G4,
We choose B = #, thus we have

2y/ManyG(R1+Lyg)

T
1

72 ||V¢1/2£(33t)||2
T+1 P

< 2Ay
(T +1)

DLG(Ry + Lg)  Dpv/12myG(R1 + Ly) 22p2 | 27242 /‘gLZdy 2
+ 480]\/1y + ‘ — 4+ 30, (0" Ry +n Lol" + ——) + Lus).
[v/ G = L) " y( 1 p 1) 2)

4 62

(B.106)
= mi £ € < €
Thus, we choose T InlIl{ 1096v/303D2G(R1+Lg)’ 320p2d, L2 +192(G2’ 164\/Rf+L3 }, H1 = g /a0’

< ¢  ap - L h
M2 = Atza, vae & dny = 75> we have

+ 48023 + 2n,pid, L20 4+ 120, G20

1 ) 2 2A1/ 62
— < —2 4 . B.1
T+1 ; V1 e (z4)[|” < (T + 1) + B (B.107)

This implies that the number of iterations required by ZO-GDEGA to find an e-stationary point is

bounded by
A 212
0 (M wos(1, 208 }> | (B.108)

which means that the overall complexity is bounded by O((d,. + d,,)e~%). This completes the proof.

Note that this bound does not consist of the term Ay = ®(z0) — (f (20, yo) — h(yo)) compared to
31 O
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B.4 Continuity-dependent Analysis of Stochastic ZO-GDEGA for Solving
Nonconvex-Concave Problems

Lemma B.17. For stochastic ZO-GDEGA solving the NC-C problem , the iterates {x;}1_,
satisfies the following inequality

» widiL?  o?
Eft1/26(@e+1)] < B oo (00 + 20 CEIA] =" E| Vb e (0| +2m, 153+ 2m20(FEE=2 42 ALLELCE
(B. 1()9)
with B = (1 — 20n,,), where Ay = ®(xy) — (x4, 2¢).
Proof. We first bound the term By, 7, ||V f (z, y; Z1)||? as follows:
: 2 2 o
Evz, [IVaf (0,35 T0)IP) = B (Ve fun (2. 0)I) + 31
2 2 i
< 2B [IVafua(2.9) = Vol (@ y)IP] + 2B [IVaf (2, 9)IP] + 5
d2L2 2
M1%x 2 2 e
hS 9 +2G* + by’
(B.110)
From the definition of the Moreau envelope we deduce that
E[t1 j20(we41)] < E[tp(20)] 4 CE [[|2 — ze41]%] - (B.111)

We yeild that for 8 =1 — 2¢n,

& — zega ||

W \Iprox?_ (20m,m, — vy + Bér) — prox? (wr — 0V f (@, 25 Th)|2

(O] .
< 1B(& — @) + no(Vaf (@4, 26 Th) — ve)||?
= 2|2 — ze|® + 208V f (e, 26 Th) — ve, &t — 24) + 2|V f (24, 26, T1) — v

B B2 — x4 ||? + 2nuB(Va f(2e, 265 T1) — vey &4 — x0) + 202 |V f (0, 26, 1) |2 + 202 G2,
(B.112)

where v, € 0®(z;). Taking an expectation of both sides of the above inequality, conditioning on
(24, z¢), yields that

Ey,z, [Hi"t - xt+1||2\a:t, Zt]

<B?|3¢ — el + 200 BV fu (Tt 2¢) — 1, 81 — 1) + 202Bu .z, [| Vo f (e, 26 T1) |24, 2¢] + 202G

d2 2 0.2

<B||&r — a4||* + 202 B(V o fuy (@4, 2¢) — ve, T — x¢) + 277320(% + b —)+ 677wG2
1

(B.113)

where the second inequality holds due to (B.TT0). Taking the expectation of both sides yields that
u%dSCLi + ‘;2) +602G2.
(B.114)

E|&: — ze41]? < BPE| & — a¢||* + 212 BE(V o fru, (T4, 2¢) — Vg, B — ) + 2775(

According to (B:90), we have that
El|2; — z41]* <BZE||2r — 4]|® + 2008 [E[®(20)] — B[ (4, 2¢)] + CE|| ¢ — 4] + £ui]

2422 2
+ 2nZ (#1 A +i)+6n§G2
2 b1
A 20272 52
=(1 = 20, O)E||Z — x¢]|* + 20, BE[A] + 2775(”1 ; L+ b —) + 6n2G?,

(B.115)

35



where Ay = &(z

t) —
Elt1/20(w111)] < E[Yo(2:)] + (B[ — 411 |?
< E[(&4)] + (E|| & — x4]|* + 20. BLE[A] — 200K ||y — 24> + 20,80 1}
T A

+ 22 5 +b—1)+6n§£G2.

E[1)1 j20(w¢)] + 2m0 BLE[A] — TIJE”V%/%(%)HQ + 20, 80713

p2d2L2  o?
2 b

T'(a¢, z¢). Thus,

+ 220 )+ 602G,

(B.116)
where the last equality holds due to the definitions of Z; and 11 /2¢(¢). This completes the proof. []

Lemma B.18. For the NC-C setting ofAlgorithmIZI we bound ||x,41 — x||* as follows:

Proof.

21 — ]|
S 2Hproxg (-rt - nx@a:f(xtvyt;zl)) - (:Et - nxﬁzf(xta yt;Il))HQ + Qninﬁajf(xt’yt’II)HQ
<2202 + 202 | Vo f (e, ye T) |12,

(B.117)
where the first inequality holds due to Cauchy—Schwarz inequality and the second inequality holds
due to Assumption 2] O

Lemma B.19. For stochastic ZO-GDEGA solving NC-C problems, the following statement holds for
the generated sequences {z11}, {ys+1} during algorithm proceeding:

E(—ny Vi f (@41, 26415 T2), 201 — Y) + nyh(zes1) — nyh(y)
1 1 1 3n,L?
ﬁ Elly: -yl — %EH%H —ylI* - (% - ; JElly: = 2o (B.118)
2 d2L2 3 2
+ 30,202 (0— + P 4 92 4 12) 4 T
b1 2 b2

Proof. According to Proposition |§I, we set r = Y, ¢ = Yit1, P = Zg+1, N = 1y and
v=—nyVyf(@es1, 2e41; 12), w = =1y Vy f (24, y¢; Z2). We can verify that:

Eflu — U||2 = EHTIy@yf(l’tH, 2i11;L2) — ny@yf(xty yt;I2)||2
TEBIVyf (@41, 20415 D) — Vi fuo (@es1, 2e4) I” + 31 Vy f (@6, v T2) — Vi fruo (e, )|
+ 3||Vyfu2 (xt+1> Zt+1) - Vyfuz (-Ttv yt)Hz}

602
< 775 (bz + 3E(|Vy fuo (e41, 2e41) — Vi fu, (21, yt)||2>

602
<, (1)2 +3CE| ze41 — yell? + 3CE w1 — :ct’")

2
< (3CE[p — 7[> + 602 °E|| V., f(fft»yt,ll)IIQ+6772L2€2 b2 5

6o 2

242 L2
<0y (BCEllp — rl]? + 6} P(FE 4267 4 T+ oz + 50,
2
(B.119)
where the second inequality holds due to Eq. (A.4), the third inequality holds due to the L,,-

smoothness of f,, with L,, < ¢, the forth inequality holds due to Lemma . and the last
inequality holds due to (B. 110 Thus, if we set CF = 3n;(?, and C3 = 37736771/62( 200 4 3d2 L2 +
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4G? + 2L3) 6"” , J = h, we have the following inequality holding for any y:

E(—=Vyf(@it1, 20413 12), 2e41 — y) + h(2e41) — h(y)
1 , 1 5 1 3p,L? 2
— . F _ —(— — 2 Ry, —
< g Bllve = ol = 5 -Bllyess = ul = (5= = =3Bl — 20 (B.120)
3, m2e2 (22 + u1d2L2 +4G? +212) + S
+
2

O

Lemma B.20. For stochasttlc ZO-GDEGA to solve NC-C problems, letting Ayy1 = ®(x141) —
T(2441, 2e41) and ny < f , the following statement holds true forVs <t — 1 andy € dom h,

2d22
E[Ai11] < 2(t8+1)77xG(\/ 5 +262+ 2 b— + Ly)

2 - o 3n, 02

1
7E ok s 2_7]E _ s - E _ 2
+277y lys =y~ (x4) | o0, lys+1 —y" (xs) (2% 5 ) llye — zes |l
2 d2 2 3 0.2
+3nyn$£2( 5 La g2y 124 nb 0.
2

(B.121)

Proof. We decompose A, into My, M and M; similar to Lemma [B.15] Then we bound M; as
follows:

t
E[M;] <GEl|zti1 — 2| < GE Y |lwis1 — |
l=s
t A
<G (Ellproxy (w1 — naVa f(x1, 215Th)) — prox?_(z1)[| + Ellprox?_(z:) — 1)

l=s

t
<G Z(UQTEH@th(xh ZUIl))” + 77ng)

l=s

<G 1\ EIV. f @ 2 ) + 10Ly)

l=s

222
g(t—s+1)nxG(\/“12 +2G2+b—+L ),
(B.122)
where the last inequality holds due to Equation (B.110). Similarly, it can be concluded that E[Ms] <

(t—s+ l)nxG(\/@ +2G? + ‘g—f + Lg). About M3, we have the following derivation

E[Ms] <fuy (@41, 5" (5)) = fuo (@eg1s 2e1) — h(y™ (25)) + hlze41) + €03

(a)
< = (Vyfuo (@eg1, 2041)s 2641 — ¥ () — By (w5)) + h(2e41) + L3

() 1 1 1 30, 0?
<__E ok s 2 _ _—F ok s 2 _ (= Y E _ 2
=, llye — v ()l 2, lyeer — ™ ()l (277y 9 JE[lye — ze41|
2 d2L2 3 2
By ST 067 4 )+ S+ 4,

(B.123)
where the first inequality holds due to [14, Lemma 4.1 (b)], inequality (a) holds due to the concavity
of f(z,) and inequality (b) holds due to Lemma[B.19|with y = y*(z,). Plugging My, M5 and M;
into A;4 yields the desired result. O
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Lemma B.21. For stochastic ZO-GDEGA solving NC-C problems, letting Ay = ®(2441) —
D(z¢y1, 2t41), the following inequality holds:

%H (Z E[(I)(l‘t.H) - F(xt-i-lv Zt"rl)])
t=0

1 D? 320202 30
E[Q%B G(R2 + Lg) + ﬁ + Bny( b + S pRda LY 4+ 6ma 0GP + 3 L2 + T) + u3 B.
Yy
(B.124)

Proof. By splitting the summation into blocks we get that
(T+1)/B-1 [(j+1)B—1

1 ) 1
T+1 (;E[At"’l]) T Ty1 Z Z E[At4] | - (B.125)

j=0 t=jB

According to Lemma and 7, < ﬁ, by using (B.121) with s = —1 for j = 0, we get that

B—-1 d2€2
> E[As] <B*n.G( 262 L) g) +

1 . 1 *
5 Ellyo =y (z-1)|* = 5—Ellys —y*(2-1)|?

P by 2ny 21y
2 272712 3B 2
+ 3Bnyn2£2(b— 4 Hfae T 2G* + L)) + 7;7”0 + Lu3B.
2
(B.126)
Analogously, for j > 0 and s = j B we have that
(j+1)B-1
Y E[An]
t=jB

2 ,Lt%d2£2 2 1 * 2 * 2
<1.B~G( 5 T 2G* + bf + Lg) + 2, (Ellyjs —y* (@) I° = lyg+ns — v" (@;8)]°)
Y

f2 2 [2
+3B77y(77mb0 + 2 d;L2 +2772f2G2 2€2L2 b )—I—E,u
1
(B.127)
Plugging (B.126) and (B:127) into (B.123)) together with Assumption [2]yields that
1 (YEAL
71\ & t+1
1 d2¢? D?
<= |2n,B G(\/“1 z +2G2+—+L g) +
B 2 by 21, (B.128)
puid? L2 3Bn,0?
+3Bnynx£2( B L oq? 4+ 12) + 27 4 2B
b1 2 b
sl 2 Dj 22 272, , 307 2
:E[2nt G(R2+ Ly) + 277 h 4 Bny,(3n20*R3 + 31?2 L6+ 7) + Lus B,
2 uld e 24 o2
where Ry = + 2G2 + o O
Theorem B.8 (Detailed description of Theorem [). We suppose that Assumptions [I]
I EI I @ and E hold. If we choose the step sizes 1, = ﬁ and n, =
2
mln{ 16384@3D2G(R2+L K 32[(02+p2d2L2)+1922G2’ 4@\/R2+L2} and let bl = O(dr), b2 =

O(dye™2), 1 < Ofe), pa < O(e), the stochastic ZO-GDEGA can be guaranteed to find an
e-stationary point, i.e., T%rl ZtT:o E|[Vb1 20 (21)||? < €2, with the iteration complexity bounded by:

A 2 M2
o <Wm 1, Eoh }) (B.129)
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where Ry & \/”1d*é +2G2+ ¢ b—, and Aw = 1 /2¢(x0) — ming Yy 2¢(x). Thus, the overall
complexity is reduced to O(d,e=% + d,e8).

Proof. Summing up the inequality (B-109) in Lemma [B-17]from 0 to 7', we have

T—|— 1 ZE”Vﬂ)l/%(xt)H

(¢1/2z($0) — P120(TT41))

20
+ 4023 + 20, 0(=— + pid2e?) +12n,G*¢

(T + 1) by
40 ) D3 2 272,2 , 30 2 (B.130)
+B[2’7$B G(R2+Lg)+§+3ny(3nié Ry + 30 L20° + b )+Zu B] :
Yy
2(%/25(950) - 1P1/2£(517T+1)) 2 2 2 p2 2
= 40 21,4 dz¢ 12n,G*¢
ROES) + 4077 + 2 (b + pida0?) + 121
D2
+ 44[2n, BG(R2 + L) + 5B + 1y (3n20°R3 + 3n2 L0 42 b ) + 03]
Yy
We choose B = ¢, thus we have
24/ NzNyG(Ra+Lg)

T
1
mz V41 /20 (1) [P
t=0
24,
T (T +1) by

2D GR,+L
b 7"”’7-’;7 (R + ")+ny(3n§e2R2+3n2L2£2+b—)+€u2]
Y

A2 4 o2 + pid?0%) +12n,G*0 (B.131)

+ A

There are three cases to be analyzed.
e When 7, = —, we choose 7, = min{ < < < 1
"y = 730 N = 1638443 D2 G(R2+Lyg)’ 32e(a2+,ﬁd2 L2)+192(G2> a0 /R3+L2 0

1%z Hx

by = O(dy), b = O(dye™2), 1 < ﬁ, and p15 = 5. Thus, the gradient complexity is bounded

by:
(G(Ry + Ly)A, 2D3
O <( 2 o 22y max{1, }>

which means the overall complexity is bounded by O(d,e ¢ + d,e®).

4+P 2 El—g
» = min{ 16384€3D2G(R2+L Y 32@(U2+M§d3L3)+192m27 N 2
by = O(dy), by = O(dye?=2), p1 = O(e), and ps = O(e), where 0 < p < 2. Thus, the gradient
complexity is bounded by:

e Whenn, = 5 é , we choose 7,

(G(Ry + Ly)A, 4202
o <64+pm x5t
which means the overall complexity is bounded by O(d,e ®7F + d,e~8).

M 65 €2
= min{ 31457280302 D2 G(Ra+t Ly) * 320(c2 +12d2 L2)F1920G2 I3
b1 = O0(dy), ba = O(dy), p1 = O(e), and p12 = O(e). Thus, the gradient complexity is bounded by:

o (za(Rg + LA, e?p })

e When 1, = 155552, we choose 7,

) max{1,
which means the overall complexity is bounded by O(d,e™® + dye®).
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et e?

ZG(Ra+Ly)’ 320(02+12d2 L2)+1920G2 45\/£§+L§ b=
O(e), pz = O(e), by = O(dy), b = O(dye2) and 1, = ﬁ, we have

In summary, we choose 7, = min{ {gz5775

1 & ) 27, e
—_ < —F— 4 —. B.132
Ti1 ; Vb1 2e(z4)[|” < (T +1) + 5 ( )

This implies that the overall complexity required by stochastic ZO-GDEGA can be further bounded
by
O(dye b +dye®) (B.133)

to return an e-stationary point. This completes the proofs. [

C More Experimental Details and Results

This section provides more details and results for our experiments. Our code will be publicly available.

C.1 Data Poisoning Attack

This part provides more experimental details for solving the data poisoning attack problem. All the
experiments were performed on Intel Core i5-11260H 2.6GHz CPU and 16GB RAM platform.

As is well known, when training deep neural networks, attention must be paid to adversarial examples
that may lead to the misclassification of deep models. But the black-box model architecture is un-
known to the adversary, it is necessary and key to solve Problems (5] with only the (more often noisy)
evaluations of the objective functional values. About the model , we set Dy, = Dir pUDy, . denotes
the training dataset including n samples, D, , and Dy, . denote the poisoned and clean subsets of
D, respectively. We choose the loss function as Fy,. (0, w; Dy, ) := L(8, w; Dyypp) + L(0, w; Dy c),
where L(6,w; D) = —ﬁ Z(s,;,ti)er [tilog(L(0,w;s;)) + (1 — t;)1log(1 — L(d,w;s;))], and

L(5,w;s;) = ﬁ In the data poisoning attack problem, the lower accuracy of the attacked
e i

model means the more effective the attack method.

Hyperparameter selection. For solving the NC-C problem (3], we choose the batch size guided
by theory and considering the trade-off between time consumption and accuracy, while observing
reasonably good performance. We set mini-batch size b; = by = 100 for the synthetic dataset
and by = by = 10 for the epsilon_test dataset and train all the methods for T = 50,000
iterations. Besides, we also choose the same step sizes 17, = 0.02, ny = 0.05 for all the cases in
the main paper. Note that ZO-AGP [51]] requires that the step size of variable x is monotonically
decreasing. Thus, we set its step sizes to be nf, = ﬁ, 1y = 0.05 for a fair comparison. By the
way, to test the accuracy of the zeroth-order gradient estimators, we set different numbers of random
direction vectors g1 = g2 = {5, 20} denoted by g to train all the methods. We set the poisoning
ratio | Dy |/|Dir] = 0.1, smoothing parameters p; = p2 = 2 X 1075 and the range of perturbation
r, = 2 as default values in the data poisoning attack experiments. The above hyperparameters are
the same in other experiments unless explicitly stated. After training to get poisoned data, we retrain
the logistic regression model 1000 times each using clean data and adversarial examples generated at
each iteration.

C.1.1 Data Poisoning Attack for the NC-C Problem (35) on More Real-World Datasets

This part provides more experimental results for solving the NC-C problem (3] on the w8a, a9a and
HIGGS datasety’|as shown in Figs. Note that the lower the accuracy is, the stronger the
generated attack is, which means better performance.

e The w8a dataset: It contains 49,749 samples of 300 dimensions and we split it into 70% training
samples and 30% test samples. We set the batch size to 10.

e The a9a dataset: It contains 32,561 samples of 123 dimensions and we split it into 70% training
samples and 30% test samples. We set the batch size to 10.

*https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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e The HIGGS dataset: It contains 11,000,000 samples of 28 dimensions and we split it into 70%
training samples and 30% test samples. We set the batch size to 512.
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Figure C.4: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
w8a dataset.
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Figure C.5: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
a9a dataset.

078 078 078

-1.0
N 5076 5076 5076
E] g g g
g-15 3074 5074 5074
g 8072 2072 s
§ 20 — No Poison 2 — No Poison o — No Poison 2072
= —— Z0-AGP: q=5 £0.70{ — ZO-AGP: q=5 £0.70] — ZO-AGP: q=5 H
° Z0-GDEGA: q=>5 (Ours) = @ Z0-GDEGA: q=5 (Ours) 20.70

-25 — Z0-AGP: 068 : 0681 — 70-AGP: q=20

—— ZO-GDEGA: q=20 (Ours) 0.66] — ZO-GDEGA: q=20 (Ours) 0.66] — ZO-GDEGA: q=20 (Ours) 068
T TR IO T T To0 Tor 102 10°  10° Too Tor 102 10®  10° 5 100 260 200 500

30
Number of iterations Number of iterations Number of iterations CPU time (seconds)

Figure C.6: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
HIGGS dataset.
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Figure C.7: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
bio_train dataset.

From Figs.|C.4]{C.6] it can be seen that our ZO-GDEGA algorithm still performs better than baselines
in reducing classification accuracy. This part also provides experimental results for solving the NC-C
problem (5) on an unbalanced dataset, bio_t rairﬂ where the proportion of positive samples is
only 0.89%. The hyperparameter choices are the same as the experiments on the epsilon_test
dataset. Experimental results are shown in Fig. It can be seen that our ZO-GDEGA algorithm
performs better and the ZO-AGP algorithm even diverges.

>https://osmot.cs.cornell.edu/kddcup/datasets.html
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C.1.2 Robustness Study for the NC-C Data Poisoning Attack Problem (5)

To verify the robustness of our ZO-GDEGA for solving NC-C problems, we conduct the data
poisoning attack experiment under different smoothing parameters p; and p5. We choose the same
hyperparameters as in “Hyperparameter selection” above. The experimental results are shown in
Fig.[C.8] Note that the lower the accuracy is, the stronger the generated attack is, which means
better performance. It can be found that the attack performance of our ZO-GDEGA algorithm
performs always better than the ZO-AGP algorithm under different smoothing parameters £ and po.
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Figure C.8: The performance of ZO-GDEGA and ZO-AGP for solving NC-C Problem (5) with g1 = ¢2 =5
and different 11 and p2 on the synthetic dataset, where 1 = p2. We can observe that our ZO-GDEGA
algorithm is more robust compared with the baseline method, which is reflected in two aspects. On the one hand,
under different smoothing parameter settings, the testing accuracies of the models attacked by our ZO-GDEGA
have almost the same and small standard deviation. Whereas the model attacked by the poisoned data generated
by ZO-AGP produces a different performance, i.e., the standard deviation of its test accuracy varies dramatically
with the smoothing parameter. On the other hand, under large smoothing parameter settings (e.g., u1 = p2 = 1),
our ZO-GDEGA can still reduce the testing classification accuracy more effectively than ZO-AGP.

C.1.3 Data Poisoning Attack against Sparse Logistic Regression

Sparse models are playing an increasingly important role in the fields such as machine learning
and image processing. They have variable selection capabilities and can solve problems such as
overfitting in modeling. In order to verify the universality of our ZO-GDEGA, we also conducted
black-box attacks on sparse logistic regression models. The minimax formulation of this problem can

be expressed as:

Héll[\nai( min Fy,. (6, w; Dy ) + AlJw]|1. (C.134)
We test our ZO-GDEGA and ZO-AGP for solving Problem (C.134) on the synthetic dataset. We
also choose the same hyperparameters as in “Hyperparameter selection” above and the experimental
results are shown in Fig. Note that the lower the accuracy is, the stronger the generated
attack is, which means better performance. It can be seen that our ZO-GDEGA still performs
better than ZO-AGP in reducing accuracy.
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Figure C.9: The performance of all algorithms for solving sparse NC-C Problem (C.134) with n, = 0.02,
Ny = 0.05, 1 = 2 =2 x 1077, and A = 1072 on the synthetic dataset.

C.14 Data Poisoning Attack for NC-SC Problems

We also consider the following model (C.135) for data poisoning attack problems. Note that Problem
(C.135) can be also rewritten as the form (1)) by setting g(-) = Z5 . <(), h(-) =0, f = —f2, and
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thus Problem (CI33)) becomes a NC-SC problem.
max min fo(8, w) := Fy,.(6,w; Dy.) + Aw|. (C.135)

[16]lcc <Ta
For solving Problem (C.I33)), we perform our ZO-GDEGA algorithm on the synthetic dataset.
The baseline methods for Problem (C133) are ZO-SGDA [47], ZO-Min-Max [33] and Acc-
ZOMDA [19]. For NC-SC problems, we also set mini-batch size by = by = 100 for ZO-Min-Max,
Z0O-SGDA, Acc-ZOMDA, and our ZO-GDEGA and train all the methods for 7" = 50, 000 iterations.
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Figure C.10: The performance of single-loop algorithms for solving NC-SC problems with different A when
Ne = 0.02, 1, = 0.05, 41 = p2 = 2 x 107° and ¢1 = g2 = 20 on the synthetic dataset, we can find that
our ZO-GDEGA algorithm is competitive with the baseline methods under different A settings.

e Hyperparameter \: To verify the performance of our ZO-GDEGA under different hyperparameter
A, we plot Fig. Note that the lower the accuracy is, the stronger the generated attack
is, which means better performance. Fig. [C.10]shows that the weaker the strong convexity (i.e.,
A =1 x 1079), the better our ZO-GDEGA algorithm performs; on the contrary, our ZO-GDEGA
performs competitively to the state-of-the-art zeroth-order stochastic algorithms.

C.2 AUC Maximization

This part provides more experimental details and results for solving AUC maximization problems. All
the experiments were performed on the GeForce RTX 2080Ti platform with the PyTorch framework.

For a more detailed explanation, we restate the AUC maximization problem
ax Esp[f(0,a,b,v;s)], (C.136)

min m
o1 lall bl <ra, v<ry
where r, and r, are the radii of the projection balls, s = (s, ) is drawn independently from the
distribution P, and f(6,a,b,v;s) = (1 — p)(h(0;s) — a)?Ty—1) + p(h(6;s) — b)*[—_1) + 2(1 +
0)(ph(0; $)Iy=—1) — (1 — p)h(0; s)I}y=1)) — p(1 — p)v?, p = E¢[I4—1], where I(-) is an indicator
function. When h is a multilayer perception (MLP), Problem () becomes a NC-SC problem.

Hyperparameter selection. We choose the hyperparameters according to theoretical guidance and
considering the balance between time consumption and accuracy while observing reasonably good
performance. We train our ZO-GDEGA and baseline methods with mini-batch size by = by = 256
on the MNIST, Fashion-MNIST and ijcnnl datasets for 200 epochs. We set n, = 1, = 0.1
and ¢; = g2 = 10 for all the methods. The testing accuracy versus the number of epochs on the
Fashion-MNIST dataset is detailed shown in Fig.[C.T1]

We also compare our ZO-GDEGA and state-of-the-art methods as shown in Table [C.3] From
Table @ at small smoothing parameter 1, pe < 0.01, the Acc-ZOMDA [19] algorithm with
lower complexity show clear advantages, but at large smoothing parameters p1, o > 0.05, our ZO-
GDEGA algorithm performs better than other methods, which verifies that our ZO-GDEGA algorithm
can tolerate rougher gradient estimations and provides promising insights into the robustness of
zeroth-order minimax optimization.

C.3 Robust Neural Network Training

To verify that our ZO-GDEGA algorithm can solve extensive applications, we conduct robust
network training experiments. The purpose of robust network training is against adversarial attacks.
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(b) w1 = p2 = 0.01 (©) p1 = p2 = 0.05

= p2 = 0.001

Figure C.11: The testing accuracy vs the number of epochs of ZO-SGDA, ZO-Min-Max, and our ZO-GDEGA
algorithms for solving the NC-SC problem (6) with different 111 and p2 on the Fashion-MNIST dataset. We
can observe that our ZO-GDEGA algorithm is more robust in smoothing parameters 1 and po compared with
the baseline methods.

(@)

Table C.3: The average AUC performance with different ;1; and g2 on the MNIST, Fashion-MNIST, and
ijcnnl datasets.

Datasets
M1 (M2)

MNIST
0.001 0.01 0.05 0.1

Fashion-MNIST
0.001 0.01 0.05 0.1

ijennl

0.001 0.01 0.05 0.1

Z0-SGDA
Z0O-Min-Max
Acc-ZOMDA
Z0O-GDEGA

91.67 91.81 88.12 82.32
92.25 92.01 88.56 83.12
92.45 92.58 89.35 89.48
91.60 92.60 89.70 89.76

91.62 90.19 87.27 80.62
90.80 91.58 83.23 78.38
92.97 91.65 87.75 87.65
91.97 92.23 88.66 88.01

78.65 79.02 74.33 69.56
79.56 80.31 76.66 72.23
82.42 82.45 80.35 76.56
81.01 82.30 80.99 78.01

Although neural networks are widely used for image classification, they are vulnerable to adversarial
attacks such as FGSM [16]. For example, a small perturbation can greatly destroy classification
performance. Thus, robust network training has been paid more attention by researchers. The
optimization formulation of robust networks is

O(f3(xi + 055 w), ys), (C.137)

mln E max
< 5is1. [5i] oo Se

where w is the parameter of the neural network, the pair (z;, y;) denotes the i-th data point, J; is
the perturbation added to data point . Referring to [57]], we give the following nonconvex-concave
minimax problem to reformulate the robust training process.

min max{Zt O fa (s w), 1) +>\|\w||1} ST = {(ty, |Zt = 1,¢; >0},

(C.138)
where A > 0, zX ; is an approximated attack on sample z; by changing the output of the network
to label j. We use the same convolut10na1 neural network as in [57]]. In our ZO-GDEGA, we set
p1 = p2 = 0.0001 and ¢ = 5. we apply our ZO-GDEGA algorithm to train a robust
neural network on the MNIST dataset against the adversarial attack, FGSM. The experiments in
this part were performed on the GeForce RTX 2080Ti platform with the PyTorch framework. The
experimental results are shown in Table [C.4] Note that the ZO-AGP algorithm can not solve this
problem. Although an excellent robust neural network has not been achieved by our ZO-GDEGA
algorithm, our ZO-GDEGA algorithm opens the way for ZO algorithms to solve this application.
Performance improvement is our future research direction.

Table C.4: Test accuracies under FGSM attack.

FGSM
€e=0.02 €=0.03 ¢=0.05
ZO-GDEGA | 79.67% 78.81% 76.22%

44



	Introduction
	Preliminaries and Related Work
	Notations
	Related Work
	ZO-GDEGA for NC-C Problems
	ZO-GDEGA in the Deterministic Setting
	ZO-GDEGA in the Stochastic Setting
	ZO-GDEGA for NC-SC Problems
	Theoretical Analysis
	Termination Criteria
	Complexity Analysis for NC-SC Problems
	Complexity Analysis for NC-C Problems
	Continuity-Agnostic Complexity Analysis.
	Better Bounds with Continuity-dependent.


	Experiments
	Data Poisoning Attack
	AUC Maximization


	Conclusions and Future Work
	Acknowledgments
	Detailed Explanations for some Descriptions
	Properties of the max function (x)
	Stochastic ZO-GDEGA for solving NC-C and NC-SC problems
	Proofs of Propositions 1 and 2
	First-Order Gradient Descent Extragradient Ascent Algorithm

	Proofs of Overall Complexities for Our ZO-GDEGA Algorithm
	Complexity Analysis of ZO-GDEGA for Solving Nonconvex-Strongly Concave Problems
	Continuity-Agnostic analysis for Our ZO-GDEGA Solving Nonconvex-Concave Problems
	Continuity-dependent Analysis of Deterministic ZO-GDEGA for Solving Nonconvex-Concave Problems
	Continuity-dependent Analysis of Stochastic ZO-GDEGA for Solving Nonconvex-Concave Problems
	More Experimental Details and Results
	Data Poisoning Attack
	Data Poisoning Attack for the NC-C Problem (5) on More Real-World Datasets
	Robustness Study for the NC-C Data Poisoning Attack Problem (5)
	Data Poisoning Attack against Sparse Logistic Regression
	Data Poisoning Attack for NC-SC Problems

	AUC Maximization
	Robust Neural Network Training








