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A NOTATION

Table 3 summarizes the main mathematical symbols and abbreviations used in this work.

Table 3: Summary of notation and abbreviations.

Notation Description
G = (V,E) arbitrary graph with vertices V and edges E

G the set of all considered graphs

D(G) persistence diagram of cardinality card(D(G))

!(·) arbitrary weight function, R2 7! R
W! parameter vector of the ! (weight) function

q dimensionality of the PERSLAY embeddings

'(·) arbitrary point transformation, R2 7! Rq

'⇤,'�,' Triangle/Gaussian/Line point transformation

ti ith parameter value(s) of a point transformation — following Carrière et al. (2020)

W' vector comprising all parameters of the point transformation ', i.e., W' = vec({ti}qi=1)

AGG arbitrary aggregation function

PERSLAY a mapping from persistence diagrams to Rq (Equation 1)

K number of classes

MLP multi-layer perceptron with non-linear 1-Lipschitz activation functions

hi, h dimensionality of the input to the i-th MLP layer, and h = max{h1, ..., hl+1}
 i non-linear 1-Lipschitz activation funcion before ith layer

Wi weight matrix of the i-th MLP layer, 2 Rhi⇥hi+1

PC a mapping from G to RK consisting of D(G) ! PERSLAY ! MLP

vec(·) function that converts its input to a single vector

D distribution over labeled graphs (i.e., graph-label pairs), data distribution

S, m S is a training set consisting of m labeled graphs, i.e., S = {(Gi, yi)}mi=1

� margin scalar used in the margin-based loss

LS,�(gw) empirical error (�-margin loss) of a hypothesis g (with parameters w) S

LD,�(gw) generalization error (�-margin loss) of a hypothesis g (with parameters w) on D

b the maximum norm of the input to the feedforward network in the PersLay Classifier

DKL KL-divergence between two distributions

VC-DIM Vapnik-Chervonenkis dimension

k-FWL k-th order Folklore Weisfeller-Leman algorithm

| · |2, | · | Euclidean norm of a vector, absolute value

|| · ||2, || · ||F Operator / Frobenius norm of a matrix

Ui, U
', U! perturbation of the parameters of the ith MLP layer / the ' function / the ! function

�, �̂ max{||W1||2, ...||Wl||2, |W'|2 + 1} / arbitrary approximation of �
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B SECTION 3 OMITTED MATERIALS

Lemma 2 (Lemma 5 in Rieck (2023)). Given k-FWL colorings of two graphs G and G0 that are
different, there exists a filtration of G and G0 such that the corresponding persistence diagrams in
dimension k � 1 or dimension k are different.

Proof. Here we provide the proof of this lemma from Rieck (2023) (Appendix D).

The main idea involves harnessing the colors of k-tuples. We first identify all colors c1, c2, ... with
natural numbers 1, 2, .... We then expand G and G0 to a simplicial complex containing all k-tuples
as faces. Moreover, we assign all simplices in dimensions less than or equal to k � 2 a weight of
0. Each (k � 1)-simplex is assigned its color according to the respective k-FWL coloring. As a
consequence of the pairing lemma of persistent homology, every (k � 1)-simplex is either a creator
simplex or a destroyer simplex (Edelsbrunner & Harer, 2008).

We handle the case of creator simplices first. Each creator simplex gives rise to an essential per-
sistence pair in the (k � 1)-dimensional persistence diagram. Each such pair is of the form (i,1),
where ci is a color according to k-FWL.

Each destroyer simplex, by contrast, destroys a topological feature created by a (k� 2)-simplex, i.e.
a (k� 1)-tuples, resulting in a pair of the form (·, j), with again cj being the corresponding k-FWL
color. This pair is part of a (k � 2)-dimensional persistence diagram. When dealing with tuples
or simplices, there is always the risk of an off-by-one error. In this theorem, despite dealing with
k-FWL, only the (k � 1)-simplices, which have k vertices, will be relevant.

By assumption, the k-FWL colors of G and G0 are different, so a color c must exist whose count is
different in G and G0, respectively. Since the sum of all colors arising in the two types of persistence
pairs above is the number of colors of k-tuples, there is either a difference in color counts in the
(k � 1)-dimensional or the (k � 2)-dimensional persistence diagrams of G and G0, showing that
they are not equal.

Lemma 3 (Generalization of Lemma 5 in (Rieck, 2023)). Given k-FWL colorings of graphs
G1, ..., Gn that are distinct, there exists a filtration such that persistence diagrams computed us-
ing this filtration function of G1, ...Gn are distinct in dimension k � 1 or dimension k.

Proof. We simply repeat the proof of Lemma 2 word by word using G1, ..., Gn instead of G and
G0.

The following result helps us to upper bound the KL-divergence.
Lemma 7.

DKL(N (w,�2I) || N (0,�2I)) =
|w|

2
2

2�2

Proof. Let these distributions have the same dimension, k. Then, there is a common formula for a
KL-divergence of two multivariate distributions.

DKL(N (w,�2I) || N (0,�2I)) =

=
1

2

✓
tr
�
(�2I)�1(�2I)

�
� k + (0 � w)T (�2I)�1(0 � w) + ln

✓
det�2I

det�2I

◆◆
=

=
|w|

2
2

2�2

Our next lemma helps us to upper bound the PERSLAY’s perturbation, when AGG = k-max .
Lemma 8. Let X be an arbitrary finite set and f, g : X 7! R. Then we can say that:

|k-max
x2X

f(x) � k-max
x2X

g(x)|  3max
x2X

|f(x) � g(x)|
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X sorted by f : . . . m(k) . . . n(k) . . . n(i) . . .

X sorted by g: . . . n(i) . . . m(k) . . . n(k) . . .

Figure 6: Case g(n(k)) > g(m(k)), f(n(k)) � f(m(k))

X sorted by f : . . . m(k) . . . n(k) . . .

X sorted by g: . . . n(k) . . . m(k) . . .

Figure 7: Case g(n(k)) > g(m(k)), f(n(k))  f(m(k))

Proof. Denote n : N 7! X by a function that maps natural number k to an element of X that would
be on kth position in order sorted by f . Denote m as an analogous function but for g. Then, we are
interested in the following expression: |f(n(k)) � g(m(k))|. Let us rewrite it:

|f(n(k)) � g(m(k))| = |f(n(k)) � g(n(k)) + g(n(k)) � g(m(k))| 

 |f(n(k)) � g(n(k))| + |g(n(k)) � g(m(k))| 

 max
x2X

|f(x) � g(x)| + |g(n(k)) � g(m(k))|

Now, the task is to prove that |g(n(k)) � g(m(k))|  2maxx2X |f(x) � g(x)|

Let us consider four cases:

• g(n(k)) > g(m(k)) and f(n(k)) � f(m(k)) (Fig. 6). In this case 9i 2 N such that
f(n(i)) > f(n(k)) and g(n(i)) < g(m(k)). Indeed, if none of the elements ”to the right”
of n(k) moved ”to the left” of m(k), then ”to the right” of m(k), there are at least n�k+1
elements; however, there are must be exactly n � k elements.

|g(n(k)) � g(m(k))| = g(n(k)) � g(m(k))  g(n(k)) � g(n(i)) 

 f(n(k)) + (max
x2X

|f(x) � g(x)|) � g(n(i)) <

< f(n(i)) + (max
x2X

|f(x) � g(x)|) � g(n(i)) < 2(max
x2X

|f(x) � g(x)|)

• g(n(k)) > g(m(k)) and f(n(k))  f(m(k)) (Fig. 7)

|g(n(k)) � g(m(k))| = g(n(k)) � g(m(k)) 

 f(n(k)) +

✓
max
x2X

|f(x) � g(x)|

◆
� g(m(k)) 

 f(m(k)) +

✓
max
x2X

|f(x) � g(x)|

◆
� g(m(k)) 

 2

✓
max
x2X

|f(x) � g(x)|

◆

• The rest of the cases can be handled analogously.

The following lemma helps us to determine the distribution parameters for weight perturbation to
satisfy the margin.
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Lemma 9. Let w = vec{W1, ...,Wl,W',W!
}. Let u = vec{U1, ..., Ul, U', U!

}, where Ui is the
perturbation of ith linear layer of PC and U' is the perturbation of point transformation part and
U! is the perturbation of weight part of PERSLAY.

Let �̂, � 2 R+ and � = max{||W1||2, ..., ||Wl||2, |W'
|2 + 1}.

If w such that |� � �̂|  "� and � �
� �
2M

� 1
l+2 , Ui ⇠ N (0,�2I), 1  i  l; U!, U'

⇠ N (0,�2I),
then 8G 2 G with probability 1

2 the following inequality holds: |PCw(G) � PCw+u(G)|2 
�
4

where

� =
�(1 � ")l

100M(l + 2)�̂l+1
p
2h ln 4(lh+ 2)

and M is from Lemma 6.

Proof. (Tropp, 2012) states that if U ⇠ Nh2(0,�2I), then

Pr (||U ||2 � t)  2hexp
✓

�
t2

2h�2

◆

and that if V ⇠ Nh(0,�2I), then

Pr (|V |2 � t)  2exp
✓

�
t2

2h�2

◆

So, applying it to our case:

Pr (||U1||2  t& ...& ||Ul||2  t& |U'
|2  t& |U!

|2  t) �

� 1 �

lX

i=1

Pr (||Ui||2 � t) � Pr (|U'
|2 � t) � Pr (|U!

|2 � t) �

� 1 � 2(hl + 2)exp
✓

�
t2

2h�2

◆

We want this probability to be at least 1
2 . This condition satisfies when t = �

p
2h ln 4(lh+ 2).

If t = �
p
2h ln 4(lh+ 2) and ||Ui||2 

1
l �, then with probability 1

2 we have (Lemma 6):

|PCw(G) � PCw+u(G)|2  eM�l+1

 
|U'

|2 + |U!
|2 +

lX

i=1

||Ui||2

!


 eM�l+1(l + 2)t  eM�l+1(l + 2)�
p

2h ln 4(lh+ 2) 


�̂l+1

(1 � ")l+1
eM(l + 2)�

p
2h ln 4(lh+ 2) 

�

4

It is left to check that we can apply Lemma 6: ||Ui||2 
1
l �.

||Ui||2  t =
(1 � ")l+1�

100�̂l+1(l + 2)M


(1 � ")l+1�

100(1 � ")l+1�l+1(l + 2)M


��

100M(l + 2)�l+2



��

100M(l + 2)
� �
2M

� l+2
l+2

=
1

l + 2

�

50


1

l
�

Our next result establishes the bound for �s that falls into the interval: |� � �̂| < 1
l �
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Lemma 10. Let w = vec{W1, ...,Wl,W',W!
}. Let �̂, � 2 R+ and � =

max{||W1||2, ..., ||Wl||2, |W'
|2 + 1}. If w such that |� � �̂|  "� and � �

� �
2M

� 1
l+2 , then

for any 0 < � < 1, with probability at least 1� � over an i.i.d size-m training set S according to D:

LD,0(PCw)  LS,�(PCw) + O

0

BB@

vuutM2l2h ln lh
⇣

1+"
1�"

⌘2l
�(2l+1)|w|22 + ln m

�

�2m

1

CCA (7)

Proof. Let us use Lemma 1 with Q(w + u) = N (w,�2I) and P = N (0,�2I) where

� =
�(1 � ")l

100M(l + 2)�̂l+1
p
2h ln 4(lh+ 2)

Thanks to Lemma 6, all conditions for application of Lemma 1 are satisfied.

Then, using Lemma 7 we can derive the upper bound on KL-Divergence:

DKL =
|w|

2
2

2�2
= |w|

2
2O

 
M2l2�̂2(l+1)h ln (lh)

(1 � ")2l�2

!
=

= O

 ✓
1 + "

1 � "

◆2l M2l2�2(l+1)
|w|

2
2h ln lh

�2

!

Plugging this into the overall expression, we get:

LD,0(PCw)  LS,�(PCw) + O

0

BB@

vuutM2l2h ln lh
⇣

1+"
1�"

⌘2l
�(2l+1)|w|22 + ln m

�

�2m

1

CCA

The following lemma provides a lower bound on interesting values of �.
Lemma 11. Let w = vec{W1, ...,Wl,W',W!

}. Let � = max{||W1||2, ..., ||Wl||2, |W'
|2 + 1}.

If w such that � 
� �
2M

� 1
l+2 , then for any j > 0 and any G 2 G,

|PCw(G)[j]| 
�

2

where M from Lemma 6.

Proof.

|PCw(x)[j]|  |PCw(x)|2 

lY

i=1

||Wi||2 M(|W'
| + 1)  �l+1M  �l+2M 

�

2

This lemma provides us with the upper bound on the interesting values of �.

Lemma 12. If w such that � � (�
p
m)

1
l+2

✓
1

M
1

l+2
+ 1

◆
, then

vuut l2M2h ln lh|w|22�
2(l+1)

⇣
1+"
1�"

⌘2l
+ ln lMm

�

�2m
� 1
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Proof. First, we handle the case when �
p
m < 1:

vuut l2M2h ln lh|w|22�
2(l+1)

⇣
1+"
1�"

⌘2l
+ l ln Mm

�

�2m
� 1 (

l2M2h ln lh|w|
2
2�

2(l+1)
⇣

1+"
1�"

⌘2l
+ l ln Mm

�

�2m
�

�
l ln Mm

�

�2m
� 1

From now on, we consider �
p
m > 1. Let us lower-bound |w|

2
2:

|w|
2
2 = |W'

|
2
2 + |W!

|
2
2 +

lX

i=1

||Wi||
2
F �

1

l + 2

 
|W'

|2 + |W!
|2 +

lX

i=1

||Wi||F

!2

=

=
1

l + 2

 
|W'

|2 + 1 � 1 + |W!
|2 +

lX

i=1

||Wi||F

!2

�
1

l + 2
(� � 1)2 �

(� � 1)2

l

Now, we can plug this into the original expression:

vuut l2M2h ln lh|w|22�
2(l+1)

⇣
1+"
1�"

⌘2l
+ l ln Mm

�

�2m
� 1 (

l2M2h ln lh|w|
2
2�

2(l+1)
⇣

1+"
1�"

⌘2l
+ l ln Mm

�

�2m
�

�
l2M2�2(l+1)(� � 1)2

l�2m
� M2 (� � 1)2(l+1)

�2m
�

� M2 (� � (�
p
m)

1
2(l+1) )(l+2)

�2m
= 1

Lemma 4. Let W' be the parameters of the point transformation in PERSLAY. Then, we have that

8G 2 G |PERSLAYw(D(G))|2  B1 |W'
|2 + C1  M1(|W

'
|2 + 1)

where

A1 =

(
max
G2G

card(D(G)) if AGG = sum
1 if AGG = mean or k-max

, (B1, C1) =

8
<

:

(
p
2,

p
8q b) if ' = ⇤

(0,
p
q) if ' = �

(
p
3(b+ 1), 0) if ' =  

and M1 = A1 max{B1, C1}.

Proof.

|PERSLAYw(D(G))|2 = |AGG{{!w(p)'w(p) | p 2 D(G)}}|2 

 A1

���� max
p2D(G)

!w(p)'w(p)

����  A1

���� max
p2D(G)

'w(p)

����

We denote by A1 the following number: if AGG is sum , then A1 is the maximum cardinality of the
persistent diagram, otherwise (if AGG is k-max , mean ) we set A1 equals to 1. The last inequality
comes from the fact that |!|  1

Now we handle multiple choices of '. Note that we denote a[i] as ith element of the vector a.

• ' = ⇤.
max

p2D(G)
'w(p)[i] = max

p2D(G)
max{0, p[2] � |ti � p[1]|}  2b+ |ti|

)

|PERSLAYw(G)|2  A1

"
qX

i=1

(2N + |ti|)
2

#1/2
 A1

"
qX

i=1

8b2 + 2|ti|
2

#1/2
 A1

⇣p
8qb+

p
2|W'

|2

⌘
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• ' = �.

max
p2D(G)

'w(p)[i] = max
p2D(G)

exp
✓

�
|p[1] � ti[1]|2 + |p[2] � ti[2]|2

2⌧2

◆
 1

)

|PERSLAYw(D(G))|2  A1

"
qX

i=1

1

#1/2
 A1

p
q

• ' =  .

max
p2D(G)

'w(p)[i] = max
p2D(G)

p[1]ti[1] + p[2]ti[2] + ti[3]  (b+ 1)(|ti[1]| + |ti[2]| + |ti[3]|)

)

|PERSLAYw(D(G))|  A1

"
qX

i=1

(b+ 1)2(|ti[1]| + |ti[2]| + |ti[3]|)
2

#1/2


 A1(b+ 1)

"
qX

i=1

3(|ti[1]|
2 + |ti[2]|

2 + |ti[3]|
2)

#1/2


p
3A1(b+ 1) |W'

|2

Lemma 5. Let w = vec{W',W!
} and u = vec{U', U!

}, where U' and U! denote small
perturbations on the parameters of the point transformations and weight functions of PERSLAY,
respectively. Then:

|PERSLAYw(D(G)) � PERSLAYw+u(D(G))|2  M2(|W
'
|2 + 1)(|U'

|2 + |U!
|2)

where

A2 =

(
max
G2G

card(D(G)) if AGG = sum
3 if AGG = mean or k-max

, B2 =

8
<

:

1 if ' = ⇤
1

⌧e1/2
if ' = �

p
3(b+ 1) if ' =  

,

M2 = A2 max{B2,M1Lip(!)}, and Lip(!) is a Lipschitz constant of !.

Proof.

|PERSLAYw(D(G)) � PERSLAYw+u(D(G))|2 =

= |AGG{{'w(p)!w(p) | p 2 D(g)}} � AGG{{'w+u(p)!w+u(p) | p 2 D(G)}}|2

Thanks to Lemma 8 and the fact that sum is less than the number of elements multiplied by a max
of elements, we can derive the following upper bound:

|PERSLAYw(D(G)) � PERSLAYw+u(D(G))|2 

 A2 max
p2D(G)

|!w(p)'w(p) � !w+u(p)'w+u(p)|2

We set A2 to the maximum number cardinality of the persistence diagrams if AGG is sum , or to 3 if
AGG is k-max , mean

max
p2D(G)

|!w(p)'w(p) � !w+u(p)'w+u(p)|2 

 max
p2D(G)

{|!w+u(p)||'w+u(p) � 'w(p)|2 + |'w(p)|2|!w+u(p) � !w(p)|} 

 max
p2D(G)

|'w+u(p) � 'w(p)|2 + max
p2D(G)

|'w(p)|2|!w+u(p) � !w(p)|

All of the considered point transformation functions are Lipschitz in terms of parameters. Let us
make the same assumptions for the weight part. Then (note that we denote a[i] as ith element of the
vector a)
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• ' = ⇤.

Lip(') = 1 ) max
p2D(G)

|'w+u(p) � 'w(p)|2 

"
qX

i=1

|U'[i]|22

#1/2
= |U'

|

• ' = �.

Lip(') =
1

⌧e1/2
) max

p2D(G)
|'w+u(p) � 'w(p)|2 



"
qX

i=1

✓
1

⌧e1/2

◆2

(U'[2i]2 + U'[2i+ 1]2)

#1/2
=

1

⌧e1/2
|U'

|2

• ' =  .

Lip(')  (b+ 1) ) max
p2Dg(G)

|'w+u(p) � 'w(p)|2 



"
qX

i=1

(b+ 1)2(U'[3i] + U'[3i+ 1] + U'[3i+ 2])2
#1/2


p
3(b+ 1)|U'

|2

Let us introduce the auxiliary variable E, which equals the coefficient in front of |U'
|.

To sum it up:

|PERSLAYw(D(G)) � PERSLAYw+u(D(G))|2  A2(B2|U
'
|2 +M1Lip(!)(|W'

|2 + 1)|U!
|2) 

 M2(|W
'
|2 + 1)(|U'

|2 + |U!
|2)

where M2 = A2 max{B2,M1Lip(!)}

Lemma 6. Let w = vec{W1, ...,Wl,W',W!
} and u = vec{U1, ..., Ul, U', U!

}, where Ui

is the perturbation of ith linear layer of PC, U' is the perturbation of the point transformation
part, and U! is the perturbation of the weight part of PERSLAY. Also, let T �

max{||W1||2, ..., ||Wl||2, |W'
|2 + 1} and 8i : ||Ui||2 

1
l T , then we can derive the following

upper bound:

|PCw(x) � PCw+u(x)|2  eM T l+1

 
|U'

|2 + |U!
|2 +

lX

i=1

||Ui||2

!

where M = max{M1,M2} from Lemmas 4 and 5 and e is the Euler’s constant.

Proof. Let us prove that:

|PCw(G) � PCw+u(G)|2 

✓
1 +

1

l

◆l

M T l+1

 
|U'

|2 + |U!
|2 +

lX

i=1

||Ui||2

!

and then using the fact that
�
1 + 1

l

�l
 e we derive the desired bound. Note that  i is the activation

function after ith layer and we use the fact that Lip( i)  1 and  i(x)  |x| (Assumption 3).
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|PCl
w(G) � PCl

w+u(G)|2 =
���Wl l

⇣
PCl�1

w (G)
⌘

� (Wl + Ul) l(PCl�1
w+u(G))

���
2
=

=
���(Wl + Ul) ( l(PCl�1

w (G)) �  l(PCl�1
w+u(G))) � U1 l(PCl�1

w (G))
���
2



 ||Wl + Ul||2 |PCl�1
w (G) � PCl�1

u (G)|2 + ||Ul||2 |PCl�1
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We want to prove this theorem using induction on the number of layers. So, we must prove the upper
bound for the l = 1 case. Note that PC0

w = PERSLAYw.

Using Lemmas 4 and 5 we can derive the upper bound for l = 1 case:
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Theorem 1. Let w = vec{W1, ...,Wl,W',W!
} and M = max{M1,M2} from Lemmas 4 and 5.

Then for any �, � > 0 with probability at least 1� � over i.i.d size-m training set S according to D,
for any W1, ...,Wl,W',W! , we have:
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Let us choose r = "
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l+2 to be a radius of the covering C of this interval. Let us upper bound
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Therefore, denoting the event of Eq. 7 with �̂ taking the i-th value of the covering and � = �
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C IMPLEMENTATION DETAILS

C.1 DATASETS

Table 4 reports summary statistics of the datasets used in this paper.

Table 4: Statistics of the datasets.

Dataset #graphs #classes Avg #nodes Avg #edges
NCI1 4110 2 29.87 32.30
IMDB-B 1000 2 19.77 96.53
PROTEINS (full) 1113 2 39.06 72.82
MUTAG 188 2 17.93 19.79
DHRF 756 2 42.43 44.54

C.2 MODELS

We run all experiments using PyTorch. We closely follow the filtration functions used in (Carrière
et al., 2020). In particular, we use Kernel heat functions with parameter t = 0.1 for MUTAG and
PROTEINS and t = 10 for the remaining datasets. Instead of processing each diagram type using
separate models, we combine ordinary and extended diagrams for 0- and 1-dimensional features and
apply a single model. After obtaining persistence diagrams, we discard node features. We use mean
aggregation function in all experiments, and Gaussian point transformations. For the feedfoward
part of PersLay, we apply ReLU activation functions. All models are trained with Adam (Kingma
& Ba, 2015) and learning rate of 10�3 for 3000 epochs.
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Dependence on model paramaters. Regarding the dependence on the spectral norm of weights,
we reported results for a model with a final MLP (multilayer perceptron) of 2 hidden layers (3 layers
in total) and width of 128 for all layers. The number of parameters of the point transformation was
q = 100. For the experiments on width vs. generalization gap, we used q = 100, and 1 hidden layer
with a varying width in {32, 64, 128, 256, 512}.

Point transformations. Here, we used an MLP with 2 hidden layers with 128 neurons each. The
number of parameters of the point transformation was q = 400. Moreover, we applied a max
aggregation function.

Regularizing PersLay. For the experiments regarding ERM and spectral norm regularizers, we
perform model selection for l 2 {2, 3}, and � 2 {10�3, 10�4, 10�5, 10�6

}. Again, we use Gaussian
point transformation, q = 100, and width equals to 128. Our goal was to see if we could observe
gains from the regularized version even for shallow neural networks.

Hardware. For all experiments, we use Tesla V100 GPU cards and consider a memory budget of
32GB of RAM.

D ADDITIONAL VISUALIZATIONS

Figure 8 and Figure 9 report additional results for the triangle point transformation on the three
largest datasets: PROTEINS, NCI1, and IMDB-BINARY. In particular, Figure 8 shows the depen-
dence of the generalization on width, while Figure 9 shows the dependence on the spectral norm.
Overall, our bound can capture the trend in the empirical gap and produces high correlation values
for all datasets.
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Figure 8: Width vs. generalization gap for the triangle point transformation.
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Figure 9: Spectral norm vs. generalization gap for the triangle point transformation.
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