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ABSTRACT

Logical reasoning is a crucial task for Large Language Models (LLMs), enabling
them to tackle complex problems. Among reasoning tasks, multi-step reasoning
poses a particular challenge. Grounded in the theory of formal logic, we have
developed an automated method, Multi-step Deduction (MuseD), for deductive
reasoning data. MuseD has allowed us to create training and testing datasets for
multi-step reasoning. Our generation method enables control over the complex-
ity of the generated instructions, facilitating training and evaluation of models
across different difficulty levels. Through RLHF training, our training data has
demonstrated significant improvements in logical capabilities for both in-domain
of out-of-domain reasoning tasks. Additionally, we have conducted tests to assess
the multi-step reasoning abilities of various models.

1 INTRODUCTION

Recent advancements in large language models (LLMs) (Ouyang et al., 2022; Bai et al., 2022) have
yielded remarkable outcomes. Among the various capabilities of LLMs, reasoning stands out as
one of crucial skills, serving as a foundational ability required for solving complex tasks. Numerous
efforts (Sun et al., 2023) have been made to explore and enhance the reasoning capabilities of LLMs.

In this work, we focus on multi-step deductive reasoning tasks (Sun et al., 2023) within the realm of
reasoning. Many previous works (Han et al., 2024; Saparov & He, 2023; Saparov et al., 2024) have
been done of deductive reasoning data generation. However, most works concentrate on supervised
fine-tuning (Sanh et al., 2022) or evaluation. Our work mainly concentrates on generation data for
Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al., 2022). Deductive reasoning
tasks concentrate on deriving correct conclusions from given premises through rigorous and effective
reasoning. Our attention is directed towards constructing high-quality data to improve the deductive
reasoning abilities of models during the alignment phase. The inherent rigor of deductive reasoning
tasks dictates that the corresponding prompts should not contain contradictory information or be
incapable of leading to the correct answer. This presents our first challenge: how to obtain prompts
with correct answers and no contradictions. Based on the proper conditions in prompts, we expect
LLMs to employ multi-step reasoning to deduce the correct answer. Assessing the correctness of
such a multi-step reasoning process constitutes our second issue, since we need accurate scores of
responses to construct training data. Lastly, how to efficiently acquire a substantial amount of data
for training is the third problem we need to consider.

To address these issues, we propose a generation scheme for multi-step deductive reasoning data,
named Multi-step Deduction (MuseD). MuseD is a scalable approach from prompt creation to fi-
nal evaluation. To sum up, we base our method MuseD on the syllogistic reasoning of deductive
inference (Copi et al., 2016), employing a backward generation approach to obtain the conditions
required for the prompt. This ensures that the conditions in the prompt can lead to the correct con-
clusion without any contradictory conditions. Moreover, by controlling the number of generated
conditions, we can regulate the number of inference steps required for the prompt. Based on the
prompts generated by this method, we can score the responses of LLMs step by step. That is, we
provide an evaluation method that can assess whether an answer was correctly obtained through
multi-step reasoning rather than merely being the correct answer. The data generation process is
shown in Fig. 1.
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Using MuseD, we synthesize partially ordered data for multi-step deductive reasoning and use this
data for Reinforcement Learning from Human Feedback (RLHF) training. We achieve significant
performance enhancements on both in-domain and out-of-domain reasoning datasets, validating the
effectiveness of our synthesized data. Further experiments demonstrate that step scoring is crucial
for improving the model’s performance in RLHF and that positive rewards for correct answers are
the primary motivator for model learning.

Additionally, we utilize our method to create a multi-step deductive reasoning evaluation set, also
named MuseD. Compared to previous evaluation sets, it can provide insights into the model’s per-
formance changes under tasks with different numbers of reasoning steps and offer more granular
process evaluations. In summary, our main contributions include: (1) proposing a data synthesis
method MuseD based on multi-step deductive reasoning, (2) achieving improvements in deductive
reasoning performance on RLHF with this method, and (3) presenting a multi-step deductive rea-
soning evaluation set that allows for multi-dimensional automatic scoring.

We will briefly introduce the logical concepts involved in our method in Sec. 3 and describe our data
generation approach in Sec. 4. In Sec. 5, we will present the experimental results, and in Sec. 6, we
will show the performances of some LLMs on our evaluation set.

Figure 1: The logic training data pipline.

2 RELATED WORK

Many recent works concentrate on the reasoning ability of LLM. Sun et al. (2023) give a survey
on LLM reasoning, where different kinds of reasoning are considered. Traditionally, reasoning are
divided into deductive reasoning (Saparov & He, 2023), inductive reasoning (Wang et al.) and
abductive reasoning (Bhagavatula et al.).

Our work concentrates on deductive reasoning, where valid reasoning process are focused. Many
efforts have been done on this tasks to provide high-quality datasets. Tafjord et al. (2021) give a
pipline to generate a synthetic data based on rules. Liu et al. (2021) extend human logical testing
to LLM dataset. Han et al. (2024) concentrate on natural logical data that are created by experts.
Saparov & He (2023) and Saparov et al. (2024) use deduction rules to generate synthetic data and
provide datasets. Our work takes inspirations from all these previous works and we combine syllo-
gism rules to develop synthetic data. Specially, we provide not only a dataset, but also a pipline that
can give scores on LLM responses. Therefore, our method is suitable for on-policy training such as
reward model and PPO training.

There are also many works that improve reasoning ability from algorithmic aspect. Wei et al. (2022)
use Chain-of-Thought (CoT) method to improve reasoning ability, while Wang & Zhou (2024) try
some decoding method. Havrilla et al. and Pang et al. (2024) explore improving reasoning ability
of LLM through RLHF and iterative DPO respectively. Kumar et al. (2024) attempt to incentive
the self-correction ability of LLM. Our method mainly concentrates on RLHF method with our

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

generated dataset. We show that data generation process has large performance effect on RLHF
method.

3 PRELIMINARY

3.1 PROPOSITION

The proposition provides an object that we can judge to be true or false. Logical reasoning focuses
on the process of deriving a conclusion from one or more premises. These premises and conclusions
often appear in the form of propositions. In natural language, the expression of a proposition may be
complex and diverse and it is hard to deal with such flexible data. In this article, we mainly focus on
the syllogistic deduction in formal logic, which has relatively simple structure. Therefore, we mainly
pay attention to the categorical propositions that judge the relationship between the subject and
predicate. In categorical propositions, we judge the relationship between members of one category
(the subject of the proposition) and another category (the object of the proposition). Aristotle has
established four standard forms of categorical propositions, which we generally write as A, E, I,
O (Aristotle, 350 BCE; Copi et al., 2016). Below we use S as the subject and P as the predicate, and
we give the formats of the four forms of propositions: (1) form A: All S are P; (2) form E: No S are
P; (3) Form I: There is one S that is P; (4) form O: There is one S that is not P.

The four propositional structures presented here provide fundamental statements for judging the
relationship between two entity categories. Such structures are independent of the actual semantics
of the entities, allowing us to focus more easily on the formal relationships. For large-scale model
data production, based on such formal structures, we can effectively carry out data production.

3.2 SYLLOGISM

Herein, we provide a succinct introduction to the categorical syllogism in formal logic (Copi et al.,
2016). The data generation process in our subsequent work is predicated on these effective deductive
reasoning rules.

The categorical syllogism is an ancient method of logical argumentation that employs deductive rea-
soning to study the inferential process of deriving a conclusion from two premises. In the syllogism,
we refer to the subject of the conclusion as the minor term, and the predicate as the major term.
The two premises of the syllogism each contain the major and minor terms, along with a term that
connects the two premises, which we call the middle term. The premise containing the major term
is referred to as the major premise, while the premise containing the minor term is called the minor
premise. For instance, we may cite a classic example of a syllogism:

“All men are mortal. Socrates is a man. Therefore, Socrates is mortal.”

In this example, the major term is ’mortal’, the minor term is ’Socrates’, and the middle term is
’men’. Hence, ”All men are mortal” is the major premise, and ”Socrates is a man” is the minor
premise.

The inference process of a categorical syllogism involves establishing a relationship between the
major and minor terms using the middle term. In a valid categorical syllogism, if both the major and
minor premises are true, then the conclusion must be true. Formal logic has provided several valid
syllogistic forms. In our work, we utilize the 15 valid syllogistic forms1 found in modern formal
logic (Copi et al., 2016) to generate our logical data.

4 MUSED METHOD

Given our knowledge of valid syllogistic forms, we can in turn generate two premises from a con-
clusion by introducing a middle term. Conversely, in the actual deductive process, the relationship
between the major and minor terms is established by eliminating the middle term. Therefore we can

1These valid syllogistic forms can be found in the table of all syllogisms in the wiki website:
https://en.wikipedia.org/wiki/Syllogism. We only use results in solid line boxes.
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generate prompts in different complexity using the premises generation method. Moreover, we can
score the responses based on the rules of deductive reasoning, thereby obtaining densely rewarded
data. Additionally, our dataset can also serve as an evaluation set, allowing for the assessment of a
model’s deductive reasoning capabilities at various levels of complexity.

In the following, we will introduce the entire data generation process in four parts: prompt genera-
tion, response generation, response scoring and preference-pair composition.

4.1 PROMPT GENERATION

The prompt for logical problems should be rigorous and reasonable. We need to ensure that the
prompts we generate can lead to correct conclusions through multi-step reasoning. Therefore, we
must guarantee correctness during the prompt generation process. Our approach to constructing
prompts is backward-generated, starting from the conclusion to be proven and progressively in-
creasing the complexity of the prompt based on valid formal rules of inference.

Our generation process consists of three steps. The first step is to create a deductive reasoning logic
tree where each node on this tree is a proposition. The root node is the conclusion and the leaf nodes
are the conditions in prompts. The generated tree only gives a logical structure where all terms are
not filled. In the second step, we fill in the content for the missing entities in this tree. Finally, we
combine conditions and conclusions to get prompts.

Specifically, we initially employ the syllogistic method of formal logic to generate a multi-step logic
tree from the ultimate target conclusion. At the beginning of the tree generation process, we create a
root node, which takes the form of one of the four propositions randomly sampled from the previous
context. This root node is the final conclusion of this prompt. Throughout the process, we maintain
a set of leaf nodes, which initially contains only the root node. As we progress, we iteratively pop a
node from the set of leaf nodes, use it as a conclusion, sample a valid categorical syllogism pattern,
and transform this conclusion node into two premise propositions by introducing a middle term.
These two premise propositions are then added to the set of leaf nodes. Each such sampling process
increases the number of leaf nodes by 1 and also necessitates an additional step in the multi-step
reasoning from the leaf nodes back to the root node. Thus, by setting the number of times we
expand the leaf nodes, we can control the complexity of the generated prompt. When we ultimately
have N + 1 leaf nodes, we turn them to N + 1 propositions to construct the prompt. From these
propositions, the final conclusion can be inferred through N steps of reasoning. Note that during the
generation process, we use placeholders rather than specific entities as terms to generate a logical
framework.

Based on the aforementioned logical conditions, we can also randomly introduce some interfering
conditions. We introduce extra conditions that are related to the existing terms but do not conflict
with current propositions, serving as noisy conditions in the reasoning process.

After establishing the logical trees, we then filling placeholders with entities. The most straight-
forward yet challenging approach is to populate it with noun concepts that conform to the logical
conditions. However, this method can easily lead models to take shortcuts (Zhang et al., 2023;
Saparov & He, 2023) in concluding judgments rather than genuinely engaging in logical reasoning.
For instance, given the premises that cats are mammals and mammals are animals, the model can
easily arrive at this conclusion that cats are animals with common sense judgment rather than using
deductive reasoning. This is what we aim to avoid.

In our work, we focus on the formal structure of logical reasoning itself. Therefore, we have chosen
two forms of virtual entities: Greek letter names and virtual nouns. Greek letter names are directly
sampled, such as “ALPHA” or “BETA”, to substitute for entities. Virtual nouns consist of 4-14
English letters and are added to our virtual noun database after confirming they are not actual words.
We then sample the required quantity from this database to fill the prompts.

Finally, we transform the conditions and conclusion with added entities into a prompt. For the
conditions, we concatenate them directly as the given premises. Regarding the conclusion, we have
two questioning formats: proof and judgment. For proof questions, we directly ask the model
to prove the conclusion. For judgment questions, we reverse the conclusion to its negation with a
probability of 0.5 and ask the model to judge whether the given proposition is correct. The templates
for proof and judgement are given in Appendix F.
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4.2 RESPONSE GENERATION

Based on the generated prompts, we can directly access the model to obtain responses. We refer to
this method as “natural” response generation. This approach yields the model’s reasoning process
expressed in natural language; however, such responses are not easily evaluated. We also incorpo-
rate instructions to generate responses in a specified JSON format within the prompt, allowing for
structured answers that can be conveniently scored. We term this approach as “formatted” response
generation.

The natural method applies solely to the prompt itself, without additional requirements for the format
and style of the response. We believe this is more consistent with the model’s output during user
interaction and aligns with the distribution of natural language. However, such natural language is
relatively challenging to handle during scoring, necessitating additional operations in the evaluation
phase to achieve better scoring outcomes.

The formatted generation method, on the other hand, introduces a fixed format for responses, re-
sulting in outputs that are easier to score. Nevertheless, the significant difference between such
structured expressions and natural language may impact the learning process during model align-
ment. The added format is provided in a few-shot manner, with details outlined in Appendix G.

We sample responses to the generated prompts using both methods. In our experiments, we utilize
the Llama3 8b model and evaluate the model’s responses under these two approaches.

4.3 RESPONSE EVALUATION

The construction of formal logic problems are generated from the root node to the leaf node with
the syllogism approach. Consequently, the procedure of proof or judgement constitutes the process
of initiating from the leaf nodse and to arrive at the proposition of the root node.

We assess the responses of Large Language Models (LLM) on formal logic reasoning problems in
multiple aspects:

• Step score: Calculate the how much correct step the response reaches. We mainly calculate this
score by counting the eliminated middle terms, details given in Sec. 4.3.1.

• Result score: Evaluate whether the response reaches the correct conclusion. A score of 0/1 is
assigned. For proof-type questions, if the proposition to be proved emerges in the reasoning
process, a score of 1 point is awarded. For judgment-type questions, the score is directly allocated
based on the correctness of the judgment.

• Intent score: Evaluate whether the generated formatted response is valid JSON string. If valid, a
score of 1 is given; otherwise, a score of 0 is assigned.

• Wrong step: Count the number of wrong reason steps. The scores equals the number of wrong
steps in the propositions within the responses.

• Noise step: There might be propositions in the responses that we cannot check its correctness or
irrelevant to the reasoning process. We count the numbers of these steps as the noise step score.

• Extra step: For correct steps in the responses, we count the number of repeated steps.

Step score, Result score, and Intent score are positive indicators. The higher the value, the better the
effect of the LLM. Wrong step score, Noise step score, and Extra step score are negative indicators.
The lower the value, the better the effect of the model.

4.3.1 STEP SCORE CALCULATION

For multi-step reasoning processes, we aim to obtain accurate process scores to evaluate the quality
of different answers. It should be noted that the reason process from premises to the final conclusion
is not unique. For example, consider conditions: (1) A is B, (2) B is C, and (3) C is D, and we want
to conclude that (6) A is D. Using syllogistic reasoning, we can first derive (4) A is C from (1) and
(2), and then combine condition (3) to reach (6). Alternatively, we can derive (5) B is D from (2)
and (3), and then combine condition (1) to reach the conclusion (6). Both methods are correct and
should receive equally high step scores.
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Recall that the process of expanding logic tree is to add middle terms to get conditions. Hence
reasoning process towards the final conclusion is essentially the process of eliminating these middle
terms. In the above example, there are two paths to conduct inference. The first path eliminating B
first and then C, while the second path eliminating C first and then B.

Based on observation above, we can enumerate valid middle terms in the logical tree, i.e. term B and
C in the above example. We can check the reasoning process of each response and count the number
of middle terms that are eliminated. Repeated elimination would not be counted. We calculate the
rate of the eliminated middle terms and the number of all middle terms to get the step score.

4.4 PREFERENCE-PAIR COMPOSITION

We need to construct preference data to train the reward model (RM), based on the scored data
above. Different from Outcome Reward Model (ORM) (Lightman et al.), we have multiple scoring
dimensions to construct pairs. Therefore our RM can learn to provide dense reward signals to
help PPO training. On the other hand, we don’t train RM in the Process Reward Model (PRM)
pattern Lightman et al.; Wang et al. (2023), where rewards are assigned to each step, thus we can
train RM with other datasets to ensure the general ability of RM.

Since each data point has multiple scoring dimensions, we can construct dataset with different com-
position methods, ultimately affecting the learning outcome of the model. Here, we experiment with
three methods for generating data pairs:

• P: uses only positive scores (i.e., the step score and the result score) to construct pairs. For each
pair, the chosen response must have a higher step score than the rejected one, while the result
score of the chosen cannot be lower than that of the rejected one.

• PN: uses both positive and negative scores to construct pairs. We use all the scores above. For
wrong, noise and extra scores, we use the opposite number to turn the negative signal into positive.
For each pair, each score of the chosen response cannot be lower that that of the rejected one and
the chosen should has at least one score that is higher.

• R: uses only result score as the pair standard. That is, the chosen response should has result score
1 while the rejected one has result score 0.

One important concern is that whether negative signals should be used. Intuitively, since it should
be easier not to do wrong than to do right, negative signals may be easier to learn than positive ones.
We compare method P and PN to see whether the choice of signals matters much. We also conduct
method R to show the importance of step scores, since R only provides sparse final result signal, as
usually used on ORM training.

5 EXPERIMENTS

5.1 EVALUATION SETS

We use three kinds of evaluation sets to test the performance of models. The in-domain set MuseD
is generated and evaluated by our proposed method. The out-of-domain sets are open source logical
sets to show whether our model indeed improve its deductive logical ability on prompts out of
distribution. We finally choose some general open source datasets to test whether the general abilities
are influenced. We set the sampling temperature to be 0.3 for MuseD, 0.001 for out-of-domain
datasets.

• In-domain set: MuseD dataset with 2000 prompts, which is introduced in Sec. 6.
• Out-of-domain sets: For the open source logical verification set, we choose PrOntoQA (Saparov

& He, 2023), ProofWriter (Tafjord et al., 2021), LogicalDeduction (Pan et al., 2023), FO-
LIO (Han et al., 2024), AR-LSAT (Zhong et al., 2021). We use the CoT (Chain of Thought) (Wei
et al., 2022) method, and CoT prompt of each dataset from (Xu et al., 2024). The evaluation
metric is accuracy, which measures the correctness of multiple-choice questions.

• General ability sets We follow the default implementation setting of LM Eval Harness (Gao et al.,
2024) and set the temperature hyperparameter as 0. For general ability evaluation, we select the
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task evaluation in Sec. D and follow the default implementation setting of LM Eval Harness with
temperature hyperparameter as 0 and report 0-shot accuracy.

5.2 REWARD MODEL

The reward models (RM) are trained following the standard process of InstructGPT (Ouyang et al.,
2022). We choose the Llama3 (Dubey et al., 2024) 8B pretrain model as our base model. If not
specified, we keep the hyper-parameters of RMs fixed. More specifically, we set the batchsize to be
384 and the maximum learning rate to be 5e-6.

We train RMs with different preference datasets. We mainly to evaluate the performance of our
constructed logic dataset. We choose UltraFeedback (UF) (Cui et al., 2023) as our base dataset to
avoid ability decline in other fields, we use the fine-grained scores to get around UF 27w pairs. For
our logic dataset, we compare the performances of the natural and formatted response generation
methods. We also test the P, PN and R pair construction methods. All our RMs are listed below. For
convenience, we use Na to denote natural responses and Fo to denote formatted responses.

• RM-UF: uses only 27w UF data.

• RM-Na-P: uses 15k natural P-pair logic data. UF data is used.

• RM-Fo-P: uses 15k formatted P-pair logic data. UF data is used.

• RM-Mix-P: uses 16k logic data, half from the logic data in RM-Na-P and half from the data in
RM-Fo-P. UF data is used.

• RM-Na-PN: uses 11k natural PN-pair logic data. UF data is used.

• RM-Na-R: uses 8k natural R-pair logic data. UF data is used.

• RM-NaO-P: uses only 15k natural P-pair logic data. We turn the batchsize of this RM to be 96 to
get more steps.

Notice that we use the same natural responses to construct P, PN and R pairs and different rules
result in different size of dataset. For Fo-P data, we downsample them to the same size of Na-P data.
We put the validation accuracy and RewardBench (Lambert et al., 2024) scores of these RMs in the
Appendix C. Roughly speaking, each RM gains high validation accuracy on its trained datasets, and
the reasoning scores in RewardBench are not directly consistent with our experimental results in
Sec. 5, possibly due to the distribution mismatch.

5.3 PPO TRAINING

5.3.1 SETTINGS

We train PPO models using above RMs. The base model for PPO training is Llama3 8B Instruct
model. The prompts used for training are the same prompts used for the corresponding RM. That is,
the prompts used for one RM would be used for the PPO model that uses this RM. The hyperparam-
eters for training PPO are fixed for all experiments. The experience batch size is 160 and the micro
batch size is 20. The sampling temperature for training is 1.0. We train for only one epoch. For
convenience, we denote each PPO model with its corresponding RM as its subscript. We remove
the RM− in the subscript for briefly. That is, we use PPOA to denote the PPO trained with RM-A.

Further, we compare the performance difference if we change the training prompts of PPO. We
choose RM-Na-P as our baseline RM and use PPONa−P as our baseline PPO model. We test the
impact of using extra in-domain prompts. For PPONa−P, we use 6587 prompts trained for RM-Na-
P. Then construct more prompts with our pipline MuseD to increase the logical prompts to reach
20000. We combine all these prompts with UF prompts to train one epoch over PPO training, and
we get PPONa−P−All. We also sample 6587 prompts from the 20000 prompts to train PPO and we
get PPONa−P−Replace. Finally, we test the effect of curriculum learning during PPO training. That
is, we sort the logical prompts used in PPONa−P with their levels. We train them from easy to hard
and we get PPONa−P−Cur.
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5.3.2 PERFORMANCES

We compare the performances of all PPO models on the three kinds of evaluation sets mentioned
in Sec. 5.1. The performances of all models on our MuseD dataset, i.e. the in-domain dataset, are
shown in Table 1. Table 2 gives comparison of models on the out-of-domain datasets. The results
for general ability of models are shown in Appendix A. Compared with PPOUF, the involvement
of our data do not seem to cause degradation on other abilities.

Comparing to PPONa−P, we can see that PPONaO−P shows bad performance on all scores, indi-
cating the necessity of using a general dataset. Compared to Llama3 8B Instruct, the UF dataset only
don’t increase the step and result scores much, while on out-of-domain datasets, PPOUF has a ob-
vious improvement. We check the cases and find that the bad performance on instruction following
leads to the low scores of Llama3 instruct model. It can be seen from the results on AR-LSAT, which
is a 5-choice dataset. A random strategy would leads to a score around 0.2 while Llama3-8b-Instruct
gets a score near 0.

To show the effect of training with our dataset, we compare PPOUF and PPONa−P. The logical
data yields a significant gain in logical effects. Compared to PPOUF, PPONa−P increases the step
and result scores of MuseD both by 12 percentage points, and reduces the average wrong step signif-
icantly. The noise step and extra step indicators are basically the same. More results on level-wise
comparison are given in Appendix B. On the public evaluation datasets, there is significant growth
on ProntoQA, ProofWriter, and LogicalDeduction. Specifically, there are 14-16% improvements on
ProntoQA and LogicalDeduction, which have quite similar deductive tasks as MuseD dataset. There
is a slightly decrease on AR-LAST, a five-choice task dataset (refer to Appendix E.1). Although both
PPO models get a reward similar to a random strategy, PPONa−P sometimes refused to pick any
answer when it thinks all options are wrong.

Model step score result score intent score wrong step count noise step count extra step count
Llama3-8B-Instruct 0.3485 0.5715 0.9495 1.685 0.7815 0.054
PPOUF 0.3135 0.5725 0.9905 1.252 0.438 0.0305

PPONa−P 0.4383 0.6975 0.9925 0.85 0.3865 0.036
PPONaO−P 0.4117 0.4920 0.8695 2.3715 1.0515 0.5585
PPONa−P−All 0.4993 0.7585 0.9905 0.6645 0.3595 0.0805
PPONa−P−Replace 0.431 0.676 0.985 0.842 0.425 0.05
PPONa−P−Cur 0.4591 0.6855 0.991 0.9515 0.455 0.0655

PPONa−R 0.3472 0.6605 0.9975 0.8115 0.257 0.018
PPONa−PN 0.3649 0.6675 0.99 0.672 0.2155 0.0125
PPOFo−P 0.3744 0.6205 0.9725 1.0945 0.367 0.053
PPOMix−P 0.4455 0.693 0.993 1.135 0.5615 0.0645

Table 1: Performances of Lamma3 8B models trained with different RMs on MuseD dataset.

Model ProntoQA ProofWriter LogicalDeduction FOLIO AR-LSAT Average
Llama3-8B-Instruct 0.616 0.1367 0.0567 0.1813 0.0043 0.199
PPOUF 0.728 0.37 0.3267 0.4118 0.2165 0.411

PPONa−P 0.868 0.4567 0.4833 0.451 0.1948 0.4908
PPONaO−P 0.352 0.2467 0.0967 0.2451 0.0519 0.1985
PPONa−P−All 0.672 0.4517 0.32 0.4804 0.1905 0.4229
PPONa−P−Replace 0.818 0.4967 0.3933 0.4803 0.2035 0.4784
PPONa−P−Cur 0.762 0.4717 0.4066 0.4706 0.1861 0.4594

PPONa−R 0.798 0.4017 0.3867 0.4069 0.2294 0.4445
PPONa−PN 0.816 0.445 0.2667 0.402 0.1948 0.4249

PPOFo−P 0.804 0.4033 0.44 0.4461 0.1905 0.4568
PPOMix−P 0.806 0.4367 0.43 0.4265 0.1991 0.4597

Table 2: Performances of Lamma3 8B models trained with different RMs on out-domain logical
evaluation sets.
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5.3.3 PREFERENCE PAIR COMPOSITION

We compare the performance of models trained with PPO across different preference pair gener-
ation methods which are presented in Section 4.4. We compare the performances of PPONa−P,
PPONa−PN and PPONa−R.

Process signals can significantly improve the effect. RM-Na-P uses preference data incorporating
process signals while RM-Na-R uses data constructed with result score only. The step score exhibits
significant growth on the MuseD evaluation set. On the public datasets, PPONa−P is notably supe-
rior to PPONa−R. There are about 10-point improvement LogicalDeduction, 7-point imporvement
on ProntoQA , and 5-point improvements on both ProofWriter and FOLIO .

Negative signals will cause degradation in effectiveness. Introducing negative signals for the con-
struction of preference data in the reward model will notably diminish the effectiveness of the PPO
model. PPONa−PN further incorporates negative indicators on the foundation of PPONa−P. There
is indeed a reduction in the three dimensions of negative indicators (wrong step count, noise step
count, and extra step count) in MuseD. However, it significantly deteriorates in the positive indicator
step score. Concurrently, on the public logical verification set, ProntoQA, LogicalDeduction, and
FOLIO exhibit a significant decline.

5.3.4 NATURAL RESPONSE VS. FORMATTED RESPONSE

We also investigate the influence of data format of prompts. We choose Na (natural responses)
and Fo (formatted responses). We train three PPO models with distinct data formats: PPONa−P

(utilizing Na), PPOFo−P (employing Fo), and PPOMix−P (mixing Na and Fo in a 1:1 ratio).

Natural format performs better. PPONa−P is notably superior to PPOFo−P and PPOMix−P.
On MuseD dataset, PPONa−P exhibits significant superiority over PPOFo−P, boasting a 6-7 point
advantage in step score and result score. In comparison to PPOMix−P version, PPONa−P version
is generally on an equal footing in positive indicators. However, regarding negative indicators such
as incorrect step count, noise step count, and extra step count, PPONa−P version is markedly better
than PPOMix−P version. On the public test logic test collection, PPONa−P version surpasses
PPOFo−P and PPOMix−P version in the ProntoQA, ProofWriter, LogicalDeduction, and FOLIO
datasets. The result shows that natural format, which is more closely to the natural language, is more
effective for RLHF training.

5.3.5 VARIANTS OF LOGICAL PROMPTS IN PPO TRAINING

We also experiment on the impact of using additional prompts on top of the prompts covered by RM
training. We compare the performances among PPONa−P, PPONa−P−All and PPONa−P−Replace.

Compare PPONa−P−All with PPONa−P. It can be observed that by adding in-domain prompts,
the effect on the MuseD set is significantly increased, while there is a significant drop on the out-
of-domain data set. It seems that RM-Na-P has the ability to get relatively correct scores for these
in-domain prompts, which helps PPO model to improve. However, a too high data proportion will
cause overfittin on MuseD data and reduce the effect on non-identically distributed datasets.

Compare the two experiments of PPONa−P−Replace and PPONa−P. In the MuseD set, PPONa−P

exhibits superiority in all indicators to PPONa−P−Replace. On the publicly available logic test set,
PPONa−P−Replace shows worse performance on ProntoQA and LogicalDeduction but better perfor-
mance on FOLIO and ProofWriter. On average, it decreased by approximately 1 point. Generally,
using prompts trained with the reward model to train PPO yields better effects both on in-distribution
prompts and on open-source data outside the distribution. The possible reason is that on the trained
prompts, the reward model scores more accurately, thereby better guiding the training process of
PPO. As for the better performance on FOLIO and ProofWriter, it might be caused by a bit over-
fitting on the MuseD deductive format, which hurts the reasoning ability on tasks like FOLIO or
ProofWriter a bit, since ProntoQA and LogicalDeduction have more similar formats to MuseD.

5.3.6 CURRICULUM LEARNING

We also conducte an experiment on curriculum learning as PPONa−P−cur to study its impact on the
effect. We uniformly incorporate data of varying levels, ranging from low to high, into the prompt of
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PPO training. Ensure that with PPO steps training, the traversed logical data progresses from simple
to complex.

It can be observed that in comparison to shuffling data, employing the mechanism of curriculum
learning: on the MuseD set, the overall result is comparable. However, on the open-source test
set, the performance drops. On ProntoQA and LogicalDeduction, it declines by 8 to 10 percentage
points.

6 EVALUATIONS ON LLMS

Our constructed data can also be used as an evaluation dataset to test the performance of LLMs on
multi-step deductive reasoning. We generate 2000 prompts to compose this evaluation sets, which
we called MuseD. MuseD includes questions that multi-step deductive reasoning is needed. The
reason steps range from 1 to 10.

We test the effects of some models on MuseD and the results are shown in Table 3. Obviously,
GPT-4-o1-Preview shows best performance. Qwen2.5-72B-Instruct also reaches high scores on step
and result scores.

Model step score result score intent score wrong step count noise step count extra step count
GPT-4 0.7306 0.8250 0.9995 1.1015 0.4785 0.0125
GPT-4o 0.8085 0.8320 0.9890 0.6940 0.7490 0.1015
GPT-4-o1-mini 0.4514 0.6635 1.0000 1.3570 0.6550 0.0290
GPT-4-o1-preview 0.8516 0.8895 0.9785 0.2785 0.0380 0.0800
Qwen2.5-72B-Instruct 0.8236 0.8844 0.9995 0.6386 0.5796 0.0581
Qwen2-72B-Instruct 0.7316 0.8050 0.9980 1.2130 0.9310 0.0675
Llama3.1-72B-Instruct 0.7543 0.8370 0.9920 1.3005 0.8135 0.1020

Table 3: Performances of Different Models on MuseD.

Using our MuseD evaluation set, we can see the detailed performances of LLMs. Besides the pos-
itive and negative scores above, we show the performance of LLMs over different levels and noise
counts, as shown in Appendix H.

7 CONCLUSION

In this work, we propose a multi-step deductive data generation pipline, MuseD, including prompt
generation, response scoring and pair composition. MuseD can construct prompts with controllable
complexity and check the step scores of responses. We validate the effect of our generated logical
data on Lamma3 8B instruct model with RLHF method. The result shows that our data can lead
to significant improvement on in-domain of out-of-domain deductive reasoning tasks. Further, we
show that natural format and positive step signals are important for RLHF. Finally, we use our pipline
to generate an evaluation dataset, also named MuseD, to evaluate the performance of current LLMs.

REFERENCES

Aristotle. Prior analytics. 350 BCE.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova Dassarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, and Tom Henighan. Training a helpful and harmless assistant
with reinforcement learning from human feedback. 2022.

Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Han-
nah Rashkin, Doug Downey, Wen-tau Yih, and Yejin Choi. Abductive commonsense reasoning.
In International Conference on Learning Representations.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
ArXiv, abs/1803.05457, 2018.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. Training verifiers to solve math word problems, 2021.

Irving M Copi, Carl Cohen, and Kenneth McMahon. Introduction to logic. Routledge, 2016.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, Lucy Sun, Alex Wardle-Solano, Hannah Szabo,
Ekaterina Zubova, Matthew Burtell, Jonathan Fan, Yixin Liu, Brian Wong, Malcolm Sailor, An-
song Ni, Linyong Nan, Jungo Kasai, Tao Yu, Rui Zhang, Alexander R. Fabbri, Wojciech Kryscin-
ski, Semih Yavuz, Ye Liu, Xi Victoria Lin, Shafiq Joty, Yingbo Zhou, Caiming Xiong, Rex Ying,
Arman Cohan, and Dragomir Radev. Folio: Natural language reasoning with first-order logic,
2024. URL https://arxiv.org/abs/2209.00840.

Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-
Yu, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models
to reason with reinforcement learning. In AI for Math Workshop@ ICML 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding. Cornell University -
arXiv,Cornell University - arXiv, Sep 2020.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. Rewardbench: Evaluating reward
models for language modeling. arXiv preprint arXiv:2403.13787, 2024.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic hu-
man falsehoods. In Proceedings of the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 3214–3252, Dublin, Ireland, May 2022. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL https:
//aclanthology.org/2022.acl-long.229.

Hanmeng Liu, Jian Liu, Leyang Cui, Zhiyang Teng, Nan Duan, Ming Zhou, and Yue Zhang. Logiqa
2.0—an improved dataset for logical reasoning in natural language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Processing, 2023.

11

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://arxiv.org/abs/2209.00840
https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: a chal-
lenge dataset for machine reading comprehension with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelli-
gence, pp. 3622–3628, 2021.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering
large language models with symbolic solvers for faithful logical reasoning, 2023. URL https:
//arxiv.org/abs/2305.12295.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset,
Aug 2016.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, An-
toine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training
enables zero-shot task generalization. In ICLR 2022-Tenth International Conference on Learning
Representations, 2022.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=qFVVBzXxR2V.

Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Mehran Kazemi,
Najoung Kim, and He He. Testing the general deductive reasoning capacity of large language
models using ood examples. Advances in Neural Information Processing Systems, 36, 2024.

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengying Liu, Ruihang Chu, Jianing Qiu, Jiaqi Xu,
Mingyu Ding, Hongyang Li, Mengzhe Geng, et al. A survey of reasoning with foundation models.
arXiv preprint arXiv:2312.11562, 2023.

Oyvind Tafjord, Bhavana Dalvi, and Peter Clark. Proofwriter: Generating implications, proofs, and
abductive statements over natural language. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 3621–3634, 2021.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Y.Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human anno-
tations. ArXiv, abs/2312.08935, 2023. URL https://api.semanticscholar.org/
CorpusID:266209760.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman. Hy-
pothesis search: Inductive reasoning with language models. In The Twelfth International Confer-
ence on Learning Representations.

Xuezhi Wang and Denny Zhou. Chain-of-thought reasoning without prompting. arXiv preprint
arXiv:2402.10200, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jundong Xu, Hao Fei, Liangming Pan, Qian Liu, Mong-Li Lee, and Wynne Hsu. Faithful logical
reasoning via symbolic chain-of-thought. arXiv preprint arXiv:2405.18357, 2024.

12

https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://openreview.net/forum?id=qFVVBzXxR2V
https://api.semanticscholar.org/CorpusID:266209760
https://api.semanticscholar.org/CorpusID:266209760


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van Den Broeck. On the
paradox of learning to reason from data. In Proceedings of the Thirty-Second International Joint
Conference on Artificial Intelligence, pp. 3365–3373, 2023.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu, Daya Guo, Jiahai Wang, Jian Yin, Ming
Zhou, and Nan Duan. Ar-lsat: Investigating analytical reasoning of text, 2021. URL https:
//arxiv.org/abs/2104.06598.

13

https://arxiv.org/abs/2104.06598
https://arxiv.org/abs/2104.06598


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A GENERAL ABILITY SETS EVALUATION

Here, we present the evaluation results of various models on general datasets. We mainly com-
pare PPO models using our dataset with PPOUF. For most datasets, there is little difference in
performance among the models. On the gsm8k dataset, there is a significant variation in model
performance, with some models showing improvement while others experiencing a slight decline.

Model hellaswag lambada openai mmlu gsm8k openbookqa triviaqa arc easy arc challenge truthfulqa average
Llama3-8B-Instruct 57.7 71.9 63.8 32.6 34.0 51.1 81.6 52.6 43.9 54.4

PPOUF 57.7 71.8 64.1 37.7 34.2 44.4 81.4 53.8 47.2 54.7
PPONa−P 57.9 71.8 64.1 34.6 34.4 47.6 81.9 54.1 46.8 54.8
PPOFo−P 58.0 71.7 64.1 39.0 34.2 47.3 82.2 54.4 47.3 55.4
PPOMix−P 58.0 71.8 64.1 43.4 34.4 43.6 81.8 53.6 46.8 55.3
PPONaO−P 57.6 71.9 64.1 33.1 34.4 52.3 81.6 52.6 42.9 54.5
PPONa−R 57.9 71.9 64.1 41.4 34.0 45.6 81.7 54.0 47.4 55.3
PPONa−PN 57.8 71.8 64.1 36.6 34.4 45.4 81.6 53.9 47.0 54.7
PPONa−P−All 58.0 71.8 64.1 40.2 34.0 44.6 81.7 53.9 47.2 55.1
PPONa−P−Replace 57.9 71.8 64.0 38.2 34.0 45.7 81.6 53.7 46.8 54.9

Table 4: Performences of PPO Trained Model with different reward model on general ability evalu-
ate sets.

B DETAIL COMPARISON

We give some detailed comparison between PPOUF and PPONa−P. We plot the performances of
the two models over different levels, ranging from 1 to 10. Here the level is the necessary steps
needed to solve the deductive task. The result is shown in Fig. ??. It can be see that on step and
result scores, PPONa−P outperforms PPOUF on all levels. PPONa−P also has a lower wrong step
count, even through we do not use negative signals when constructing preference data. It can also
be see that as the level be larger, performances of models become worse.
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Figure 2: Performances of PPOUF and PPONa−P over differnt levels.

C VALIDATION SET ACCURACY AND REWARDBENCH SCORES OF RMS

For each training dataset, we split a small set as validation set to test the accuracy of RMs. For logic
and UF datasets, we split some prompts so that all RMs haven’t been trained on these prompts. We
use UF-2667 to denote the validation set of UF dataset with 2667 pairs. For each logic dataset with
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A responses and B pair method, we denote its validation set with c pairs as “Logic-A-B-c”. The
results are given below.

Validation set RM-UF RM-Na-P RM-Fo-P RM-Mix-P RM-Na-PN RM-Na-R RM-NaO-P
UF-2667 0.8688 0.8635 0.8733 0.868 0.8695 0.8643 0.6832
Logic-Na-P-1673 0.5415 0.7944 0.7286 0.7974 0.7155 0.6629 0.7603
Logic-Fo-P-1314 0.6058 0.777 0.946 0.9125 0.7154 0.6705 0.7032
Logic-Na-PN-1045 0.5898 0.7636 0.7368 0.7531 0.8411 0.6852 0.6871
Logic-Na-R-729 0.5617 0.8944 0.7682 0.8971 0.882 0.9396 0.8203

Table 5: Accuracy of RMs over all validation sets

It can be see that most models has high accuracy on validation sets corresponding to their own
training data. RM-UF has low accuracy on our logical data. However, we gain higher accuracy if
we add UF dataset to our logical set, as shown by RM-Na-P and RM-NaO-P.

For each dataset, we test these RMs on RewardBench.

RM models Chat Chat Hard Reasoning Safety Average Accuracy
RM-UF 0.9665 0.5811 0.7227 0.4972 0.6919
RM-Na-P 0.9749 0.6206 0.6971 0.5192 0.7029
RM-Fo-P 0.9832 0.6162 0.7105 0.5176 0.7069
RM-Mix-P 0.9693 0.6316 0.7362 0.4839 0.7052
RM-Na-PN 0.9832 0.6228 0.7286 0.4888 0.7059
RM-Na-R 0.9804 0.6316 0.7152 0.5046 0.708
RM-NaO-P 0.9134 0.4057 0.6318 0.4083 0.5898

Table 6: Accuracy of RMs over all validation sets

We can check the reasoning score of RewardBench on all the RMs with the final performances of
PPOs. We find that this reasoning scores can not be a proper standard for RM chosen. This might
be caused by the mismatch of both prompts and responses.

D EVALUATION SETS DETAILS

We list all evaluation sets we used below.

• lambada openai: Tasks designed to predict the endings of text passages, testing language
prediction skills.Paperno et al. (2016)

• mmlu: Massive Multitask Language Understanding benchmark for broad domain language
evaluation. Several variants are supported.Hendrycks et al. (2020)

• gsm8k: A benchmark of grade school math problems aimed at evaluating reasoning capa-
bilities.Cobbe et al. (2021)

• openbookqa: Open-book question answering tasks that require external knowledge and
reasoning.Mihaylov et al. (2018)

• triviaqa: A large-scale dataset for trivia question answering to test general knowl-
edge.Joshi et al. (2017)

• arc easy: Tasks involving complex reasoning over a diverse set of questions.Clark et al.
(2018)

• arc challenge: Tasks involving complex reasoning over a diverse set of questions.Clark
et al. (2018)

• truthfulqa: A QA task aimed at evaluating the truthfulness and factual accuracy of model
responses.Lin et al. (2022)

• logicqa: Logical reasoning tasks requiring advanced inference and deduction.Liu et al.
(2021),
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• logicqa2: Large-scale logical reasoning dataset adapted from the Chinese Civil Service
Examination.Liu et al. (2023)

E EVALUATE SET TEMPLATE

E.1 AR-LSAT

”id”: ”ar lsat 201609 3-G 4 23”,
”context”: ”There are exactly six computers—P, Q, R, S, T, and U—on a small network.
Exactly one of those computers was infected by a virus from outside the network, and that
virus was then transmitted between computers on the network. Each computer received the
virus exactly once. The following pieces of information concerning the spread of the virus
have been established: No computer transmitted the virus to more than two other computers
on the network. S transmitted the virus to exactly one other computer on the network. The
computer that transmitted the virus to R also transmitted it to S. Either R or T transmitted the
virus to Q. Either T or U transmitted the virus to P.”, ”question”: ”If P is the only computer
that transmitted the virus to two other computers on the network, which one of the following
must be true?”,
”options”: [
”A) S transmitted the virus to T.”,
”B) T transmitted the virus to P.”,
”C) Q did not transmit the virus to any other computer on the network.”,
”D) R did not transmit the virus to any other computer on the network.”,
”E) U did not transmit the virus to any other computer on the network.”
],
”answer”: ”C”

F TEMPLATES FOR PROOF AND JUDGEMENT PROMPTS

We use below templates to construct our prompts.

The proof template is

Given:
{Inference conditions.}
Prove: {conclusion}.

The judgement template is

We have:
{Inference conditions.}
Show {conclusion} is correct or not.

G TEMPLATES FOR FORMATTED RESPONSE GENERATION

To generate response with JSON format, we use few-shot learning to instruct model to generate.
The template is given below. The template for proof problem is.

The template for judgement problem is given below. The template for proof problem is quite similar.
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I will give you a few given conditions and you need to check whether a given conclusion is
correct or not based on these conditions.
You need to list all the deductive process in a json style. For each step, you need to list:
* condition: the conditions you use to conduct deduction,
* conclusion: the conclusion you get,
* format conclusion: a dictionary which has below three terms:
** Subject: the subject of your conclusion, which should be an affirmed noun.

** Predication: the prediate of your conclusion, which should be an affirmed noun.
** type: which is one in [’A’,’E’,’I’,’O’]. The type of one proposition with subject S and
predicate P :
*** Type ’A’: ’all S are P ’, or ’S is P ’.
*** Type ’E’: ’None of S is P ’, or ’S is not P ’.
*** Type ’I’: ’There exists one S that is P ’.
*** Type ’O’: ’There exists one S that is not P ’.
Finally you should give a ’result’ if you are required to check whether the given conclusion
is correct or not. If it is correct, return ’Correct’; otherwise, return ’Wrong’.

Your answer should be return with below format:
{‘steps’: [
‘condition’: [‘xxx’, ‘xxx’],
‘conclusion’: [‘xxx’],
‘format conclusion’: {‘Subject’: ‘xxx’, ‘Predicate’: ‘xxx’, ‘type’, ‘x’}
],[
‘condition’: [‘xxx’, ‘xxx’],
‘conclusion’: [‘xxx’],
‘format conclusion’: {‘Subject’: ‘xxx’, ‘Predicate’: ‘xxx’, ‘type’, ‘x’}
],[
‘condition’: [‘xxx’, ‘xxx’],
‘conclusion’: [‘xxx’],
‘format conclusion’: {‘Subject’: ‘xxx’, ‘Predicate’: ‘xxx’, ‘type’, ‘x’} ],
‘result’: ‘xxx’
}

Examples:
{Examples}

##Input:
{Prompt}
##Output:

H DETAILED EVALUATION RESULTS

Here we give detailed evaluation results form LLMs on our MuseD dataset. We show the step scores,
which we think is the most import score, over the deductive steps and the noise conditions.

Levels count GPT-4 GPT-4o GPT-4-o1-mini GPT-4-o1-preview Qwen2-72B-Instruct Qwen2.5-72B-Instruct Llama3.1-72B-Instruct
1 194 0.88 0.93 0.74 0.93 0.89 0.92 0.91
2 204 0.89 0.94 0.66 0.96 0.89 0.95 0.88
3 204 0.83 0.92 0.59 0.94 0.84 0.94 0.82
4 216 0.75 0.86 0.49 0.9 0.78 0.89 0.78
5 164 0.79 0.86 0.46 0.87 0.73 0.87 0.84
6 212 0.71 0.8 0.41 0.87 0.73 0.84 0.74
7 184 0.64 0.73 0.32 0.77 0.66 0.78 0.7
8 206 0.65 0.72 0.31 0.81 0.64 0.73 0.65
9 212 0.61 0.69 0.27 0.76 0.6 0.7 0.66
10 204 0.56 0.64 0.26 0.7 0.55 0.63 0.58

Table 7: Performances of Different Models on MuseD over prompt levels.
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Levels count GPT-4 GPT-4o GPT-4-o1-mini GPT-4-o1-preview Qwen2-72B-Instruct Qwen2.5-72B-Instruct Llama3.1-72B-Instruct
0 218 0.82 0.93 0.65 0.91 0.86 0.91 0.86
1 484 0.82 0.91 0.58 0.9 0.83 0.91 0.83
2 546 0.73 0.82 0.44 0.87 0.76 0.84 0.76
3 394 0.69 0.74 0.35 0.82 0.67 0.77 0.71
4 228 0.62 0.68 0.3 0.77 0.58 0.72 0.65
5 100 0.53 0.62 0.25 0.74 0.52 0.66 0.6
6 26 0.65 0.68 0.23 0.78 0.42 0.53 0.54
7 4 0.42 0.51 0.14 0.53 0.32 0.58 0.41

Table 8: Performances of Different Models on MuseD over noise counts.

As the result shows, LLMs become worse as the the level becomes larger. That is, the more complex
the prompt is, the lower the step score is. GPT-4-o1-preview still keeps a 0.7 step score for level 10.
Similarly, the more noise conditions are involved, the worse performances LLMs have.
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