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Applications”
In this Appendix, we first provide detailed explanations for some descriptions in the main paper
in Section A. Then, we provide the complexity analysis of our ZO-GDEGA algorithm for solving
NC-C and NC-SC problems in Section B. Finally, we supplement the experiments in more detail and
provide more experimental results in Section C.

A Detailed Explanations for some Descriptions

This section provides some detailed explanations for the main paper.

A.1 Properties of the max function Φ(x)

Compared with existing nonconvex minimax optimization methods such as [31], Assumption 2
can still guarantee the ℓ-weak convexity of the max function Φ(x). Specifically, existing works
rely on the compactness assumption of the maximization domain, thus applying Danskin’s theorem
for convenience, which implies the weak convexity of the max function Φ(x). Some machine
learning models can satisfy the compactness assumption, e.g., Wasserstein GAN [2] with weight
clipping, but some models are difficult to satisfy it, e.g., [17]. Thus, similar to [4], we also use the
extension of the classical Danskin’s theorem based on Assumption 2, which means that the solution
set Y ∗(x) :=

{
y∗|y∗ ∈ argmaxy∈Rdy {f(x, y)− h(y)}

}
is non-empty for ∀x ∈ Rdx and the max

function Φ(x) is ℓ-weakly convex.

A.2 Stochastic ZO-GDEGA for solving NC-C and NC-SC problems

To analyze the stochastic ZO-GDEGA, we first restate the stochastic version of the zeroth-order
randomized gradient estimators as follows:

∇̂xf(x, y; I1) =
1

b1

b1∑
j=1

∇̂xf(x, y; ζj) =
1

b1

b1∑
j=1

dx[f(x+ µ1uj , y; ζj)− f(x, y; ζj)]

µ1
uj , (A.1a)

∇̂yf(x, y; I2) =
1

b2

b2∑
j=2

∇̂yf(x, y; ξj) =
1

b2

b2∑
j=1

dy[f(x, y + µ2vj ; ξj)− f(x, y; ξj)]

µ2
vj . (A.1b)

According to [19, 47], we know that for given random variables ζ and ξ, Eu,ζ [∇̂xf(x, y; ζ)] =

∇xfµ1(x, y) and Ev,ξ[∇̂yf(x, y; ξ)] = ∇yfµ2(x, y). The smoothed functions associated to
function f(x, y; ξ) can be defined as: fµ1

(x, y; ζ) = Eu[f(x + µ1u, y; ζ)] and fµ2
(x, y; ξ) =

Ev[f(x, y + µ2v; ξ)]. Then, according to [24, Lemma 5], the ZO estimators (A.1) are unbiased, i.e.,
EU,I1 [∇̂xf(x, y; I1)] = ∇xfµ1(x, y) and EV,I2 [∇̂yf(x, y; I2)] = ∇yfµ2(x, y) with U = {ui}b1i=1

and V = {vi}b2i=1. Moreover, we suppose that the variance of zeroth-order stochastic gradient
estimation is bounded for any random variables ζ and ξ, i.e.,

Eu,ζ∥∇̂xf(x, y; ζ)−∇xfµ1
(x, y)∥2 ≤ σ2

1 ,

Ev,ξ∥∇̂yf(x, y; ξ)−∇yfµ2
(x, y)∥2 ≤ σ2

1 .
(A.2)

In addition, we also need the following assumptions. Note that these assumptions are common in
stochastic optimization [31, 19].
Assumption 6. We assume that the variance of stochastic gradient is bounded, i.e., there exist a
constant σ2 such that E∥∇xf(x, y; ζ)−∇xf(x, y)∥2 ≤ σ2

2 and E∥∇yf(x, y; ξ)−∇yf(x, y)∥2 ≤
σ2
2 .

Assumption 7. Each component function f(x, y; Ξ) is ℓ-smooth, i.e., for all x, x′ and y, y′

∥∇f(x, y; Ξ)−∇f(x′, y′; Ξ)∥ ≤ ℓ∥(x, y)− (x′, y′)∥, (A.3)
where ∇f(x, y; Ξ) = (∇xf(x, y; ζ),∇yf(x, y; ξ)).
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For notational simplicity, let σ = max{σ1, σ2}. According to [19], we have

E∥∇̂xf(x, y; I1)−∇xfµ1(x, y)∥2 ≤ σ2

b1

E∥∇̂yf(x, y; I2)−∇yfµ2(x, y)∥2 ≤ σ2

b2
.

(A.4)

Based on the properties mentioned above, we propose our stochastic ZO-GDEGA algorithm, as
shown in Algorithm 2, and the complexity of Algorithm 2 can be analyzed successfully.

Algorithm 2 Stochastic Zeroth-Order Gradient Descent Extragradient Ascent Algorithm

Initialize: x0, z0 = y0, step sizes ηx and ηy .
1: for t = 0, 1, . . . , T − 1 do
2: Draw i.i.d. I1 = {ζj}b1j=1 and I2 = {ξj}b2j=1 stochastic samples, respectively;

3: ∇̂xF (xt; I1) =
{

∇̂xf(xt, zt; I1) for NC-C case;
∇̂xf(xt, yt; I1) for NC-SC case;

4: xt+1 = proxgηx(xt − ηx∇̂xF (xt; I1));
5: zt+1 = proxhηy (yt + ηy∇̂yf(xt, yt; I2));
6: yt+1 = proxhηy (yt + ηy∇̂yf(xt+1, zt+1; I2));
7: end for
8: Randomly draw x̂ from x1, . . . , xT at uniform;

Output: x̂.

A.3 Proofs of Propositions 1 and 2

For analyzing our ZO-GDEGA algorithm solving Problem (1), we extend the Propositions 4.11 and
4.12 in [31]. Detailed analysis is as follows.

Proposition 3 (A detailed description of Proposition 1 - the generalized version of Proposition 4.12
in [31]). Under Assumptions 1 and 2, if a point (x̂, ŷ) is an ϵ2/ℓDh-stationary point in terms of
Definition 3, a point x̂ is an O(ϵ)-stationary point in terms of Definition 2. Conversely, if a point x̂ is
an ϵ-stationary point in terms of Definition 2, an O(ϵ)-statinary point (x′, y′) in terms of Definition 3
can be obtained using additional O(ϵ−2) gradients or O(ϵ−4) stochastic gradients.

Proof. We have the facts that the objective function g(x)+ f(x, y)+ ℓ∥x− x̂∥2 is strongly convex in
x and concave in y, and x∗(x̂) = argminx∈Rdx g(x)+Φ(x)+ ℓ∥x− x̂∥2 = proxg+Φ

1/2ℓ(x̂) is uniquely
defined.

• If a point (x̂, ŷ) is an ϵ2

ℓDh
-stationary point in terms of Definition 3, i.e.,

∥ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, ŷ)))∥ ≤ ϵ2

ℓDh
, ∥ℓ(ŷ − proxh1/ℓ(ŷ +

1

ℓ
∇yf(x̂, ŷ)))∥ ≤ ϵ2

ℓDh
. (A.5)

By definition, we have

∥∇ψ1/2ℓ(x̂)∥2 = 4ℓ2∥x̂− x∗(x̂)∥2. (A.6)

Since ψ(·) + ℓ∥ · −x̂∥2 is ℓ-strongly convex, we have

g(x̂) + max
y∈dom h

{f(x̂, y)− h(y)} − g(x∗(x̂))− max
y∈dom h

{f(x∗(x̂), y)− h(y)} − ℓ∥x̂− x∗(x̂)∥2

= ψ(x̂)− ψ(x∗(x̂))− ℓ∥x∗(x̂)− x̂∥2 ≥ ℓ∥x̂− x∗(x̂)∥2

2
=

∥∇ψ1/2ℓ(x̂)∥2

8ℓ
.

(A.7)
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Furthermore, we define ŷ+ = proxh1/ℓ(ŷ +
1
ℓ∇yf(x̂, ŷ)) and we have

g(x̂) + max
y∈dom h

{f(x̂, y)− h(y)} − g(x∗(x̂))− max
y∈dom h

{f(x∗(x̂), y)− h(y)} − ℓ∥x̂− x∗(x̂)∥2

= g(x̂) + max
y∈dom h

{f(x̂, y)− h(y)} − [f(x̂, ŷ+)− h(ŷ+)] + [f(x̂, ŷ+)− h(ŷ+)]− g(x∗(x̂))

− max
y∈dom h

{f(x∗(x̂), y)− h(y)} − ℓ∥x̂− x∗(x̂)∥2

≤ g(x̂) + max
y∈dom h

{f(x̂, y)− h(y)} − [f(x̂, ŷ+)− h(ŷ+)] + [f(x̂, ŷ+)− h(ŷ+)]− g(x∗(x̂))

− {f(x∗(x̂), ŷ+)− h(ŷ+)} − ℓ∥x̂− x∗(x̂)∥2

≤ max
y∈dom h

{f(x̂, y)− h(y)} − [f(x̂, ŷ+)− h(ŷ+)]

+ (∥x̂− x∗(x̂)∥∥∇xf(x̂, ŷ
+) + w∥ − ℓ

2
∥x̂− x∗(x̂)∥2)

≤ max
y∈dom h

{f(x̂, y)− h(y)} − [f(x̂, ŷ+)− h(ŷ+)]︸ ︷︷ ︸
M0

+
∥∇xf(x̂, ŷ

+) + w∥2

2ℓ
,

(A.8)
where w ∈ ∂g(x̂), the second inequality follows from the ℓ-strongly convexity of g(x) + Γ(x, ŷ+) +
ℓ∥x− x̂∥2 and Cauchy-Schwarz inequality, and the last inequality holds due to Young’s inequality.

Next, we consider the part M0 in (A.8). By the definition of ŷ+, the first-order optimality condition
yields that

h(y)− h(ŷ+) + ℓ(y − ŷ+)⊤(ŷ+ − ŷ − 1

ℓ
∇yf(x̂, ŷ)) ≥ 0 for all y ∈ dom h. (A.9)

Together with the ℓ-smoothness and concavity of the function f(x̂, ·), we have

−f(x̂, ŷ+) + f(x̂, y) ≤ ⟨−∇yf(x̂, y), ŷ
+ − y⟩+ ℓ

2
∥y − ŷ+∥2 (A.10)

f(x̂, y)− f(x̂, ŷ) ≤ ⟨∇yf(x̂, ŷ), y − ŷ⟩. (A.11)

Letting y = ŷ in (A.10), we have

−f(x̂, ŷ+) + f(x̂, ŷ) ≤ ⟨−∇yf(x̂, ŷ), ŷ
+ − ŷ⟩+ ℓ

2
∥ŷ − ŷ+∥2. (A.12)

Adding inequality (A.11) and (A.12), we have

f(x̂, y)− f(x̂, ŷ+) ≤ ⟨∇yf(x̂, ŷ), y − ŷ+⟩+ ℓ

2
∥ŷ − ŷ+∥2

≤ h(y)− h(ŷ+) + ℓ⟨y − ŷ+, ŷ+ − ŷ⟩+ ℓ

2
∥ŷ − ŷ+∥2

= h(y)− h(ŷ+)− ℓ

2
∥y − ŷ+∥2 + ℓ

2
∥y − ŷ∥2,

(A.13)

where the second inequality holds due to (A.9) and the last equality holds due to ⟨a− b, a− c⟩ =
1
2∥a− b∥2 + 1

2∥a− c∥2 − 1
2∥b− c∥2. Thus, together with the boundedness of dom h, we have

f(x̂, y)− h(y)− [f(x̂, ŷ+)− h(ŷ+)] ≤ ℓ

2
(∥y − ŷ∥2 − ∥y − ŷ+∥2) ≤ ℓDh∥ŷ+ − ŷ∥. (A.14)
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Putting these pieces together yeilds that

g(x̂) + max
y∈Rdy

{f(x̂, y)− h(y)} − g(x∗(x̂))− max
y∈Rdy

{f(x∗(x̂), y)− h(y)} − ℓ∥x̂− x∗(x̂)∥2

≤ ℓDh∥ŷ+ − ŷ∥+ ∥∇xf(x̂, ŷ
+) + w∥2

2ℓ

≤ ℓDh∥ŷ+ − ŷ∥+ ∥∇xf(x̂, ŷ) + w∥2

ℓ
+

∥∇xf(x̂, ŷ
+)−∇xf(x̂, ŷ)∥2

ℓ

≤ ℓDh∥ŷ+ − ŷ∥+ ∥∇xf(x̂, ŷ) + w∥2

ℓ
+ ℓ∥ŷ − ŷ+∥2

≤ ϵ2

ℓ
+O(ϵ4) +

ϵ4

ℓ3D2
h

,

(A.15)
where the second inequality holds due to Young’s Inequality and the third inequality holds due to
ℓ-smoothness. According to [3, Theorem 3.1] and the properties of the subgradient descent method in
[5], ∥ℓ(x̂−proxg1/ℓ(x̂−

1
ℓ∇xf(x̂, ŷ)))∥ ≤ ϵ2

ℓDh
means that ∥∇xf(x̂, ŷ)+w∥2 = O(ϵ4). Combining

(A.7) and (A.15) yeilds that ∥∇ψ1/2ℓ(x̂)∥ = O(ϵ). Thus, the point x̂ is a O(ϵ)-stationary point in
terms of Definition 2.

• Conversely, we let a point x̂ satisfy that ∥∇ψ1/2ℓ(x̂)∥ ≤ ϵ. We can apply the proximal extragradient
algorithm for solving x∗(x̂) and obtain a point (x′, y′) satisfying that

dist(−∂g(x+),∇xf(x
′, y+) + 2ℓ(x′ − x̂)) ≤ ϵ, ∥y+ − y′∥ ≤ ϵ/ℓ, ∥x′ − x∗(x̂)∥ ≤ ϵ/ℓ, (A.16)

where y+ = proxh1/ℓ(y
′ + 1

ℓ∇yf(x
′, y′)) and x+ = proxg1/ℓ(x

′ − 1
ℓ∇xf(x

′, y′)). Thus, we obtain
∥ℓ(y′ − proxh1/ℓ(y

′ + 1
ℓ∇yf(x

′, y′)))∥ ≤ ϵ. Next, we prove the part of x. Since 2ℓ∥x∗(x̂)− x̂∥ =

∥∇ψ1/2ℓ(x̂)∥ ≤ ϵ, we have

∥ℓ(x′ − proxg1/ℓ(x
′ − 1

ℓ
∇xf(x

′, y′)))∥

≤ ∥ℓ(x′ − proxg1/ℓ(x
′ − 1

ℓ
∇xf(x

′, y′))) + 2ℓ(x′ − x̂)∥+ 2ℓ∥x′ − x̂∥

≤ ∥ℓ(x′ − proxg1/ℓ(x
′ − 1

ℓ
∇xf(x

′, y′))) + 2ℓ(x′ − x̂)∥

+ 2ℓ∥x′ − x∗(x̂)∥+ 2ℓ∥x∗(x̂)− x̂∥

≤ ∥ℓ(x′ − proxg1/ℓ(x
′ − 1

ℓ
∇xf(x

′, y′))) + 2ℓ(x′ − x̂)∥+ 3ϵ,

≤ ∥ℓ(x′ − (I +
1

ℓ
∂g)−1(x′ − 1

ℓ
∇xf(x

′, y′))) + 2ℓ(x′ − x̂)∥+ 3ϵ,

(A.17)

where (I + τ∂g)−1(z) = argminx{g(x) + 1
2τ ∥x− z∥2}). According to [3, Theorem 3.1] and the

properties of the subgradient descent method in [5], there exists a g0 ∈ ∂g(x+) such that

∥ℓ(x′ − proxg1/ℓ(x
′ − 1

ℓ
∇xf(x

′, y′)))∥

≤ ∥ℓ[x′ − (x′ − 1

ℓ
(g0 +∇xf(x

′, y′)))] + 2ℓ(x′ − x̂)∥+ 3ϵ

≤ ∥ℓ[x′ − (x′ − 1

ℓ
(g0 +∇xf(x

′, y+)))] + 2ℓ(x′ − x̂)∥+ ∥y′ − y+∥+ 3ϵ

≤ ϵ+ 4ϵ

= O(ϵ),

(A.18)

where the second inequality holds due to the Triangular Inequality and the smoothness of f(x, y), and
the last inequality holds due to (A.16). Thus, if a generalized ϵ-stationary point of f is obtained, the
required number of gradient evaluations is O(ϵ−2) [36]. This argument holds for applying stochastic
mirror-prox algorithm and the required number of stochastic gradient evaluations is O(ϵ−4) [26].

In summary, the ϵ-stationary point definition in terms of ψ is stronger than the ϵ-stationary point
definition in terms of f . This completes the proof.
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Proposition 4 (A detailed description of Proposition 2 - the generalized version of Proposition 4.11
in [31]). Under Assumption 4, if a point (x̂, ŷ) is an ϵ/κ-stationary point in terms of Definition
3, a point x̂ is an O(ϵ)-stationary point in terms of Definition 2. Conversely, if a point x̂ is an
ϵ-stationary point in terms of Definition 2, an O(ϵ)-stationary point (x̂, y′) in terms of Definition 3
can be obtained using additional O(κ log(1/ϵ)) gradients or O(1/ϵ2) stochastic gradients.

Proof. • If a point (x̂, ŷ) is an ϵ
κ -stationary point in terms of Definition 3, i.e.,

∥ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, ŷ)))∥ ≤ ϵ

κ
, ∥ℓ(ŷ − proxh1/ℓ(ŷ +

1

ℓ
∇yf(x̂, ŷ)))∥ ≤ ϵ

κ
. (A.19)

Then, there exists w ∈ ∂ψ(x̂) such that

∥w∥ ≤ ∥w − ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, ŷ)))∥+

ϵ

κ

≤ ∥∇xf(x̂, y
∗(x̂))−∇xf(x̂, ŷ)∥+

ϵ

κ

≤ ℓ∥ŷ − y∗(x̂)∥+ ϵ

κ
.

(A.20)

Similar to [31, Proposition 4.11], since f(x̂, ·) is µ-strongly concave over dom h, the global error
bound condition [10] holds true and we have

∥w∥≤ℓκ∥ŷ − proxh1/ℓ(ŷ +
1

ℓ
∇yf(x̂, ŷ))∥+

ϵ

κ
≤ ϵ+

ϵ

κ
= O(ϵ). (A.21)

Thus, the point x̂ is an O(ϵ)-stationary point in terms of Definition 2.

• Conversely, if x̂ is an ϵ-stationary point in terms of ψ, thus dist(0, ∂ψ(x̂)) ≤ ϵ, where dist(x,C) =
minc∈C ∥x − c∥. Thus, there exists w ∈ ∂ψ(x̂) such that ∥w∥ ≤ ϵ. The optimization problem
maxy∈dom h f(x̂, y)− h(y) is strongly concave and y∗(x̂) is uniquely defined. We apply proximal
gradient descent for solving such problem and obtain a point y′ ∈ dom h satisfying that

y+ = proxh1/ℓ(y
′ +

1

ℓ
∇yf(x̂, y

′)), ∥ℓ(y′ − y+)∥ ≤ ϵ, ∥y+ − y∗(x̂)∥ ≤ ϵ. (A.22)

Then, for x, we have

∥ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, y

+)))∥

≤ ∥ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, y

+)))− w∥+ ∥w∥

= ∥ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, y

+)))− w∥+ ϵ

= ∥ℓ(x̂− argmin
x

{g(x) + ℓ

2
∥x− x̂+

1

ℓ
∇xf(x̂, y

+)∥2})− w∥+ ϵ.

(A.23)

Thus, according to the properties of the subgradient descent method in [5], we have ∥ℓ(x̂−proxg1/ℓ(x̂−
1
ℓ∇xf(x̂, y

+)))∥ ≤ ∥∇xf(x̂, y
+)−∇xf(x̂, y

∗(x̂))∥+ ϵ. According to the ℓ-smoothness of f , we
have

∥ℓ(x̂− proxg1/ℓ(x̂− 1

ℓ
∇xf(x̂, y

+)))∥ ≤ ∥∇xf(x̂, y
+)−∇xf(x̂, y

∗(x̂))∥+ ϵ

≤ ℓ∥y+ − y∗(x̂)∥+ ϵ = O(ϵ).
(A.24)

Thus, if a generalized ϵ-stationary point of f is obatined, the required number of gradient evaluations
is O(κ log(1/ϵ)) [48]. This argument holds for applying proximal stochastic gradient with proper
stepsize and the required number of stochastic gradient evaluations is O(1/ϵ2) [11]. This completes
the proof.

In summary, the ϵ-stationary point definition in terms of ψ is stronger than the ϵ-stationary point
definition in terms of f .

A.4 First-Order Gradient Descent Extragradient Ascent Algorithm

As by-products, we also provide the first-order variants of our ZO-GDEGA algorithm, as shown in
Algorithms 3 and 4, respectively. The two algorithms can also reduce the per-iteration complexity of
the standard first-order EG algorithms in [35] while maintaining their theoretical advantages.
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Algorithm 3 Deterministic FO-GDEGA: First-order Gradient Descent Extragradient Ascent Algo-
rithm (the first-order variant of Algorithm 1)

Initialize: x0, z0 = y0, step sizes ηx and ηy .
1: for t = 0, 1, . . . , T − 1 do

2: ∇xF (xt) =

{
∇xf(xt, zt) for NC-C case;
∇xf(xt, yt) for NC-SC case;

3: xt+1 = proxgηx(xt − ηx∇xF (xt));
4: zt+1 = proxhηy (yt + ηy∇yf(xt, yt));
5: yt+1 = proxhηy (yt + ηy∇yf(xt+1, zt+1));
6: end for
7: Randomly draw x̂ from x1, . . . , xT at uniform;

Output: x̂.

Algorithm 4 Stochastic FO-GDEGA: Stochastic First-order Gradient Descent Extragradient Ascent
Algorithm (the first-order variant of Algorithm 2)

Initialize: x0, z0 = y0, step sizes ηx and ηy .
1: for t = 0, 1, . . . , T − 1 do
2: Draw i.i.d. I1 = {ζj}b1j=1 and I2 = {ξj}b2j=1 stochastic samples, respectively;

3: ∇xF (xt; I1) =
{

∇xf(xt, zt; I1) for NC-C case;
∇xf(xt, yt; I1) for NC-SC case;

4: xt+1 = proxgηx(xt − ηx∇xF (xt; I1));
5: zt+1 = proxhηy (yt + ηy∇yf(xt, yt; I2));
6: yt+1 = proxhηy (yt + ηy∇yf(xt+1, zt+1; I2));
7: end for
8: Randomly draw x̂ from x1, . . . , xT at uniform;

Output: x̂.

B Proofs of Overall Complexities for Our ZO-GDEGA Algorithm

This section provides detailed proofs of the complexity results for our ZO-GDEGA in various settings.
We first provide several key lemmas and propositions as follows.
Definition 4 (Another form of smoothness). The smoothness of f means that f(x, y) has Lipschitz
continuous gradients, i.e., there also exist Lx and Ly such that

∥∇xf(x1, y)−∇xf(x2, y)∥ ≤ Lx∥x1 − x2∥
∥∇xf(x, y1)−∇xf(x, y2)∥ ≤ Lx∥y1 − y2∥
∥∇yf(x1, y)−∇yf(x2, y)∥ ≤ Ly∥x1 − x2∥
∥∇yf(x, y1)−∇yf(x, y2)∥ ≤ Ly∥y1 − y2∥.

(B.25)

Lemma B.1. [31] Definition 1 means that f is also ℓ-weakly convex in the first component x, i.e.,

f(·, y) + ℓ

2
∥ · ∥2 is convex for all y ∈ dom h. (B.26)

Lemma B.2. [14, Lemma 4.1(c)] If f(x, y) is concave on y, then fµ2
(x, y) is concave on y. If

f(x, y) has Lipschitz continuous gradients with constant ℓ, then both fµ1
(x, y) and fµ2

(x.y) have
Lipschitz continuous gradients with constant Lµ1

≤ ℓ and Lµ2
≤ ℓ, respectively.

Proposition 5. [8, Proposition 4.1] For all r, ζ ∈ Rn, if w = proxJη (r − ζ), where ζ is a stochastic
gradient, then for all z ∈ Rn, we have

E⟨1
η
ζ, w − z⟩+ J(w)− J(z) ≤ 1

2η
E∥r − z∥2 − 1

2η
E∥r − w∥2 − 1

2η
E∥w − z∥2. (B.27)

Proposition 6. If p = proxJη (r− u), q = proxJη (r− v), and E∥u− v∥2 ≤ C2
1E∥p− r∥2 +C2

2 , then
for any z ∈ Rn we have

E⟨1
η
v, p−z⟩+J(p)−J(z) ≤ 1

2η
E∥r−z∥2− 1

2η
E∥q−z∥2−

(
1

2η
− C2

1

2η

)
E∥r−p∥2+C

2
2

2η
. (B.28)
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Proof. Applying Proposition 5 to p and q, respectively, for any z ∈ Rn we have

E⟨1
η
u, p− z⟩+ J(p)− J(z) ≤ 1

2η
E∥r − z∥2 − 1

2η
E∥r − p∥2 − 1

2η
E∥p− z∥2, (B.29)

E⟨1
η
v, q − z⟩+ J(q)− J(z) ≤ 1

2η
E∥r − z∥2 − 1

2η
E∥r − q∥2 − 1

2η
E∥q − z∥2. (B.30)

Let z = q in (B.29), and we have

E⟨1
η
u, p− q⟩+ J(p)− J(q) ≤ 1

2η
E∥r − q∥2 − 1

2η
E∥r − p∥2 − 1

2η
E∥p− q∥2. (B.31)

Combining (B.30) and (B.31), then

E⟨1
η
v, q − z⟩+ E⟨1

η
u, p− q⟩+ J(p)− J(z)

≤ 1

2η
E∥r − z∥2 − 1

2η
E∥q − z∥2 − 1

2η
E∥r − p∥2 − 1

2η
E∥p− q∥2,

(B.32)

which is equivalent to

E⟨1
η
v, p− z⟩+ J(p)− J(z)

≤ E⟨1
η
(v − u), p− q⟩+ 1

2η
E∥r − z∥2 − 1

2η
E∥q − z∥2 − 1

2η
E∥r − p∥2 − 1

2η
E∥p− q∥2

≤ E∥1
η
(v − u)∥∥p− q∥+ 1

2η
E∥r − z∥2 − 1

2η
E∥q − z∥2 − 1

2η
E∥r − p∥2 − 1

2η
E∥p− q∥2

≤ 1

2η
E∥v − u∥2 + 1

2η
E∥p− q∥2 + 1

2η
E∥r − z∥2 − 1

2η
E∥q − z∥2 − 1

2η
E∥r − p∥2 − 1

2η
E∥p− q∥2

=
1

2η
E∥v − u∥2 + 1

2η
E∥r − z∥2 − 1

2η
E∥q − z∥2 − 1

2η
E∥r − p∥2

≤ 1

2η
E∥r − z∥2 − 1

2η
E∥q − z∥2 − (

1

2η
− C2

1

2η
)E∥r − p∥2 + C2

2

2η
,

(B.33)
where the second inequality holds due to the Schwartz inequality and the third inequality holds due
to the Young’s inequality.

Lemma B.3. [51, Lemma 2.3] For ℓ-smooth function f(x, y), let q1 = dx, q2 = dy . Then we have

∥∇̂xf(x, y)−∇xf(x, y)∥2 ≤ µ2
1L

2
xdx
4

, ∥∇̂yf(x, y)−∇yf(x, y)∥2 ≤
µ2
2L

2
ydy

4
. (B.34)

Lemma B.4. [14, Lemma 4.1(b)] Suppose that f(x, y) is smooth. In general, it holds that

∥∇xfµ1(x, y)−∇xf(x, y)∥2 ≤ µ2
1d

2
xL

2
x

4 and ∥∇yfµ2(x, y)−∇yf(x, y)∥2 ≤ µ2
2d

2
yL

2
y

4 .
Lemma B.5. fµ1

(x, y) is weakly-convex.

Proof. According to [31], smoothness ensures weak convexity of f(x, y) w.r.t. x. Moreover,
F (x, y) := f(x, y) + ∥x∥2

2 is convex w.r.t. x, so Fµ1
(x, y) := EuF (x + µ1u, y) = Euf(x +

µ1u, y) +
∥x+µ1u∥2

2 is convex. Let z = x + µ1u, so EuF (z, y) = Euf(z, y) + ∥z∥2

2 is con-
vex w.r.t. z, thus, Euf(z, y) is weakly-convex. Thus, Euf(x + µ1u, y) is weakly-convex and
Euf(x + µ1u, y) = fµ1(x, y). In fact, the smoothness of fµ1(x, y) can directly ensure weak
convexity of fµ1(x, y) w.r.t. x [31, Lemma A.1].

Based on the lemmas and propositions above, we provide the complexity analysis for our ZO-GDEGA
algorithm as follows.

All analyzes are organized as follows. We first provide a complexity analysis of our ZO-GDEGA
algorithm for solving NC-SC problems in Subsection B.1. Then based on this analysis, we provide
a continuity-agnostic analysis (more relaxed condition) in Subsection B.2 for ZO-GDEGA solving
NC-C problems. Finally, we provide tighter results for the NC-C setting in Subsections B.3 and B.4
under the Lipschitz continuity assumption.
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B.1 Complexity Analysis of ZO-GDEGA for Solving Nonconvex-Strongly Concave Problems

We provide detailed derivation for the complexity results of the deterministic ZO-GDEGA to solve
NC-SC problems. Because the derivation of the stochastic ZO-GDEGA is similar to that of the
deterministic ZO-GDEGA, we only give some key results for the stochastic setting.
Lemma B.6 (Lipschitz continuity of the solution mapping). [4, Lemma 4.1] The solution map y∗(x)
which fulfills Γ(x, y∗(x)) = maxy∈Rdy Γ(x, y) for all x ∈ Rdx is κ-Lipschitz.

Lemma B.7. For determinisitic ZO-GDEGA algorithm solving the NC-SC problems, the iterates
{xt}Tt=1 satisfies the following inequality when q1 = dx,

ηx
2
E∥wt+1∥2 ≤ E[ψ(xt)−ψ(xt+1)]+

(ℓ+ κℓ

2
+(κ+ 1)2ℓ2ηx−

1

2ηx

)
E∥xt+1−xt∥2+2ηxℓ

2δt+
ηxµ

2
1dxL

2
x

2
.

(B.35)
Similarly, for stochastic ZO-GDEGA algorithm solving the NC-SC problems, the iterates {xt}Tt=1
satisfies the following inequality,

ηx
2
E∥wt+1∥2 ≤ E[ψ(xt)−ψ(xt+1)]+

(ℓ+ κℓ

2
+(κ+ 1)2ℓ2ηx−

1

2ηx

)
E∥xt+1−xt∥2+2ℓ2ηxδt+µ

2
1d

2
xL

2
xηx+

ηxσ
2

2b1
,

(B.36)
where wt ∈ (∂g +∇Φ)(xt).

Proof. From the optimality condition of the proximal operator under the NC-SC setting in Algorithm
1, we deduce that

0 ∈ ∂g(xt+1) + ∇̂xf(xt, yt) +
1

ηx
(xt+1 − xt). (B.37)

Then, we let wt+1 := 1
ηx
(xt − xt+1) + ∇Φ(xt+1) − ∇̂xf(xt, yt) ∈ ∂g(xt+1) + ∇Φ(xt+1) and

bound the ∥wt+1∥2 as follows:

∥wt+1∥2 =
1

η2x
∥xt−xt+1∥2+

2

ηx
⟨xt−xt+1,∇Φ(xt+1)−∇̂xf(xt, yt)⟩+∥∇Φ(xt+1)−∇̂xf(xt, yt)∥2.

(B.38)
The (ℓ+ κℓ)-smoothness [31, Lemma 4.3] of Φ(x) implies that

⟨∇Φ(xt+1), xt − xt+1⟩ −
ℓ+ κℓ

2
∥xt+1 − xt∥2 ≤ Φ(xt)− Φ(xt+1). (B.39)

Since the proximal operator minimizes a 1
ηx

-strongly convex function, we have that

g(xt+1) + ⟨∇̂xf(xt, yt), xt+1 − xt⟩+
1

2ηx
∥xt+1 − xt∥2 +

1

2ηx
∥xt+1 − x∥2

≤ g(x) + ⟨∇̂xf(xt, yt), x− xt⟩+
1

2ηx
∥x− xt∥2

(B.40)

for ∀x ∈ Rdx . Combining (B.39) and (B.40) and letting x = xt, taking the expectation of both sides
yields that

E⟨∇Φ(xt+1)−∇̂xf(xt, yt), xt−xt+1⟩ ≤ E[ψ(xt)−ψ(xt+1)]+

(
ℓ+ κℓ

2
− 1

ηx

)
E∥xt+1−xt∥2.

(B.41)
Lastly, by the Young’s inequality, we deduce that

E∥∇Φ(xt+1)− ∇̂xf(xt, yt)∥2

= E∥∇Φ(xt+1)−∇Φ(xt) +∇Φ(xt)− ∇̂xf(xt, yt)∥2

≤ 2(κ+ 1)2ℓ2E∥xt+1 − xt∥2 + 2E∥∇Φ(xt)− ∇̂xf(xt, yt)∥2

≤ 2(κ+ 1)2ℓ2E∥xt+1 − xt∥2 + 4∥∇Φ(xt)−∇xf(xt, yt)∥2 + 4E∥∇xf(xt, yt)− ∇̂xf(xt, yt)∥2

≤ 2(κ+ 1)2ℓ2E∥xt+1 − xt∥2 + 4ℓ2δt + µ2
1dxL

2
x,

(B.42)
where δt := ∥y∗(xt)− yt∥2. Plugging (B.42) and (B.41) into (B.38) yeilds the desired result.
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Lemma B.8. For deterministic ZO-GDEGA algorithm solving NC-SC problems, the following
statement holds for the generated sequence {zt+1}, {yt+1} when we choose q2 = dy:

E⟨−∇̂yf(xt+1, zt+1), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+
3ℓ2ηy∥xt+1 − xt∥2

2
+

3ηyµ
2
2L

2
ydy

4
.

(B.43)

Similarly, for stochastic ZO-GDEGA algorithm solving NC-SC problems, the following statement
holds for the generated sequence {zt+1}, {yt+1} during algorithm proceeding:

E⟨−∇̂yf(xt+1, zt+1), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+
3ℓ2ηy∥xt+1 − xt∥2

2
+

3ηyµ
2
2L

2
yd

2
y

2
+

3σ2

b2
.

(B.44)

Proof. According to Proposition 6, we set r = yt, q = yt+1, p = zt+1, η = ηy and
v = −ηy∇̂yf(xt+1, zt+1), u = −ηy∇̂yf(xt, yt). We can verify that:

E∥u− v∥2 = E∥ηy∇̂yf(xt+1, zt+1)− ηy∇̂yf(xt, yt)∥2

≤ η2yE
[
3∥∇̂yf(xt+1, zt+1)−∇yf(xt+1, zt+1)∥2 + 3∥∇̂yf(xt, yt)−∇yf(xt, yt)∥2

+ 3∥∇yf(xt+1, zt+1)−∇yf(xt, yt)∥2
]

≤ η2y

(
3µ2

2L
2
ydy

2
+ 3∥∇yf(xt+1, zt+1)−∇yf(xt, yt)∥2

)

≤ 3ℓ2η2y∥p− r∥2 + 3ℓ2η2y∥xt+1 − xt∥2 +
3η2yµ

2
2L

2
ydy

2
,

(B.45)
where the second inequality holds due to Lemma B.3, and the third inequality holds due to the

ℓ-smoothness of f . Thus, if we set C2
1 = 3η2yℓ

2, and C2
2 = 3ℓ2η2y∥xt+1 − xt∥2 +

3η2yµ
2
2L

2
ydy

2 , J = h,
according to Proposition 6, we have the following inequality holding for any y:

E⟨−∇̂yf(xt+1, zt+1), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+
3ℓ2ηy∥xt+1 − xt∥2 +

3ηyµ
2
2L

2
ydy

2

2
.

(B.46)

Lemma B.9. Let δt = ∥y∗(xt)− yt∥2 and ηy ≤ min{ 4
µ ,

1
2ℓ}, the following statement holds true,

T−1∑
t=0

δt ≤ 8aδ0 + 8a

T−1∑
i=0

[((1− 1

4a
)(1 + 8a)κ2 + 3ℓ2η2y)E∥xi − xi+1∥2 +M ], (B.47)

where a = 1
µηy

, M ≜ 2ηyLyµ
2
2 +

3η2yµ
2
2L

2
ydy

2 for deterministic setting and M ≜ 2ηyLyµ
2
2 +

3η2yµ
2
2L

2
yd

2
y +

6ηyσ
2

b2
for stochastic setting.

Proof. About deterministic ZO-GDEGA for solving nonconvex-strongly concave problems, accord-
ing to Lemma B.8, the following statement holds for the generated sequence {zt+1}, {yt+1} during
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algorithm proceeding:

E⟨−∇̂yf(xt+1, zt+1), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+
3ℓ2ηy∥xt+1 − xt∥2 +

3ηyµ
2
2L

2
ydy

2

2

(B.48)

for ∀y ∈ dom h. The strong concavity of f(x, ·) ensures that the solution set Y ∗(x) :=
{
y∗|y∗ ∈

argmaxy∈dom h{f(x, y)− h(y)}
}

is a singleton and consists of a single element y∗(x) for a given
x. Letting y = y∗(xt+1), we have

E∥yt+1 − y∗(xt+1)∥2

≤ E∥yt − y∗(xt+1)∥2 + 2ηy[⟨∇̂yf(xt+1, zt+1), zt+1 − y∗(xt+1)⟩ − h(zt+1) + h(y∗(xt+1))]

− (1− 3η2yℓ
2)E∥yt − zt+1∥2 + 3ℓ2η2y∥xt+1 − xt∥2 +

3η2yµ
2
2L

2
ydy

2
.

(B.49)
Taking the expectation of both sides of the above inequality conditioned on (xt+1, zt+1) yields that

E[∥yt+1 − y∗(xt+1)∥2|xt+1, zt+1]

≤ E[∥yt − y∗(xt+1)∥2|xt+1, zt+1] + 2ηy[⟨∇yfµ2(xt+1, zt+1), zt+1 − y∗(xt+1)⟩ − h(zt+1) + h(y∗(xt+1))]

− (1− 3η2yℓ
2)E[∥yt − zt+1∥2|xt+1, zt+1] + 3ℓ2η2yE[∥xt+1 − xt∥2|xt+1, zt+1] +

3η2yµ
2
2L

2
ydy

2
.

(B.50)
Taking the expectation of both sides deduces that

E∥yt+1 − y∗(xt+1)∥2

≤ E ∥yt − y∗(xt+1)∥2︸ ︷︷ ︸
J1

+2ηyE [⟨∇yfµ2(xt+1, zt+1), zt+1 − y∗(xt+1)⟩ − h(zt+1) + h(y∗(xt+1))]︸ ︷︷ ︸
J2

− (1− 3η2yℓ
2)E∥yt − zt+1∥2 + 3ℓ2η2yE∥xt+1 − xt∥2 +

3η2yµ
2
2L

2
ydy

2
.

(B.51)
Now, we bound J1 and J2 as follows:

J1 = (1− 1

4a
)∥yt − y∗(xt+1)∥2 +

1

4a
∥yt − y∗(xt+1)∥2

≤ (1− 1

4a
)[(1 +

1

8a
)∥yt − y∗(xt)∥2 + (1 + 8a)∥y∗(xt)− y∗(xt+1)∥2]

+
1

2a
[∥yt − zt+1∥2 + ∥zt+1 − y∗(xt+1)∥2]

≤ (1− 1

8a
)∥yt − y∗(xt)∥2 + (1− 1

4a
)(1 + 8a)κ2∥xt − xt+1∥2

+
1

2a
[∥yt − zt+1∥2 + ∥zt+1 − y∗(xt+1)∥2],

(B.52)

where we let a = 1
µηy

, the first inequality holds due to the Young’s inequality, and the last inequality
holds due to the κ-Lipschitz continuity of y∗(·) in Lemma B.6.

J2 = ⟨zt+1 − y∗(xt+1),∇yfµ2(xt+1, zt+1)⟩ − h(zt+1) + h(y∗(xt+1))

≤ − µ

2
∥zt+1 − y∗(xt+1)∥2 + fµ2

(xt+1, zt+1)− h(zt+1)− [fµ2
(xt+1, y

∗(xt+1))− h(y∗(xt+1))]

≤ − µ

2
∥zt+1 − y∗(xt+1)∥2 + f(xt+1, zt+1)− h(zt+1)− [f(xt+1, y

∗(xt+1))− h(y∗(xt+1))] + Lyµ
2
2

≤ − µ

2
∥zt+1 − y∗(xt+1)∥2 + Lyµ

2
2,

(B.53)
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where the first inequality holds because the µ strong concavity of f(x, ·) implies µ strong concavity
of fµ2(x, ·) [39], the second inequality holds due to [14, Lemma 4.1 (b)], and the third inequality
holds due to the definition of y∗(x), i.e., y∗(x) = argmaxy{f(x, y)− h(y)}. Plugging (B.52) and
(B.53) into (B.51), we have

E∥yt+1 − y∗(xt+1)∥2

≤ (1− 1

8a
)E∥yt − y∗(xt)∥2 + (1− 1

4a
)(1 + 8a)κ2E∥xt − xt+1∥2

−
(
µηy −

1

2a

)
E∥zt+1 − y∗(xt+1)∥2 − (1− 3η2yℓ

2 − 1

2a
)E∥yt − zt+1∥2

+ 2ηyLyµ
2
2 + 3ℓ2η2yE∥xt+1 − xt∥2 +

3η2yµ
2
2L

2
ydy

2
.

(B.54)

According to the setting of a = 1
ηyµ

, we choose ηy = 1
2ℓ <

√
µ2+48ℓ2−µ

12ℓ2 , so we have

E∥yt+1 − y∗(xt+1)∥2

≤ (1− 1

8a
)E∥yt − y∗(xt)∥2 + [8aκ2 + 3ℓ2η2y]E∥xt − xt+1∥2 + 2ηyLyµ

2
2 +

3η2yµ
2
2L

2
ydy

2
.

(B.55)

To simplify the analysis, we let M ≜ 2ηyLyµ
2
2 +

3η2yµ
2
2L

2
ydy

2 . By recursively applying (B.55), we
obtain for ∀t ≥ 1

δt ≤
(
1− 1

8a

)t
δ0 +

t∑
j=1

(
1− 1

8a

)t−j
[(8aκ2 + 3ℓ2η2y)E∥xj − xj+1∥2 +M ]. (B.56)

Summing this inequality from t = 1 to T − 1 deduces that

T−1∑
t=1

δt ≤
T−1∑
t=1

(
1− 1

8a

)t
δ0 +

T−1∑
t=1

t∑
i=1

(
1− 1

8a

)t−j
[(8aκ2 + 3ℓ2η2y)E∥xj − xj+1∥2 +M ].

(B.57)
We can write that

T−1∑
t=1

t∑
j=1

(
1− 1

8a

)t−j
[(8aκ2 + 3ℓ2η2y)E∥xj − xj+1∥2 +M ].

=

T−1∑
i=1

[(8aκ2 + 3ℓ2η2y)E∥xi − xi+1∥2 +M ]

T−i−1∑
j=0

(
1− 1

8a

)j

≤ 8a

T−1∑
i=1

[(8aκ2 + 3ℓ2η2y)E∥xi − xi+1∥2 +M ],

(B.58)

and
T−1∑
t=0

(
1− 1

8a

)t
=

1− (1− 1
8a )

T

1− (1− 1
8a )

≤ 8a (B.59)

with 8a ≥ 2 ⇐⇒ ηy ≤ 4
µ . Adding δ0 on both sides of (B.57) and plugging (B.58) and (B.59) into

(B.57) yeilds that

T−1∑
t=0

δt ≤ 8aδ0 + 8a

T−1∑
i=1

[(8aκ2 + 3ℓ2η2y)E∥xi − xi+1∥2 +M ]. (B.60)

Theorem B.5 (Detailed description of Theorem 1). We choose ηx ≤ 1
256κ2ℓ (we hope that

ℓ+κℓ
2 + (κ+ 1)2ℓ2ηx − 1

2ηx
+ 16aℓ2ηx[8aκ

2 + 3ℓ2ηy] ≤ 0, thus we can get ηx ≤ 1
256κ2ℓ ≤√

9(ℓ+κℓ)2+128aℓ2(8aκ2+3ℓ2ηy)−(ℓ+κℓ)

4(κℓ+ℓ)2+64aℓ2(8aκ2+3ℓ2ηy)
), ηy = 1

2ℓ (due to ηy ≤ min{ 4
µ ,

1
2ℓ} and 4

µ > 1
2ℓ ). Under
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Assumptions 3, 4, 6 and 7, our ZO-GDEGA converges to an ϵ-stationary point for solving Problem
(1), i.e., min1≤t≤T dist(−∂g(xt),∇Φ(xt)) ≤ ϵ, with iteration number T bounded by

O
(
κ2ℓ∆ψ + κℓ2δ0

ϵ2

)
, (B.61)

for both deterministic and stochastic settings, where ∆ψ = ψ(x0)−minx ψ(x). Thus, the overall
complexity is bounded by O(κ2(dx + dy)ϵ

−2) for the deterministic setting and O(κ2(dx + κdy)ϵ
−4)

for the stochastic setting.

Proof. Taking summation from t = 0 to t = T − 1 of (B.35) in Lemma B.7, we get that

ηx
2

T−1∑
t=0

E∥wt+1∥2

≤ E[ψ(x0)− ψ(xT )] + 16aℓ2ηxδ0 +
Tηxµ

2
1dxL

2
x

2

+
(ℓ+ κℓ

2
+ (κ+ 1)2ℓ2ηx −

1

2ηx
+ 16aℓ2ηx[8aκ

2 + 3ℓ2η2y]
) T−1∑
t=0

E∥xt+1 − xt∥2

+ 16aℓ2ηxT (2ηyLyµ
2
2 +

3η2yµ
2
2L

2
ydy

2
)

≤ E[ψ(x0)− ψ(xT )] + 32κℓ2ηxδ0 +
Tηxµ

2
1dxL

2
x

2

+ κℓ2ηxT (
32µ2

2Ly
ℓ

+
12µ2

2L
2
ydy

ℓ2
),

(B.62)

where the second inequality holds due to the choice of ηx, and a = 1
µηy

= 2ℓ
µ = 2κ. Thus

1

T

T−1∑
t=0

E∥wt+1∥2 ≤ 2E[ψ(x0)− ψ(xT )]

Tηx
+

64κℓ2δ0
T

+ µ2
1dxL

2
x + 8κℓ2(

8µ2
2Ly
ℓ

+
3µ2

2L
2
ydy

ℓ2
)

≤ O(
κ2ℓ(ψ(x0)− ψ(xT )) + κℓ2δ0

T
) +O(ϵ2)

(B.63)
for deterministic settting.

1

T

T−1∑
t=0

E∥wt+1∥2

≤ 2E[ψ(x0)− ψ(xT )]

Tηx
+

64κℓ2δ0
T

+ 2µ2
1d

2
xL

2
x +

σ2

2b1
+ 8κℓ2(

8µ2
2Ly
ℓ

+
3µ2

2L
2
yd

2
y

ℓ2
+

12σ2

b2ℓ
)

≤ O(
κ2ℓ(ψ(x0)− ψ(xT )) + κℓ2δ0

T
) +O(ϵ2)

(B.64)
for stochastic settting. Choosing µ1 = O(ϵ), µ2 = O(ϵκ−1/2), q1 = dx, and q2 = dy for
deterministic setting, and µ1 ≤ ϵ√

2dxLx
, µ2 ≤ ϵ

4
√
3κdyLy

, b1 = O(dxϵ
−2), and b2 = O(dyκϵ

−2) for
stochastic setting, we can get the desired results.

B.2 Continuity-Agnostic analysis for Our ZO-GDEGA Solving Nonconvex-Concave Problems

Theorem B.6 (A detailed description of Theorem 2). Under Assumptions 1 and 2, for any given ϵ > 0

and arbitrary ŷ ∈ dom h, letting xϵ be such that dist(−∂g(xϵ),∇Φ̂(xϵ))≤ ϵ
2
√
6

, f̂(x, y) = f(x, y)−
µ̂
2 ∥y− ŷ∥

2, Φ̂(x) ≜ maxy{f̂(x, y)−h(y)}, our ZO-GDEGA algorithm applied to solve approximate

NC-SC model: minxmaxy Ψ̂(x, y) = g(x)+ f̂(x, y)−h(y) with µ̂ = min
{

ϵ2

24ℓD2
h
,
Ly

Lx

ϵ
2
√
6Dh

}
=

O( ϵ2

ℓD2
h
), is guaranteed to generate a point xϵ such that E[∥∇ψ1/2ℓ(xϵ)∥] ≤ ϵ for solving NC-C
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problem (1) with total complexity O( ℓ
2

µ̂2 (dx + dy)ϵ
−2) = O((dx + dy)ϵ

−6) for the deterministic

setting and O( ℓ
2

µ̂2 (dx +
ℓ
µ̂dy)ϵ

−4) = O(dxϵ
−8 + dyϵ

−10) for the stochastic setting (in this setting,
we also need Assumptions 3, 6 and 7).

Proof. Below we state some useful relations that will be used later in the proof. The definition of Ψ̂
implies that for all (x, y), we have

∇xΓ(x, y) = ∇xΓ̂(x, y), ∥∇yf(x, y)−∇y f̂(x, y)∥ ≤ µ̂Dh, (B.65)

where Γ̂(x, y) = f̂(x, y)− h(y). We define ŷ∗(x) ≜ argmaxy Γ̂(x, y). Following [60, Lemma 11],
we have that

ŷ∗(xϵ) = proxhα(ŷ
∗(xϵ) + α∇y f̂(xϵ, ŷ

∗(xϵ))). (B.66)

Now we are ready for the proof of Theorem B.6. Let y+ ≜ proxhα(ŷ
∗(xϵ) + α∇yf(xϵ, ŷ

∗(xϵ))),
then we have

∥y+ − ŷ∗(xϵ)∥
= ∥proxhα(ŷ

∗(xϵ) + α∇y f̂(xϵ, ŷ
∗(xϵ)))− proxhα(ŷ

∗(xϵ) + α∇yf(xϵ, ŷ
∗(xϵ)))∥

≤ α∥∇y f̂(xϵ, ŷ
∗(xϵ))−∇yf(xϵ, ŷ

∗(xϵ))∥
≤ αµ̂Dh,

(B.67)

where the first equality is by the definitions of ŷ∗(x) and y+; the first inequality holds due to the
non-expansiveness of proximal operators, and the last inequality holds due to (B.65). Recall that
our ultimate goal is to show that ∥∇ψλ(xϵ)∥ ≤ ϵ. Now, considering proxψλ (xϵ) = argminv ψ(v) +
1
2λ∥v − xϵ∥2, where λ = 1

2ℓ . According to [31, Lemma A.1], we have

∥∇ψλ(xϵ)∥2 =
1

λ2
∥xϵ − proxψλ (xϵ)∥

2. (B.68)

Since ψ(x) is weakly convex and λ = 1
2ℓ , ψ(x) + 1

2λ∥x− xϵ∥2 is ℓ-strongly convex with the unique
minimizer proxψλ (xϵ) (the definition of proximal operator); we have

g(xϵ) + max
y

Γ(xϵ, y)− g(proxψλ (xϵ))−max
y

Γ(proxψλ (xϵ), y)−
1

2λ
∥proxψλ (xϵ)− xϵ∥2

= ψ(xϵ)− ψ(proxψλ (xϵ))−
1

2λ
∥proxψλ (xϵ)− xϵ∥2

≥ ℓ

2
∥xϵ − proxψλ (xϵ)∥

2 =
λ2ℓ

2
∥∇ψλ(xϵ)∥2,

(B.69)
where the last inequality holds due to the ℓ-strongly convex ψ(x) + 1

2λ∥x− xϵ∥2. In the following
analysis, we will continue to polish the upper bound on ∥∇ψλ(xϵ)∥2 on the left hand side of Eq.
(B.69). Indeed,

g(xϵ) + max
y

Γ(xϵ, y)− g(proxψλ (xϵ))−max
y

Γ(proxψλ (xϵ), y)−
1

2λ
∥proxψλ (xϵ)− xϵ∥2

= max
y

Γ(xϵ, y)− Γ(xϵ, y
+) + g(xϵ) + Γ(xϵ, y

+)− g(proxψλ (xϵ))−max
y

Γ(proxψλ (xϵ), y)−
1

2λ
∥proxψλ (xϵ)− xϵ∥2

≤ max
y

Γ(xϵ, y)− Γ(xϵ, y
+) + g(xϵ) + Γ(xϵ, y

+)− g(proxψλ (xϵ))− Γ(proxψλ (xϵ), y
+)− 1

2λ
∥proxψλ (xϵ)− xϵ∥2

≤ max
y

Γ(xϵ, y)− Γ(xϵ, y
+) + ∥proxψλ (xϵ)− xϵ∥∥∇xΓ(xϵ, y

+) + wϵ∥ −
ℓ

2
∥proxψλ (xϵ)− xϵ∥2

≤ max
y

Γ(xϵ, y)− Γ(xϵ, y
+) +

∥∇xΓ(xϵ, y
+) + wϵ∥2

2ℓ
,

(B.70)
where wϵ ∈ ∂g(xϵ). Since dist(−∂g(xϵ),∇Φ̂(xϵ)) ≤ ϵ

2
√
6

, we can choose wϵ =

argminw∈∂g(xϵ) ∥w +∇Φ̂(xϵ)∥2, the second inequality follows from the ℓ-strongly convexity of
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g(x) + Γ(x, y+) + 1
2λ∥x − xϵ∥2 and Cauchy-Schwarz inequality, the last inequality holds due to

Young’s inequality. Then, using the smoothness of f(x, y) and Eq. (B.67), we have

∥∇xΓ(xϵ, y
+) + wϵ∥

≤ ∥∇xΓ(xϵ, y
+) + wϵ − (wϵ +∇xΦ̂(xϵ))∥+ ∥wϵ +∇xΦ̂(xϵ)∥

≤ ∥∇xΓ(xϵ, y
+)−∇xΓ(xϵ, y

∗(xϵ))∥+ ∥∇xΦ̂(xϵ) + wϵ∥
≤ Lxαµ̂Dh + ∥∇xΦ̂(xϵ) + wϵ∥,

(B.71)

where the second inequality holds due to the Danskin’s theorem and (B.65), and last inequality holds
due to (B.67). Thus, using (a+ b)2 ≤ 2(a2 + b2) for any a, b ∈ R, we get

∥∇xΓ(xϵ, y
+) + wϵ∥2 ≤ 2L2

xα
2µ̂2D2

h + ∥∇xΦ̂(xϵ) + wϵ∥2 ≤ 2L2
xα

2µ̂2D2
h +

ϵ2

12
, (B.72)

where the last inequality holds due to the fact that dist(−∂g(xϵ),∇Φ̂(xϵ))≤ ϵ
2
√
6

. Next, we bound
maxy Γ(xϵ, y) − Γ(xϵ, y

+) in (B.70). Recall that y+ = proxhα(ŷ
∗(xϵ) + α∇yf(xϵ, ŷ

∗(xϵ))), the
first-order optimality condition yields that

− 1

α
[y+ − ŷ∗(xϵ)− α∇yf(xϵ, ŷ

∗(xϵ))] ∈ ∂h(y+),

Therefore, for ∀y ∈ dom h, we have that

h(y)− h(y+) ≥ ⟨y − y+,− 1

α
(y+ − ŷ∗(xϵ)− α∇yf(xϵ, ŷ

∗(xϵ)))⟩, (B.73)

which is equivalent to

h(y+)− h(y) ≤ 1

α
⟨y − y+, y+ − ŷ∗(xϵ)⟩ − ⟨y − y+,∇yf(xϵ, ŷ

∗(xϵ))⟩. (B.74)

Now, we are ready to provide an upper bound on maxy∈dom h Γ(xϵ, y)− Γ(xϵ, y
+). Indeed, given

any ỹ ∈ argmaxy∈dom h Γ(xϵ, y), we have

max
y∈dom h

Γ(xϵ, y)− Γ(xϵ, y
+) = Γ(xϵ, ỹ)− Γ(xϵ, ŷ

∗(xϵ)) + Γ(xϵ, ŷ
∗(xϵ))− Γ(xϵ, y

+)

= f(xϵ, ỹ)− f(xϵ, ŷ
∗(xϵ))︸ ︷︷ ︸

M4

−h(ỹ) + h(ŷ∗(xϵ)) + f(xϵ, ŷ
∗(xϵ))− f(xϵ, y

+)︸ ︷︷ ︸
M5

−h(ŷ∗(xϵ)) + h(y+)

(B.75)
We use concavity and smoothness of f(xϵ, ·) for M4 and M5, respectively. Thus,

max
y∈dom h

Γ(xϵ, y)− Γ(xϵ, y
+)

≤ ⟨∇yf(xϵ, ŷ
∗(xϵ)), ỹ − ŷ∗(xϵ)⟩ − h(ỹ) + h(y+) + ⟨∇yf(xϵ, ŷ∗(xϵ)), ŷ∗(xϵ)− y+⟩+ Ly

2
∥ŷ∗(xϵ)− y+∥2

= ⟨∇yf(xϵ, ŷ∗(xϵ)), ỹ − y+⟩ − h(ỹ) + h(y+) +
Ly
2
∥ŷ∗(xϵ)− y+∥2

≤ 1

α
⟨ỹ − y+, y+ − ŷ∗(xϵ)⟩+

Ly
2
∥ŷ∗(xϵ)− y+∥2

= − Ly
2
∥ŷ∗(xϵ)− y+∥2 + Ly⟨ỹ − ŷ∗(xϵ), y

+ − ŷ∗(xϵ)⟩

≤ LyDh∥y+ − ŷ∗(xϵ)∥,
(B.76)

where the second inequality holds due to the above optimality condition (B.74); in the last equality,
we set α = L−1

y ; the last inequality holds due to Cauchy-Schwarz inequality and the fact that
maxy1,y2∈dom h ∥y1 − y2∥ ≤ Dh. Next, we plug (B.76) into (B.70) and it follows that

g(xϵ) + max
y∈dom h

Γ(xϵ, y)− g(proxψλ (xϵ))− max
y∈dom h

Γ(proxψλ (xϵ), y)−
1

2λ
∥proxψλ (xϵ)− xϵ∥2

≤ LyDh∥y+ − ŷ∗(xϵ)∥+
∥∇xΓ(xϵ, y

+) + wϵ∥2

2ℓ

≤ µ̂D2
h +

ϵ2

24ℓ
+
L2
x

L2
y

· µ̂
2

ℓ
·D2

h,

(B.77)
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where the last inequality follows from (B.67) and (B.72) with α = L−1
y . Combining (B.69) and

(B.77), we have
1

8ℓ
∥∇ψλ(xϵ)∥2 ≤ µ̂D2

h +
ϵ2

24ℓ
+
L2
x

L2
y

µ̂2

ℓ
D2
h. (B.78)

Thus,

∥∇ψλ(xϵ)∥2 ≤ 8ℓµ̂D2
h +

ϵ2

3
+

8L2
x

L2
y

µ̂2D2
h. (B.79)

Thus, we get∥∇ψ1/2ℓ(xϵ)∥ ≤ ϵ when setting µ̂ = min
{

ϵ2

24ℓD2
h
,
Ly

Lx

ϵ
2
√
6Dh

}
.

B.3 Continuity-dependent Analysis of Deterministic ZO-GDEGA for Solving
Nonconvex-Concave Problems

Lemma B.10. For NC-C problems, we bound ∥xt+1 − xt∥2 in our deterministic ZO-GDEGA
algorithm as follows:

Proof.

∥xt+1 − xt∥2 ≤ 2∥proxgηx(xt − ηx∇̂f(xt, zt))− (xt − ηx∇̂f(xt, zt))∥2 + 2η2x∥∇̂f(xt, zt)∥2

≤ 2η2xL
2
g + 2η2x∥∇̂xf(xt, zt)∥2,

(B.80)
where the second inequality holds due to Assumption 2.

Lemma B.11. We bound Eu∥∇̂xf(x, y)∥ when q1 = dx.

Proof.

Eu∥∇̂xf(x, y)∥ = Eu
√

∥∇̂xf(x, y)∥2
Jensen’s Inequality

≤
√
Eu∥∇̂xf(x, y)∥2

≤
√
2Eu∥∇̂xf(x, y)−∇xf(x, y)∥2 + 2∥∇xf(x, y)∥2

Lemma B.3 and Assumption 5
≤

√
µ2
1dxL

2
x

2
+ 2G2.

(B.81)

Lemma B.12 ([4]). The Lipschitz continuity of f(x, y) in its first component implies that Φ(x) is
Lipschitz as well with the same constant G.

Lemma B.13. We suppose that Assumptions 2 and 5 hold. For the deterministic ZO-GDEGA
algorithm solving the NC-C problem (1), the iterates {xt}Tt=0 satisfies the following inequality:

E[ψ1/2ℓ(xt+1)] ≤ E[ψ1/2ℓ(xt)] + 2ηxβℓE[∆t]−
ηx
2
E∥∇ψ1/2ℓ(xt)∥2 + 2ηxβℓ

2µ2
1 + η2xµ

2
1dxL

2
xℓ+ 6η2xG

2ℓ,

(B.82)
where β = 1− 2ℓηx and ∆t = Φ(xt)− Γ(xt, zt).

Proof. We define x̂t := proxg+Φ
1
2ℓ

(xt). According to the definition of Moreau envelope, we have that

ψ1/2ℓ(xt+1) = min
x

{ψ(x) + ℓ∥x− xt+1∥2} ≤ ψ(x̂t) + ℓ∥x̂t − xt+1∥2, (B.83)

and further taking an expectation of both sides of the above inequality,

Eψ1/2ℓ(xt+1) ≤ Eψ(x̂t) + ℓE∥x̂t − xt+1∥2. (B.84)
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According to [4, Lemma 3.2], we have x̂t = proxgηx (2ℓηxxt − ηxvt + (1− 2ℓηx)x̂t), where vt ∈
∂Φ(x̂t). Thus, with β = (1− 2ℓηx),

∥x̂t − xt+1∥2

(a)
=∥proxgηx(2ℓηxxt − ηxvt + βx̂t)− proxgηx(xt − ηx∇̂xf(xt, zt))∥2

(b)

≤∥β(x̂t − xt) + ηx(∇̂xf(xt, zt)− vt)∥2

=β2∥x̂t − xt∥2 + 2ηxβ⟨∇̂xf(xt, zt)− vt, x̂t − xt⟩+ η2x∥∇̂xf(xt, zt)− vt∥2

(c)
=β2∥x̂t − xt∥2 + 2ηxβ⟨∇̂xf(xt, zt)− vt, x̂t − xt⟩+ 2η2x∥∇̂xf(xt, zt)∥2 + 2η2xG

2,

(B.85)

where vt ∈ ∂Φ(x̂t), the equality (a) holds due to the definitions of xt+1 and x̂t, the inequality (b)
holds due to the non-expansiveness of the proximal operator, and the inequality (c) holds due to
Lemma B.12. Then, according to [14, Lemma 4.1 (a)], we have that E[∇̂xf(x, y)] = ∇xfµ1

(x, y)

and E[∇̂yf(x, y)] = ∇yfµ2(x, y). Taking an expectation of both sides of the above inequality,
conditioning on (xt, zt), together with Lemma B.11, yield that

E
[
∥x̂t − xt+1∥2|xt, zt

]
≤ β2∥x̂t − xt∥2 + 2ηxβ⟨∇xfµ1

(xt, zt)− vt, x̂t − xt⟩
+ 2η2xE[∥∇̂xf(xt, zt)∥2|xt, zt] + 2η2xG

2.

≤ β2∥x̂t − xt∥2 + 2ηxβ⟨∇xfµ1(xt, zt)− vt, x̂t − xt⟩+ η2xµ
2
1dxL

2
x + 6η2xG

2.

(B.86)

Taking the expectation of both sides yields that

E∥x̂t − xt+1∥2 ≤ β2E∥x̂t − xt∥2 + 2ηxβ E⟨∇xfµ1
(xt, zt)− vt, x̂t − xt⟩︸ ︷︷ ︸

J1

+η2xµ
2
1dxL

2
x + 6η2xG

2.

(B.87)
According to the ℓ-weak convexity of fµ1

in Lemma B.5, we obtain

⟨∇xfµ1
(xt, zt), x̂t − xt⟩

(a)

≤ fµ1
(x̂t, zt)− fµ1

(xt, zt) +
ℓ

2
∥x̂t − xt∥2

(b)

≤ f(x̂t, zt)− f(xt, zt) + ℓµ2
1 +

ℓ

2
∥x̂t − xt∥2

= f(x̂t, zt)− h(zt)− [f(xt, zt)− h(zt)] + ℓµ2
1 +

ℓ

2
∥x̂t − xt∥2

(c)

≤ Φ(x̂t)− Γ(xt, zt) +
ℓ

2
∥x̂t − xt∥2 + ℓµ2

1,

(B.88)

where the inequality (a) holds due to Lemma B.5, the inequality (b) holds due to [14, Lemma 4.1 (b)],
and the inequality (c) holds due to the definitions of Φ(x̂) and Γ(x, y). And by the ℓ-weak convexity
of Φ(x), we have

−⟨vt, x̂t − xt⟩ ≤ Φ(xt)− Φ(x̂t) +
ℓ

2
∥x̂t − xt∥2. (B.89)

Combining (B.88) and (B.89) and taking an expectation of both sides, we have

J1 ≤ E[Φ(xt)]− E[Γ(xt, zt)] + ℓE∥x̂t − xt∥2 + ℓµ2
1. (B.90)

By plugging (B.90) into (B.87), we have

E∥x̂t − xt+1∥2

≤ β2E∥x̂t − xt∥2 + 2ηxβ E⟨∇xfµ1
(xt, zt)− vt, x̂t − xt⟩︸ ︷︷ ︸

J1

+η2xµ
2
1dxL

2
x + 6η2xG

2

≤ β2E∥x̂t − xt∥2 + 2ηxβ
[
E[Φ(xt)]− E[Γ(xt, zt)] + ℓE∥x̂t − xt∥2 + ℓµ2

1

]
+ η2xµ

2
1dxL

2
x + 6η2xG

2

≤ (1− 2ηxℓ)E∥x̂t − xt∥2 + 2ηxβE[∆t] + 2ηxβℓµ
2
1 + η2xµ

2
1dxL

2
x + 6η2xG

2,
(B.91)
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where ∆t = Φ(xt)− Γ(xt, zt) and the last inequality holds due to β2 + 2ηxℓβ = β(β + 2ηxℓ) = β.
Thus,

E[ψ1/2ℓ(xt+1)]

≤ Eψ(x̂t) + ℓE∥x̂t − xt+1∥2

≤ Eψ(x̂t) + ℓE∥x̂t − xt∥2 + 2ηxβℓE[∆t]− 2ηxℓ
2E∥x̂t − xt∥2 + 2ηxβℓ

2µ2
1 + η2xµ

2
1dxL

2
xℓ+ 6η2xG

2ℓ

= Eψ1/2ℓ(xt) + 2ηxβℓE[∆t]−
ηx
2
E∥∇ψ1/2ℓ(xt)∥2 + 2ηxβℓ

2µ2
1 + η2xµ

2
1dxL

2
xℓ+ 6η2xG

2ℓ,

(B.92)
where the last equality holds due to the definitions of x̂t and ψ1/2ℓ(xt) and [31, Lemma A.1]. This
completes the proof.

Lemma B.14. For deterministic ZO-GDEGA to solve the NC-C problem (1), the following statement
holds for the generated sequences {zt+1}, {yt+1} when q1 = dx and q2 = dy:

E⟨−∇̂yf(xt+1, zt+1), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+ 3ηyη
2
xℓ

2(
µ2
1dxL

2
x

2
+ 2G2 + L2

g) +
3µ2

2L
2
ydyηy

4
.

(B.93)

Proof. According to Proposition 6, we set r = yt, q = yt+1, p = zt+1, η = ηy and
v = −ηy∇̂yf(xt+1, zt+1), u = −ηy∇̂yf(xt, yt). We can verify that:

E∥u− v∥2 = E∥ηy∇̂yf(xt+1, zt+1)− ηy∇̂yf(xt, yt)∥2

≤ η2yE
[
3∥∇̂yf(xt+1, zt+1)−∇yf(xt+1, zt+1)∥2 + 3∥∇̂yf(xt, yt)−∇yf(xt, yt)∥2

+ 3∥∇yf(xt+1, zt+1)−∇yf(xt, yt)∥2
]

≤ η2y

(
3µ2

2L
2
ydy

2
+ 3E∥∇yf(xt+1, zt+1)−∇yf(xt, yt)∥2

)

≤ η2y

(
3µ2

2L
2
ydy

2
+ 3ℓ2E∥zt+1 − yt∥2 + 3ℓ2E∥xt+1 − xt∥2

)

≤ η2y
(
3ℓ2E∥p− r∥2 + 6η2xℓ

2E∥∇̂xf(xt, zt)∥2 + 6η2xL
2
gℓ

2
)
+

3µ2
2L

2
ydyη

2
y

2

≤ η2y
(
3ℓ2E∥p− r∥2 + 6η2xℓ

2(
µ2
1dxL

2
x

2
+ 2G2) + 6η2xL

2
gℓ

2
)
+

3µ2
2L

2
ydyη

2
y

2
,

(B.94)
where the first inequality holds due to the Young’s inequality, the second inequality holds due to
Lemma B.3, the third inequality holds due to the ℓ-smoothness of f , the forth inequality holds due to
Lemma B.10, and the last inequality holds due to Lemma B.11. Thus, if we set C2

1 = 3η2yℓ
2, and

C2
2 = 6η2yη

2
xℓ

2(
µ2
1dxL

2
x

2 +2G2 +L2
g) +

3µ2
2L

2
ydyη

2
y

2 , J = h, we have the following inequality holding
for any y:

E⟨−∇̂yf(xt+1, zt+1), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+
6ηyη

2
xℓ

2(
µ2
1dxL

2
x

2 + 2G2 + L2
g) +

3µ2
2L

2
ydyηy
2

2
.

(B.95)

Lemma B.15. We suppose that Assumption 1 holds. For deterministic ZO-GDEGA solving NC-C

problems, denoting R1 ≜
√

µ2
1dxL

2
x

2 + 2G2 and ∆t = Φ(xt)− Γ(xt, zt), and letting ηy = 1√
3ℓ

, the
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following statement holds true for ∀s ≤ t− 1, y ∈ dom h and q1 = dx,

E[∆t+1] ≤ 2(t− s+ 1)ηx(R1 + Lg)G

+
1

2ηy
E∥yt − y∗(xs)∥2 −

1

2ηy
E∥yt+1 − y∗(xs)∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+ 3ηyη
2
xℓ

2(R2
1 + L2

g) +
3ηyµ

2
2dyL

2
y

4
+ ℓµ2

2.

(B.96)

Proof.

∆t+1 = Φ(xt+1)− Γ(xt+1, y
∗(xs)) + Γ(xt+1, y

∗(xs))− Γ(xt+1, zt+1)

(a)
= f(xt+1, y

∗(xt+1))− h(y∗(xt+1))− f(xt+1, y
∗(xs))

+ h(y∗(xs)) + f(xt+1, y
∗(xs))− h(y∗(xs))− f(xt+1, zt+1) + h(zt+1)

= f(xt+1, y
∗(xt+1))− f(xs, y

∗(xt+1)) + f(xs, y
∗(xt+1))− h(y∗(xt+1))

− f(xt+1, y
∗(xs)) + h(y∗(xs)) + f(xt+1, y

∗(xs))− h(y∗(xs))− f(xt+1, zt+1) + h(zt+1)

(b)

≤ f(xt+1, y
∗(xt+1))− f(xs, y

∗(xt+1)) + f(xs, y
∗(xs))− h(y∗(xs))

− f(xt+1, y
∗(xs)) + h(y∗(xs)) + f(xt+1, y

∗(xs))− h(y∗(xs))− f(xt+1, zt+1) + h(zt+1)

= f(xt+1, y
∗(xt+1))− f(xs, y

∗(xt+1))︸ ︷︷ ︸
M1

+ f(xs, y
∗(xs))− f(xt+1, y

∗(xs))︸ ︷︷ ︸
M2

+ f(xt+1, y
∗(xs))− f(xt+1, zt+1)− h(y∗(xs)) + h(zt+1)︸ ︷︷ ︸

M3

,

(B.97)
where the equality (a) holds due to the definitions of Φ(·) and Γ(·, ·) and the inquality (b) holds due
to the definition of Φ(xs). Then, we bound M1,M2 and M3 as follows:

E[M1] ≤GE∥xt+1 − xs∥ ≤ GE
t∑
l=s

∥xl+1 − xl∥

(a)

≤G
t∑
l=s

(E∥proxgηx(xl − ηx∇̂xf(xl, zl))− proxgηx(xl)∥+ E∥proxgηx(xl)− xl∥)

(b)

≤G
t∑
l=s

(ηxE∥∇̂xf(xl, zl))∥+ ηxLg)

(c)

≤G
t∑
l=s

(ηx

√
E∥∇̂xf(xl, zl))∥2 + ηxLg)

(d)

≤ (t− s+ 1)ηx(

√
µ2
1dxL

2
x

2
+ 2G2 + Lg)G,

(B.98)

where the inequality (a) holds due to the Triangle inequality, the inequality (b) holds due to the
non-expansiveness of the proximal operator and Assumption 2, and the inequality (c) and (d) hold due

to Lemma B.11. Similarly, it can be concluded that E[M2] ≤ (t−s+1)ηx(

√
µ2
1dxL

2
x

2 + 2G2+Lg)G.
About M3, we have the following derivation

E[M3] ≤fµ2
(xt+1, y

∗(xs))− fµ2
(xt+1, zt+1)− h(y∗(xs)) + h(zt+1) + ℓµ2

2

(a)

≤ − ⟨∇yfµ2
(xt+1, zt+1), zt+1 − y∗(xs)⟩ − h(y∗(xs)) + h(zt+1) + ℓµ2

2

(b)

≤ 1

2ηy
E∥yt − y∗(xs)∥2 −

1

2ηy
E∥yt+1 − y∗(xs)∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+ 3ηyη
2
xℓ

2(
µ2
1dxL

2
x

2
+ 2G2 + L2

g) +
3µ2

2L
2
ydyηy

4
+ ℓµ2

2,

(B.99)
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where the first inequality holds due to [14, Lemma 4.1 (b)], the inequality (a) holds due to the concavity
of fµ2(x, ·) in Lemma B.2 and the inequality (b) holds due to Lemma B.14 with y = y∗(xs). Plugging
M1,M2 and M3 into (B.97) yields the desired result.

Lemma B.16. For deterministic ZO-GDEGA algorithm, letting ∆t+1 = Φ(xt+1)− Γ(xt+1, zt+1),
the following statement holds:

1

T + 1

(
T∑
t=0

E[Φ(xt+1)− Γ(xt+1, zt+1)]

)

≤ 1

B
[2ηxB

2(R1 + Lg)G+
D2
h

2ηy
+ 3Bηy(η

2
xℓ

2R2
1 + η2xL

2
gℓ

2 +
µ2
2L

2
ydy

4
) + ℓµ2

2B].

(B.100)

Proof. According to Lemma B.15 and ηy ≤ 1√
3ℓ

, by splitting the summation into blocks we get that

1

T + 1

(
T∑
t=0

E[∆t+1]

)
=

1

T + 1

(T+1)/B−1∑
j=0

(j+1)B−1∑
t=jB

E[∆t+1]

 . (B.101)

By using (B.96) with s = −1 for j = 0, we get that

B−1∑
t=0

E[∆t+1] ≤B2ηx(

√
µ2
1dxL

2
x

2
+ 2G2 + Lg)G+

1

2ηy
E∥y0 − y∗(x−1)∥2 −

1

2ηy
E∥yB − y∗(x−1)∥2

+ 3Bηyη
2
xℓ

2(
µ2
1dxL

2
x

2
+ 2G2 + L2

g) +
3ηyµ

2
2dyL

2
yB

4
+ ℓµ2

2B.

(B.102)
Analogously, for j > 0 and s = jB we have that

(j+1)B−1∑
t=jB

E[∆t+1]

≤ηxB2(

√
µ2
1dxL

2
x

2
+ 2G2 + Lg)G+

1

2ηy

(
E∥yjB − y∗(xjB)∥2 − ∥y(j+1)B − y∗(xjB)∥2

)
+ 3Bηyη

2
xℓ

2(
µ2
1dxL

2
x

2
+ 2G2 + L2

g) +
3ηyBµ

2
2L

2
ydy

4
+ ℓµ2

2B.

(B.103)
Plugging (B.102) and (B.103) into (B.101) yields that

1

T + 1

(
T∑
t=0

E[∆t+1]

)

≤ 1

B

[
2ηxB

2(

√
µ2
1dxL

2
x

2
+ 2G2 + Lg)G+

D2
h

2ηy

+3Bηyη
2
xℓ

2(
µ2
1dxL

2
x

2
+ 2G2 + L2

g) +
3ηyBµ

2
2L

2
ydy

4
+ ℓµ2

2B

]

≜
1

B
[2ηxB

2(R1 + Lg)G+
D2
h

2ηy
+ 3Bηy(η

2
xℓ

2R2
1 + η2xL

2
gℓ

2 +
µ2
2L

2
ydy

4
) + ℓµ2

2B],

(B.104)

where R1 ≜
√

µ2
1dxL

2
x

2 + 2G2.

Theorem B.7 (Restatement of Theorem 3). We suppose that Assumptions 1, 2 and 5 hold. If we
choose ηx = min{ ϵ4

4096
√
3β2ℓ3D2

hG(R1+Lg)
, ϵ2

16(2ℓµ2
1dxL

2
x+12ℓG2)

, ϵ

16ℓ
√
R2

1+L
2
g

}, ηy = 1√
3ℓ

, q1 = dx,

q2 = dy , µ1 = O(ϵ) and µ2 = O(ϵ), the deterministic ZO-GDEGA algorithm can be guaranteed to
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find ϵ-stationary point, i.e., 1
T+1

∑T
t=0 E∥∇ψ1/2ℓ(xt)∥2 ≤ ϵ2, with the iteration number T bounded

by:

O

(
ℓG(R1 + Lg)∆̂ψ

ϵ4
max{1, ℓ

2D2
h

ϵ2
}

)
,

where ∆̂ψ = ψ1/2ℓ(x0) − minx ψ1/2ℓ(x). Thus, the overall complexity is bounded by O((dx +

dy)ϵ
−6).

Proof. Summing up the inequality (B.82) in Lemma B.13 from 0 to T , together with Lemma B.16,
we have

1

T + 1

T∑
t=0

E∥∇ψ1/2ℓ(xt)∥2

≤
2(ψ1/2ℓ(x0)− ψ1/2ℓ(xT+1))

ηx(T + 1)

+ 4βℓ
1

B
[2ηxB

2G(R1 + Lg) +
D2
h

2ηy
+ 3Bηy(η

2
xℓ

2R2
1 + η2xL

2
gℓ

2 +
µ2
2L

2
ydy

4
) + ℓµ2

2B]

+ 4βℓ2µ2
1 + 2ηxµ

2
1dxL

2
xℓ+ 12ηxG

2ℓ

=
2(ψ1/2ℓ(x0)− ψ1/2ℓ(xT+1))

ηx(T + 1)

+ 4βℓ[2ηxBG(R1 + Lg) +
D2
h

2ηyB
+ 3ηy(η

2
xℓ

2R2
1 + η2xL

2
gℓ

2 +
µ2
2L

2
ydy

4
) + ℓµ2

2]

+ 4βℓ2µ2
1 + 2ηxµ

2
1dxL

2
xℓ+ 12ηxG

2ℓ.

(B.105)

We choose B = Dh

2
√
ηxηyG(R1+Lg)

, thus we have

1

T + 1

T∑
t=0

∥∇ψ1/2ℓ(xt)∥2

≤ 2∆̂ψ

ηx(T + 1)
+ 4βℓ2µ2

1 + 2ηxµ
2
1dxL

2
xℓ+ 12ηxG

2ℓ

+ 4βℓ[
√
ηx

DhG(R1 + Lg)√
ηyG(R1 + Lg)

+
Dh

√
ηxηyG(R1 + Lg)

ηy
+ 3ηy(η

2
xℓ

2R2
1 + η2xL

2
gℓ

2 +
µ2
2L

2
ydy

4
) + ℓµ2

2].

(B.106)
Thus, we choose ηx = min{ ϵ4

4096
√
3ℓ3D2

hG(R1+Lg)
, ϵ2

32ℓµ2
1dxL

2
x+192ℓG2 ,

ϵ

16ℓ
√
R2

1+L
2
g

}, µ1 ≤ ϵ
8
√
dxℓ

,

µ2 ≤ ϵ

4
√

2L2
ydy+4ℓ2

and ηy = 1√
3ℓ

, we have

1

T + 1

T∑
t=0

∥∇ψ1/2ℓ(xt)∥2 ≤ 2∆̂ψ

ηx(T + 1)
+
ϵ2

2
. (B.107)

This implies that the number of iterations required by ZO-GDEGA to find an ϵ-stationary point is
bounded by

O

(
ℓG(R1 + Lg)∆̂ψ

ϵ4
max{1, ℓ

2D2
h

ϵ2
}

)
, (B.108)

which means that the overall complexity is bounded by O((dx + dy)ϵ
−6). This completes the proof.

Note that this bound does not consist of the term ∆̂0 = Φ(x0)− (f(x0, y0)− h(y0)) compared to
[31].
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B.4 Continuity-dependent Analysis of Stochastic ZO-GDEGA for Solving
Nonconvex-Concave Problems

Lemma B.17. For stochastic ZO-GDEGA solving the NC-C problem (1), the iterates {xt}Tt=0
satisfies the following inequality

E[ψ1/2ℓ(xt+1)] ≤ E[ψ1/2ℓ(xt)]+2ηxℓE[∆t]−
ηx
2
E∥∇ψ1/2ℓ(xt)∥2+2ηxℓ

2µ2
1+2η2xℓ(

µ2
1d

2
xL

2
x

2
+
σ2

b1
)+6η2xℓG

2,

(B.109)
with β = (1− 2ℓηx), where ∆t = Φ(xt)− Γ(xt, zt).

Proof. We first bound the term EU1,I1∥∇̂xf(x, y; I1)∥2 as follows:

EU,I1

[
∥∇̂xf(x, y; I1)∥2

]
= E

[
∥∇xfµ1

(x, y)∥2
]
+
σ2
1

b1

≤ 2E
[
∥∇xfµ1(x, y)−∇xf(x, y)∥2

]
+ 2E

[
∥∇xf(x, y)∥2

]
+
σ2
1

b1

≤ µ2
1d

2
xL

2
x

2
+ 2G2 +

σ2

b1
,

(B.110)
From the definition of the Moreau envelope we deduce that

E[ψ1/2ℓ(xt+1)] ≤ E[ψ(x̂t)] + ℓE
[
∥x̂t − xt+1∥2

]
. (B.111)

We yeild that for β = 1− 2ℓηx

∥x̂t − xt+1∥2

(a)
= ∥proxgηx(2ℓηxxt − ηxvt + βx̂t)− proxgηx(xt − ηx∇̂xf(xt, zt; I1))∥2

(b)

≤ ∥β(x̂t − xt) + ηx(∇̂xf(xt, zt; I1)− vt)∥2

= β2∥x̂t − xt∥2 + 2ηxβ⟨∇̂xf(xt, zt; I1)− vt, x̂t − xt⟩+ η2x∥∇̂xf(xt, zt; I1)− vt∥2

(c)
= β2∥x̂t − xt∥2 + 2ηxβ⟨∇̂xf(xt, zt; I1)− vt, x̂t − xt⟩+ 2η2x∥∇̂xf(xt, zt; I1)∥2 + 2η2xG

2,
(B.112)

where vt ∈ ∂Φ(x̂t). Taking an expectation of both sides of the above inequality, conditioning on
(xt, zt), yields that

EU,I1

[
∥x̂t − xt+1∥2|xt, zt

]
≤β2∥x̂t − xt∥2 + 2ηxβ⟨∇xfµ1

(xt, zt)− vt, x̂t − xt⟩+ 2η2xEU,I1
[∥∇̂xf(xt, zt; I1)∥2|xt, zt] + 2η2xG

2

≤β2∥x̂t − xt∥2 + 2ηxβ⟨∇xfµ1
(xt, zt)− vt, x̂t − xt⟩+ 2η2x(

µ2
1d

2
xL

2
x

2
+
σ2

b1
) + 6η2xG

2,

(B.113)
where the second inequality holds due to (B.110). Taking the expectation of both sides yields that

E∥x̂t − xt+1∥2 ≤ β2E∥x̂t − xt∥2 + 2ηxβE⟨∇xfµ1
(xt, zt)− vt, x̂t − xt⟩+ 2η2x(

µ2
1d

2
xL

2
x

2
+
σ2

b1
) + 6η2xG

2.

(B.114)
According to (B.90), we have that

E∥x̂t − xt+1∥2 ≤β2E∥x̂t − xt∥2 + 2ηxβ
[
E[Φ(xt)]− E[Γ(xt, zt)] + ℓE∥x̂t − xt∥2 + ℓµ2

1

]
+ 2η2x(

µ2
1d

2
xL

2
x

2
+
σ2

b1
) + 6η2xG

2

=(1− 2ηxℓ)E∥x̂t − xt∥2 + 2ηxβE[∆t] + 2η2x(
µ2
1d

2
xL

2
x

2
+
σ2

b1
) + 6η2xG

2,

(B.115)
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where ∆t = Φ(xt)− Γ(xt, zt). Thus,

E[ψ1/2ℓ(xt+1)] ≤ E[ψ(x̂t)] + ℓE∥x̂t − xt+1∥2

≤ E[ψ(x̂t)] + ℓE∥x̂t − xt∥2 + 2ηxβℓE[∆t]− 2ηxℓ
2E∥x̂t − xt∥2 + 2ηxβℓ

2µ2
1

+ 2η2xℓ(
µ2
1d

2
xL

2
x

2
+
σ2

b1
) + 6η2xℓG

2.

= E[ψ1/2ℓ(xt)] + 2ηxβℓE[∆t]−
ηx
2
E∥∇ψ1/2ℓ(xt)∥2 + 2ηxβℓ

2µ2
1

+ 2η2xℓ(
µ2
1d

2
xL

2
x

2
+
σ2

b1
) + 6η2xℓG

2,

(B.116)
where the last equality holds due to the definitions of x̂t and ψ1/2ℓ(xt). This completes the proof.

Lemma B.18. For the NC-C setting of Algorithm 2, we bound ∥xt+1 − xt∥2 as follows:

Proof.

∥xt+1 − xt∥2

≤ 2∥proxgηx(xt − ηx∇̂xf(xt, yt; I1))− (xt − ηx∇̂xf(xt, yt; I1))∥2 + 2η2x∥∇̂xf(xt, yt; I1)∥2

≤ 2η2xL
2
g + 2η2x∥∇̂xf(xt, yt; I1)∥2,

(B.117)
where the first inequality holds due to Cauchy–Schwarz inequality and the second inequality holds
due to Assumption 2.

Lemma B.19. For stochastic ZO-GDEGA solving NC-C problems, the following statement holds for
the generated sequences {zt+1}, {yt+1} during algorithm proceeding:

E⟨−ηy∇̂yf(xt+1, zt+1; I2), zt+1 − y⟩+ ηyh(zt+1)− ηyh(y)

≤ 1

2ηy
E∥yt − y∥2 − 1

2ηy
E∥yt+1 − y∥2 − (

1

2ηy
− 3ηyℓ

2

2
)E∥yt − zt+1∥2

+ 3ηyη
2
xℓ

2(
σ2

b1
+
µ2
1d

2
xL

2
x

2
+ 2G2 + L2

g) +
3ηyσ

2

b2
.

(B.118)

Proof. According to Proposition 6, we set r = yt, q = yt+1, p = zt+1, η = ηy and
v = −ηy∇̂yf(xt+1, zt+1; I2), u = −ηy∇̂yf(xt, yt; I2). We can verify that:

E∥u− v∥2 = E∥ηy∇̂yf(xt+1, zt+1; I2)− ηy∇̂yf(xt, yt; I2)∥2

≤ η2yE
[
3∥∇̂yf(xt+1, zt+1; I2)−∇yfµ2(xt+1, zt+1)∥2 + 3∥∇̂yf(xt, yt; I2)−∇yfµ2(xt, yt)∥2

+ 3∥∇yfµ2
(xt+1, zt+1)−∇yfµ2

(xt, yt)∥2
]

≤ η2y

(
6σ2

b2
+ 3E∥∇yfµ2(xt+1, zt+1)−∇yfµ2(xt, yt)∥2

)
≤ η2y

(
6σ2

b2
+ 3ℓ2E∥zt+1 − yt∥2 + 3ℓ2E∥xt+1 − xt∥2

)
≤ η2y

(
3ℓ2E∥p− r∥2 + 6η2xℓ

2E∥∇̂xf(xt, yt; I1)∥2 + 6η2xL
2
gℓ

2 +
6σ2

b2

)
≤ η2y

(
3ℓ2E∥p− r∥2 + 6η2xℓ

2(
µ2
1d

2
xL

2
x

2
+ 2G2 +

σ2

b1
) + 6η2xL

2
gℓ

2 +
6σ2

b2

)
,

(B.119)
where the second inequality holds due to Eq. (A.4), the third inequality holds due to the Lµ2

-
smoothness of fµ2

with Lµ2
≤ ℓ, the forth inequality holds due to Lemma B.18, and the last

inequality holds due to (B.110). Thus, if we set C2
1 = 3η2yℓ

2, and C2
2 = 3η2xη

2
yℓ

2( 2σ
2

b1
+ µ2

1d
2
xL

2
x +
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4G2 + 2L2
g) +

6η2yσ
2

b2
, J = h, we have the following inequality holding for any y:

E⟨−∇̂yf(xt+1, zt+1; I2), zt+1 − y⟩+ h(zt+1)− h(y)

≤ 1

2ηy
E∥yt − y∥2 − 1
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Lemma B.20. For stochasitic ZO-GDEGA to solve NC-C problems, letting ∆t+1 = Φ(xt+1) −
Γ(xt+1, zt+1) and ηy ≤ 1√

3ℓ
, the following statement holds true for ∀s ≤ t− 1 and y ∈ dom h,
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Proof. We decompose ∆t into M1, M2 and M3 similar to Lemma B.15. Then we bound M1 as
follows:

E[M1] ≤GE∥xt+1 − xs∥ ≤ GE
t∑
l=s

∥xl+1 − xl∥

≤G
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where the last inequality holds due to Equation (B.110). Similarly, it can be concluded that E[M2] ≤
(t− s+ 1)ηxG(
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+ Lg). About M3, we have the following derivation
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(B.123)
where the first inequality holds due to [14, Lemma 4.1 (b)], inequality (a) holds due to the concavity
of f(x, ·) and inequality (b) holds due to Lemma B.19 with y = y∗(xs). Plugging M1,M2 and M3

into ∆t+1 yields the desired result.
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Lemma B.21. For stochastic ZO-GDEGA solving NC-C problems, letting ∆t+1 = Φ(xt+1) −
Γ(xt+1, zt+1), the following inequality holds:
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Proof. By splitting the summation into blocks we get that

1
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According to Lemma B.20 and ηy ≤ 1√
3ℓ

, by using (B.121) with s = −1 for j = 0, we get that
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Analogously, for j > 0 and s = jB we have that
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Plugging (B.126) and (B.127) into (B.125) together with Assumption 2 yields that
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where R2 ≜
√

µ2
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Theorem B.8 (Detailed description of Theorem 4). We suppose that Assumptions 1,
2, 3, 5, 6 and 7 hold. If we choose the step sizes ηy = 1√
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where R2 ≜
√
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, and ∆̂ψ = ψ1/2ℓ(x0) − minx ψ1/2ℓ(x). Thus, the overall

complexity is reduced to O(dxϵ
−6 + dyϵ

−8).

Proof. Summing up the inequality (B.109) in Lemma B.17 from 0 to T , we have
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We choose B = Dh
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There are three cases to be analyzed.

• When ηy = 1√
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which means the overall complexity is bounded by O(dxϵ
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• When ηy = ϵp
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In summary, we choose ηx = min{ ϵ4
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This implies that the overall complexity required by stochastic ZO-GDEGA can be further bounded
by

O(dxϵ
−6 + dyϵ

−8) (B.133)

to return an ϵ-stationary point. This completes the proofs.

C More Experimental Details and Results

This section provides more details and results for our experiments. Our code will be publicly available.

C.1 Data Poisoning Attack

This part provides more experimental details for solving the data poisoning attack problem. All the
experiments were performed on Intel Core i5-11260H 2.6GHz CPU and 16GB RAM platform.

As is well known, when training deep neural networks, attention must be paid to adversarial examples
that may lead to the misclassification of deep models. But the black-box model architecture is un-
known to the adversary, it is necessary and key to solve Problems (5) with only the (more often noisy)
evaluations of the objective functional values. About the model (5), we set Dtr ≜ Dtr,p∪Dtr,c denotes
the training dataset including n samples, Dtr,p and Dtr,c denote the poisoned and clean subsets of
Dtr, respectively. We choose the loss function as Ftr(δ, w;Dtr) := L(δ, w;Dtr,p) + L(0, w;Dtr,c),
where L(δ, w;D) = − 1

|D|
∑

(si,ti)∈Dp
[ti log(L(δ, w; si)) + (1 − ti) log(1 − L(δ, w; si))], and

L(δ, w; si) = 1

1+e−(si+δ)⊤w
. In the data poisoning attack problem, the lower accuracy of the attacked

model means the more effective the attack method.

Hyperparameter selection. For solving the NC-C problem (5), we choose the batch size guided
by theory and considering the trade-off between time consumption and accuracy, while observing
reasonably good performance. We set mini-batch size b1 = b2 = 100 for the synthetic dataset
and b1 = b2 = 10 for the epsilon_test dataset and train all the methods for T = 50, 000
iterations. Besides, we also choose the same step sizes ηx = 0.02, ηy = 0.05 for all the cases in
the main paper. Note that ZO-AGP [51] requires that the step size of variable x is monotonically
decreasing. Thus, we set its step sizes to be ηtx = 2

100+
√
t
, ηy = 0.05 for a fair comparison. By the

way, to test the accuracy of the zeroth-order gradient estimators, we set different numbers of random
direction vectors q1 = q2 = {5, 20} denoted by q to train all the methods. We set the poisoning
ratio |Dtr,p|/|Dtr| = 0.1, smoothing parameters µ1 = µ2 = 2× 10−5 and the range of perturbation
rx = 2 as default values in the data poisoning attack experiments. The above hyperparameters are
the same in other experiments unless explicitly stated. After training to get poisoned data, we retrain
the logistic regression model 1000 times each using clean data and adversarial examples generated at
each iteration.

C.1.1 Data Poisoning Attack for the NC-C Problem (5) on More Real-World Datasets

This part provides more experimental results for solving the NC-C problem (5) on the w8a, a9a and
HIGGS datasets4 as shown in Figs. C.4-C.6. Note that the lower the accuracy is, the stronger the
generated attack is, which means better performance.

• The w8a dataset: It contains 49,749 samples of 300 dimensions and we split it into 70% training
samples and 30% test samples. We set the batch size to 10.

• The a9a dataset: It contains 32,561 samples of 123 dimensions and we split it into 70% training
samples and 30% test samples. We set the batch size to 10.

4https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
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• The HIGGS dataset: It contains 11,000,000 samples of 28 dimensions and we split it into 70%
training samples and 30% test samples. We set the batch size to 512.
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Figure C.4: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
w8a dataset.
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Figure C.5: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
a9a dataset.
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Figure C.6: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
HIGGS dataset.
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Figure C.7: Comparison of the experimental results for solving the data poisoning attack problem (5) on the
bio_train dataset.

From Figs. C.4 -C.6, it can be seen that our ZO-GDEGA algorithm still performs better than baselines
in reducing classification accuracy. This part also provides experimental results for solving the NC-C
problem (5) on an unbalanced dataset, bio_train5, where the proportion of positive samples is
only 0.89%. The hyperparameter choices are the same as the experiments on the epsilon_test
dataset. Experimental results are shown in Fig. C.7. It can be seen that our ZO-GDEGA algorithm
performs better and the ZO-AGP algorithm even diverges.

5https://osmot.cs.cornell.edu/kddcup/datasets.html

41



C.1.2 Robustness Study for the NC-C Data Poisoning Attack Problem (5)

To verify the robustness of our ZO-GDEGA for solving NC-C problems, we conduct the data
poisoning attack experiment under different smoothing parameters µ1 and µ2. We choose the same
hyperparameters as in “Hyperparameter selection” above. The experimental results are shown in
Fig. C.8. Note that the lower the accuracy is, the stronger the generated attack is, which means
better performance. It can be found that the attack performance of our ZO-GDEGA algorithm
performs always better than the ZO-AGP algorithm under different smoothing parameters µ1 and µ2.
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Figure C.8: The performance of ZO-GDEGA and ZO-AGP for solving NC-C Problem (5) with q1 = q2 = 5
and different µ1 and µ2 on the synthetic dataset, where µ1 = µ2. We can observe that our ZO-GDEGA
algorithm is more robust compared with the baseline method, which is reflected in two aspects. On the one hand,
under different smoothing parameter settings, the testing accuracies of the models attacked by our ZO-GDEGA
have almost the same and small standard deviation. Whereas the model attacked by the poisoned data generated
by ZO-AGP produces a different performance, i.e., the standard deviation of its test accuracy varies dramatically
with the smoothing parameter. On the other hand, under large smoothing parameter settings (e.g., µ1 = µ2 = 1),
our ZO-GDEGA can still reduce the testing classification accuracy more effectively than ZO-AGP.

C.1.3 Data Poisoning Attack against Sparse Logistic Regression

Sparse models are playing an increasingly important role in the fields such as machine learning
and image processing. They have variable selection capabilities and can solve problems such as
overfitting in modeling. In order to verify the universality of our ZO-GDEGA, we also conducted
black-box attacks on sparse logistic regression models. The minimax formulation of this problem can
be expressed as:

max
∥δ∥∞≤rx

min
w
Ftr(δ, w;Dtr) + λ∥w∥1. (C.134)

We test our ZO-GDEGA and ZO-AGP for solving Problem (C.134) on the synthetic dataset. We
also choose the same hyperparameters as in “Hyperparameter selection” above and the experimental
results are shown in Fig. C.9. Note that the lower the accuracy is, the stronger the generated
attack is, which means better performance. It can be seen that our ZO-GDEGA still performs
better than ZO-AGP in reducing accuracy.
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Figure C.9: The performance of all algorithms for solving sparse NC-C Problem (C.134) with ηx = 0.02,
ηy = 0.05, µ1 = µ2 = 2× 10−5, and λ = 10−3 on the synthetic dataset.

C.1.4 Data Poisoning Attack for NC-SC Problems

We also consider the following model (C.135) for data poisoning attack problems. Note that Problem
(C.135) can be also rewritten as the form (1) by setting g(·) = I∥δ∥∞≤ϵ(·), h(·) ≡ 0, f = −f2, and
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thus Problem (C.135) becomes a NC-SC problem.

max
∥δ∥∞≤rx

min
w
f2(δ, w) := Ftr(δ, w;Dtr) + λ∥w∥2. (C.135)

For solving Problem (C.135), we perform our ZO-GDEGA algorithm on the synthetic dataset.
The baseline methods for Problem (C.135) are ZO-SGDA [47], ZO-Min-Max [33] and Acc-
ZOMDA [19]. For NC-SC problems, we also set mini-batch size b1 = b2 = 100 for ZO-Min-Max,
ZO-SGDA, Acc-ZOMDA, and our ZO-GDEGA and train all the methods for T = 50, 000 iterations.
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(a) NC-SC, λ = 1× 10−5
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(b) NC-SC, λ = 1× 10−3
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(c) NC-SC, λ = 1× 10−1

Figure C.10: The performance of single-loop algorithms for solving NC-SC problems with different λ when
ηx = 0.02, ηy = 0.05, µ1 = µ2 = 2× 10−5 and q1 = q2 = 20 on the synthetic dataset, we can find that
our ZO-GDEGA algorithm is competitive with the baseline methods under different λ settings.

• Hyperparameter λ: To verify the performance of our ZO-GDEGA under different hyperparameter
λ, we plot Fig. C.10. Note that the lower the accuracy is, the stronger the generated attack
is, which means better performance. Fig. C.10 shows that the weaker the strong convexity (i.e.,
λ = 1× 10−5), the better our ZO-GDEGA algorithm performs; on the contrary, our ZO-GDEGA
performs competitively to the state-of-the-art zeroth-order stochastic algorithms.

C.2 AUC Maximization

This part provides more experimental details and results for solving AUC maximization problems. All
the experiments were performed on the GeForce RTX 2080Ti platform with the PyTorch framework.

For a more detailed explanation, we restate the AUC maximization problem

min
∥θ∥,∥a∥,∥b∥≤rx,

max
v≤ry

Es∼P[f(θ, a, b, v; s)], (C.136)

where rx and ry are the radii of the projection balls, s = (s, t) is drawn independently from the
distribution P, and f(θ, a, b, v; s) = (1 − p)(h(θ; s) − a)2I[t=1] + p(h(θ; s) − b)2I[t=−1] + 2(1 +

v)(ph(θ; s)I[y=−1] − (1 − p)h(θ; s)I[y=1]) − p(1 − p)v2, p = Et[It=1], where I(·) is an indicator
function. When h is a multilayer perception (MLP), Problem (6) becomes a NC-SC problem.

Hyperparameter selection. We choose the hyperparameters according to theoretical guidance and
considering the balance between time consumption and accuracy while observing reasonably good
performance. We train our ZO-GDEGA and baseline methods with mini-batch size b1 = b2 = 256
on the MNIST, Fashion-MNIST and ijcnn1 datasets for 200 epochs. We set ηx = ηy = 0.1
and q1 = q2 = 10 for all the methods. The testing accuracy versus the number of epochs on the
Fashion-MNIST dataset is detailed shown in Fig. C.11.

We also compare our ZO-GDEGA and state-of-the-art methods as shown in Table C.3. From
Table C.3, at small smoothing parameter µ1, µ2 ≤ 0.01, the Acc-ZOMDA [19] algorithm with
lower complexity show clear advantages, but at large smoothing parameters µ1, µ2 ≥ 0.05, our ZO-
GDEGA algorithm performs better than other methods, which verifies that our ZO-GDEGA algorithm
can tolerate rougher gradient estimations and provides promising insights into the robustness of
zeroth-order minimax optimization.

C.3 Robust Neural Network Training

To verify that our ZO-GDEGA algorithm can solve extensive applications, we conduct robust
network training experiments. The purpose of robust network training is against adversarial attacks.
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(a) µ1 = µ2 = 0.001
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(b) µ1 = µ2 = 0.01
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(c) µ1 = µ2 = 0.05

Figure C.11: The testing accuracy vs the number of epochs of ZO-SGDA, ZO-Min-Max, and our ZO-GDEGA
algorithms for solving the NC-SC problem (6) with different µ1 and µ2 on the Fashion-MNIST dataset. We
can observe that our ZO-GDEGA algorithm is more robust in smoothing parameters µ1 and µ2 compared with
the baseline methods.

Table C.3: The average AUC performance with different µ1 and µ2 on the MNIST, Fashion-MNIST, and
ijcnn1 datasets.

Datasets MNIST Fashion-MNIST ijcnn1
µ1(µ2) 0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1 0.001 0.01 0.05 0.1

ZO-SGDA 91.67 91.81 88.12 82.32 91.62 90.19 87.27 80.62 78.65 79.02 74.33 69.56
ZO-Min-Max 92.25 92.01 88.56 83.12 90.80 91.58 83.23 78.38 79.56 80.31 76.66 72.23
Acc-ZOMDA 92.45 92.58 89.35 89.48 92.97 91.65 87.75 87.65 82.42 82.45 80.35 76.56
ZO-GDEGA 91.60 92.60 89.70 89.76 91.97 92.23 88.66 88.01 81.01 82.30 80.99 78.01

Although neural networks are widely used for image classification, they are vulnerable to adversarial
attacks such as FGSM [16]. For example, a small perturbation can greatly destroy classification
performance. Thus, robust network training has been paid more attention by researchers. The
optimization formulation of robust networks is

min
w

N∑
i=1

max
δi,s.t. |δi|∞≤ϵ

ℓ(f3(xi + δi;w), yi), (C.137)

where w is the parameter of the neural network, the pair (xi, yi) denotes the i-th data point, δi is
the perturbation added to data point i. Referring to [57], we give the following nonconvex-concave
minimax problem to reformulate the robust training process.

min
w

N∑
i=1

max
t∈T

{ 9∑
j=0

tjℓ(f3(x
K
i,j ;w), yi) + λ∥w∥1

}
, s.t. T = {(t1, · · · , t9)|

9∑
j=0

tj = 1, tj ≥ 0},

(C.138)
where λ > 0, xKi,j is an approximated attack on sample xi by changing the output of the network
to label j. We use the same convolutional neural network as in [57]. In our ZO-GDEGA, we set
µ1 = µ2 = 0.0001 and q1 = q2 = 5. we apply our ZO-GDEGA algorithm to train a robust
neural network on the MNIST dataset against the adversarial attack, FGSM. The experiments in
this part were performed on the GeForce RTX 2080Ti platform with the PyTorch framework. The
experimental results are shown in Table C.4. Note that the ZO-AGP algorithm can not solve this
problem. Although an excellent robust neural network has not been achieved by our ZO-GDEGA
algorithm, our ZO-GDEGA algorithm opens the way for ZO algorithms to solve this application.
Performance improvement is our future research direction.

Table C.4: Test accuracies under FGSM attack.
FGSM

ϵ = 0.02 ϵ = 0.03 ϵ = 0.05

ZO-GDEGA 79.67% 78.81% 76.22%
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