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Figure 1: Visualization of searched Solver Parameters of DDPM/VP and Rectified Flow. We
limited the order of solver coefficients of the last two steps for 5/6 NFE. The left images show the absolute
value of searched coefficients {c] }. The right image shows the searched timesteps of different NFE and fitted
curves.

ABSTRACT

Diffusion models have demonstrated remarkable generation quality but at the cost
of numerous function evaluations. Recently, advanced ODE-based solvers have
been developed to mitigate the substantial computational demands of reverse-
diffusion solving under limited sampling steps. However, these solvers, heavily
inspired by Adams-like multistep methods, rely solely on t-related Lagrange inter-
polation. We show that t-related Lagrange interpolation is suboptimal for diffusion
model and reveal a compact search space comprised of time steps and solver coef-
ficients. Building on our analysis, we propose a novel differentiable solver search
algorithm to identify more optimal solver. Equipped with the searched solver,
rectified-flow models, e.g., SiIT-XL/2 and FlowDCN-XL/2, achieve FID scores of
2.40 and 2.35, respectively, on ImageNet-256 x 256 with only 10 steps. Mean-
while, DDPM model, DiT-XL/2, reaches a FID score of 2.33 with only 10 steps.
Notably, our searched solver outperforms traditional solvers by a significant mar-
gin. Moreover, our searched solver demonstrates generality across various model
architectures, resolutions, and model sizes.

1 INTRODUCTION

Image generation is a fundamental task in computer vision research, which aims at capturing the
inherent data distribution of original image datasets and generating high-quality synthetic images
through distribution sampling. Diffusion models Ho et al.| (2020); |Song et al.| (2020b); Karras et al.
(2022); [Liu et al,| (2022); [Lipman et al.| (2022) have recently emerged as highly promising solu-
tions to learn the underline data distribution in image generation, outperforming GAN-based mod-
els |Brock et al.| (2018)); Sauer et al.| (2022)) and Auto-Regressive models |(Chang et al.| (2022)) by a
significant margin.

However, diffusion models necessitate numerous denoising steps during inference, which incur a
substantial computational cost, thereby limiting the widespread deployment of pre-trained diffu-
sion models. To achieve fast diffusion sampling, the existing studies have explored two distinct
approaches. Training-based techniques involve distilling the fast ODE trajectory into the model
parameters, thereby circumventing redundant refinement steps. In addition, solver-based methods
Lu et al,| (2023); Zhang & Chen| (2023); [Song et al.| (2020a) tackle the fast sampling problem by
designing high-order numerical ODE solvers.
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For training-based acceleration, |Salimans & Ho| (2022) aligns the single-step student denoiser with
the multi-step teacher output, thereby reducing inference burdens. The consistency model concept,
introduced by Song et al.| (2023), directly teaches the model to produce consistent predictions at
any arbitrary timesteps. Building upon Song et al.| (2023), subsequent works [Zheng et al.| (2024);
Kim et al.| (2023)); [Wang et al.| (2024); [Xu et al.| (2024) propose improved techniques to mitigate
discreet errors in LCM training. Furthermore, Lin et al.|(2024); [Kang et al.|(2024));|Y1n et al.|(2024));
Zhou et al.| (2024)) leverage adversarial training and distribution matching to enhance the quality of
generated samples. To improve the training efficiency of distribution matching. However, training-
based methods introduce changes to the model parameters, resulting in an inability to fully exploit
the pre-training performance.

Solver-based methods rely heavily on the ODE formulation in the reverse-diffusion dynamics and
hand-crafted multi-step solvers. [Lu et al.| (2023} [2022) and Zhang & Chen| (2023) point out the
semi-linear structure of the diffusion ODE and propose an exponential integrator to tackle faster
sampling in diffusion models. Zhao et al.|(2023) further enhances the sampling quality by borrowing
the predictor-corrector structure. Thanks to the multistep-based ODE solver methods, high-quality
samples can be generated within as few as 10 steps. To further improve efficiency, Gao et al.|(2023)
tracks the backward error and determines the adaptive step. Moreover, Karras et al.|(2022); Lu et al.
(2022) propose a handcrafted timesteps scheduler to sample respaced timesteps. |Xue et al.| (2024)
argues that timesteps sampled in Karras et al.|(2022)); [Lu et al.|(2022) are suboptimal, thus proposing
an online optimization algorithm to find the optimal sampling timesteps for generation. Apart from
timesteps optimization, [Shaul et al.| (2023) learns a specific path transition to improve the sampling
efficiency.

In contrast to training-based acceleration methods, solver-based approaches do not necessitate pa-
rameter adjustments and preserve the optimal performance of the pre-trained model. Moreover,
solvers can be seamlessly applied to any arbitrary diffusion model trained with a similar noise
scheduler, offering a high degree of flexibility and adaptability. This motivates us to investigate the
generative capabilities of pre-trained diffusion models within limited steps from a diffusion solver
perspective.

Current state-of-the-art diffusion solvers|Lu et al.|(2023); Zhao et al.|(2023)) adopt Adams-like multi-
step methods that use the Lagrange interpolation function to minimize integral errors. We argue that
an optimal solver should be tailored to specific pre-trained denoising functions and their correspond-
ing noise schedulers. In this paper, we explore solver-based methods for fast diffusion sampling by
improving diffusion solvers using data-driven approaches without destroying the pre-training inter-
nality in diffusion models. Inspired by Xue et al.| (2024), we investigate the sources of error in
the diffusion ODE and discover that the interpolation function form is inconsequential and can be
reduced to coefficients. Furthermore, we define a compact search space related to the timesteps
and solver coefficients. Therefore, we propose a differentiable solver search method to identify the
optimal parameters in the compact search space.

Based on our novel differentiable solver search algorithm, we investigate the upper bound perfor-
mance of pre-trained diffusion models under limited steps. Our searched solver significantly im-
proves the performance of pre-trained diffusion models, and outperforms traditional solvers with
a large gap. On ImageNet-256 x 256, armed with our solver, rectified-flow models of SiT-XL/2
and FlowDCN-XL/2 achieve 2.40 and 2.35 FID respectively under 10 steps, while DDPM model
of DiT-XL/2 achieves 2.33 FID. Surprisingly, our findings reveal that when equipped with an op-
timized high-order solver, the DDPM can achieve comparable or even surpass the performance of
rectified flow models under similar step constraints.

To summarize, our contributions are

* We reveal that the interpolation function choice is not important and can be reduced to
coefficients through the pre-integral technique. We demonstrate that the upper bound of
discretization error in reverse-diffusion ODE is related to both timesteps and solver coeffi-
cients and define a compact solver search space.

* Based on our analysis, we propose a novel differentiable solver search algorithm to find the
optimal solver parameter for given diffusion models.

* For DDPM/VP time scheduling, armed with our searched solver, DiT-XL/2 achieves 2.33
FID under 10 steps, beating DPMSolver++/UniPC by a significant margin.
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¢ For Rectified-flow models, armed with our searched solver, SiT-XL/2 and FlowDCN-XL/2
achieve 2.40 and 2.35 FID respectively under 10 steps on ImageNet-256 x 256.

* For Text-to-Image diffusion models like FLUX, SD3, PixArt-3, our solver searched on

ImageNet-256 x 256 consistently yields better images compared to traditional solvers with
the same CFG scale.

2 RELATED WORKS

Diffusion Model gradually adds x( with Gaussian noise € to perturb the corresponding known data
distribution p(zo) into a simple Gaussian distribution. The discrete perturbation function of each ¢
satisfies N (x| o, 02 1), where v, o > 0. It can also be written as Equation @)

Ty = Q4Treal + O1€ (D
Moreover, as shown in Equation (2), Equation (T)) has a forward continuous-SDE description, where

f(t) = % and g(t) = d;f - dl‘;ﬁ”‘t o2.|Anderson|(1982) establishes a pivotal theorem that the
forward SDE has an equivalent reverse-time diffusion process as in Equation (3)), so the generating
process is equivalent to solving the diffusion SDE. Typically, diffusion models employ neural net-
works and distinct prediction parametrization to estimate the score function V log, ps, () along

the sampling trajectory Song et al.| (2020b); Karras et al.| (2022); Ho et al.[(2020).
dx, = f(t)xdt + g(t)dw (2)
day = [f(t)x; — g(t)*Va log p(a:)]dt + g(t)dw 3)

Song et al.| (2020Db) also shows that there exists a corresponding deterministic process Equation (@)
whose trajectories share the same marginal probability densities of Equation (3)).

dey = [£()2 ~ 59(t) Vo log pla e @

Rectified Flow Model simplifies diffusion model under the framework of Equation and Equa-
tion (EI) Different from [Ho et al.| (2020) introduces non-linear transition scheduling, the rectified-
flow model adopts linear function to transform data to standard Gaussian noise.

Ty = t@rea + (1 — t)e 5)

Instead of estimating the score function V' log,,. p;(x;), rectified-flow models directly learn a neural
network vg(z¢, t) to predict the velocity field v; = dx; = (Xreas — €).

£(0) = E[ / [0 (1. £) — v |?d] ®)

Solver-based Fast Sampling Method does not necessitate parameter adjustments and preserves the
optimal performance of the pre-trained model. It can be seamlessly applied to an arbitrary diffusion
model trained with a similar noise scheduler, offering a high degree of flexibility and adaptability.
Solvers heavily rely on the reverse diffusion ODE in Equation (). Current solvers are mainly
focused on DDPM/VP noise schedules. [Lu et al.|(2022); Zhang & Chen|(2023) discovered the semi-
linear structure in DDPM/VP reverse ODEs. Furthermore, Zhao et al.|(2023) enhanced the sampling
quality by borrowing the predictor-corrector structure. Thanks to the multi-step ODE solvers, high-
quality samples can be generated within as few as 10 steps. To further improve efficiency, |Gao
et al.| (2023) tracks the backward error and determines the adaptive step. Moreover, [Karras et al.
(2022); |Lu et al.| (2022)) proposed a handcrafted timestep scheduler to sample respaced timesteps.
However, Xue et al.|(2024) argued that the timestep sampled in|Karras et al.|(2022)); [Lu et al.|(2022)
is suboptimal, and thus proposed an online optimization algorithm to find the optimal sampling
timestep for generation. Apart from timestep optimization, |[Shaul et al.| (2023) learned a specific
path transition to improve the sampling efficiency.

3  PROBLEM DEFINITION

As rectified-flow constitutes a simple yet elegant formulation within the diffusion family, we choose
rectified-flow as the primary subject of discussion in this paper to enhance readability. Importantly,
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Figure 2: Generated images from Flux.1-dev with Guidance=2.0 and our solver (searched on
SiT-XL/2). Euler-Shift3 is the default solver provided by diffusers and Flux community. Our solver(DS-
Solver) achieves better visual quality from 5 to 10 steps(NFE).

our proposed algorithm is not constrained to rectified-flow models. We explore its applicability to
other diffusion models such as DDPM/VP in Section [fl

Recall the continuous integration of reverse-diffusion in Equation (7) with the pre-defined inter-
val {tg,t1, ...ty }. Given the pre-trained diffusion models and their corresponding ODE defined in
Equation (EI), before we tackle the integration of interval [¢;,¢;11], we have already obtained the
sampled velocity field of previous timestep {(x;,t;, v; = v (@, t;)}:_,. Here, we directly denote
x:, as x; for presentation clarity:

tit1
Tir] = x; —1—/ vg(xy, t)dt @)
t

i

As shown in Equation (8], we strive to develop a more optimal solver that minimizes the integral
error while enhancing image quality under limited sampling steps (NFE) without requiring any
parameter adjustments for the pre-trained model.

1
O = argmin E[||®(e,vp) — (€ —|—/ vg(xy, t)dt)]]]. (8)
0

4 ANALYSIS OF REVERSE-DIFFUSION ODE SAMPLING

Initially, we revisit the multi-step methods commonly used by [Zhao et al| (2023)); [Zhang & Chenl
(2023); [Lu et al| (2023) and identify potential limitations. Specifically, we argue that the La-

grange interpolation function used in Adams-Bashforth methods is suboptimal for diffusion models.
Moreover, we show that the specific form of the interpolation function is inconsequential, as pre-
integration and expectation estimation ultimately reduce it to a set of coefficients. Inspired by
(2024), we prove that timesteps and these coefficients effectively constitute our search space.

4.1 RECAP THE MULTI-STEP METHODS

As shown in Equation (9), the Euler method employs v; as the estimation of Equation (9) in whole
interval [t;,t,11]. Higher-order multi-step solvers further improve the estimation quality of the
integral by incorporating interpolation functions and leveraging previously sampled values.

i1 = @ + (tig1 — ti)ve(mi, ts). ©

The most classic multi-step solver Adams—Bashforth method [Bashforth & Adams| (1883) incorpo-
rates the Lagrange polynomial to improve the estimation accuracy within a given interval. It is
noteworthy that the number of NFE and sampling steps are essentially the same for multi-step meth-
ods. In contrast, Runge-Kutta and Huen methods require more NFE for a given number of sampling
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steps.
i

i+1 i
Ti1 AT+ / Z tk)vjdt (10)

ti jOkOk;ﬁ]

tit1
szrlez"_ E 'U]/

As Equation (11) states, ft T Hk 0k T = tk )dt of the Lagrange polynomial can be pre-integrated
into a constant coefﬁment resulting in only naive summation being required for ODE solving.
Current SoTA multi-step solvers [Lu et al.| (2023); [Zhao et al.| (2023) are heavily inspired by
Adams—Bashforth-like multi-step solvers. These solvers employ the Lagrange interpolation function
or difference formula to estimate the value in the given interval.

i)dt (11)

k 01975] tj =tk

However, the Lagrange interpolation function and other similar methods only take ¢ into account
while the v(x, t) also needs « as inputs. Using first-order Taylor expansion of « at «; and higher-
order expansion of ¢ at t;, we can readily derive the error bound of the estimation.

4.2 FOCUS ON SOLVER COEFFICIENTS INSTEAD OF THE INTERPOLATION FUNCTION

Different from general ODE solving problems, a compact searching space exists given reverse-
diffusion ODE and pre-trained models. We define a universal interpolation function P without an
explicit form. P measures the distance of (, t) between previous sampled points {(x;, t;)}}_, to

determine the interpolation weight for {v; }}_,.

it1 ¢
Tiy1 R T; + / ZP(azt,t, Zj, tj)'vjdt. (12)
t; S

Assumption 4.1. We assume that the remainder term of the universal interpolation function
Z;ZOP(mt,t,mj,tj)vj for v(x,t) is bound as O(dz™) + O(dt™), where O(dx™) is the mth-
order infinitesimal for d, O(dt™) is the nth-order infinitesimal for dt.

Equation has a recurrent dependency, as x; also relies on Z;:o P(xs,t, x;,t;)v;dt. To elimi-
nate the recurrent dependency, shown in Equation (I3), we simply use the first order Taylor expan-
sion of x(¢) at x; to replace the original form. Recall that v; is already determined by «; and ¢;, thus
the partial integral of Equation (I3) can be formulated as Equation (I4). Different from the naive
Lagrange interpolation, C;(x;) is a function of current x; instead of a constant scalar. Learning a
C;(z;) function will cause the generalization to be lost. This limits the actual usage in diffusion
model sampling.

i+1
T ~w1+2v]/ P(x; +v;(t —t;),t, ¢, t;)dt (13)
Tiy1 R x; + Z ’UjCj(iBi)(tiJrl - ti) (14)
§=0

Theorem 4.2. Given sampling time interval [t;,t;11] and suppose Cj(x;) = g;(ax;) + bl, Adams-
like linear multi-step methods have an error expectation of (tiy1 — t;)Ex, Z;:o v;g;(x;)|]. re-
placing C;(x) with Eo,[C;(x;)] is the optimal choice and owns an error expectation of (t;41 —
t))Ez, || Z;‘:o v;]g;(xi) — Eq, g;(x;)||. We place the proof in Appendix@

According to Theorem4.2| we opt to replace C; (x;) with its expectation E5, [C; (z;)], thus we obtain
diffusion-scheduler related coefficients while keeplng generalization ablhty Flnally, given the pre-

defined time intervals, we obtain the optimization target Equation (15), where c = Eg,[Cj(x;)].
The expectation can be deemed as optimized through massive data and gradlent descent.

Tip1 ~ @i+ Y vicl (tigr — i) (15)
5=0
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Figure 3: Generated images from SD3 with CFG=4.0 and our solver (searched on SiT-XL/2).
Euler-Shift3 is the default solver provided by diffusers and SD3 community. Our solver achieves better visual
quality in from 8 to 10 steps(NFE).

4.3 OPTIMAL SEARCH SPACE FOR A SOLVER

Assumption 4.3. As shown in Equation (I6), the pre-trained velocity model vy is not perfect and
the error between vy and ideal velocity field © is L1-bounded, where 7 is a constant scalar.

[0 = vl| < < |2 (16)

Previous discussions assume we have a perfect velocity function. However, the ideal velocity is
hard to obtain, we only have pre-trained velocity models. Following Equation (I3)), we can expand
Equation (I3) from ¢;— to ¢;—n to obtain the error bound caused by non-ideal velocity estimation.

Theorem 4.4. The error caused by the non-ideal velocity estimation model can be formulated
in the following equation. We can employ triangle inequalities to obtain the error-bound(Ll) of
|@n — 2n||, the proof can be found in the Appendix|B|

N—-1 i
len —Enll <n Y Y [el(tipr — )]

i=0 j=0

Based on Theorem [#.4] since the error bound is related to timesteps and solver coefficients, we can
define a much more compact search space consisting of {c; } ., ;_q ;=1 and {t;}/ .

Theorem 4.5. Based on Theorem and Theorem We can derive the total upper error
bound(LI) of our solver search method and other counterparts. The total upper error bound of
Our solver search is:

N—1 7 7
D (i = )OO e, g (i) + 0+ Ba || > vg5(2i) — Fas, g (:)]])
i=0 j=0 j=0

Compared to Adams-like linear multi-step methods. Our searched solver has a small upper error
bound. The proof can be found in the Appendix|B]

Through Theorem 4.3} our searched solvers own a relatively small upper error bound. Thus we can
theoretically guarantee optimal compared to Adams-like methods.

5 DIFFERENTIABLE SOLVER SEARCH.

Through previous discussion and analysis, we identify {cz7 }é‘\’<i,j:0,i:1 and {t;} ¥ as the target

search items. To this end, we propose a data-driven, differentiable solver search approach to deter-
mine these target items.
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Algorithm 1 Solver Parametrization Algorithm 2 Differentiable Solver Search
Requires: {r;, } and {c, } Require: vy model, {At;, }X ', M, A buffer Q.
TimeDeltas: Atg, Aty ..., Atp_1. Compute {&;, }leo = Euler(e, vy) .
SolverCoefficients: M € RYV*Y for i = f? to N — 1do
{At;, }=Softmax({r;}) Q "E vy (xe,, 1)

10 0 Compute v = Z;:o M;;Q;.
a l-a liv1 =t + At;
M= . : : - Ty, =T, + VAL
0 v ) el & end for
Cno1 Cno1 o =3 isgcna return: &, ., ﬁ({fﬁl}fzo, {mz}f\;o)

Timestep Parametrization. As shown in Algorithm we employ unbounded parameters
{rs, }fV: 51 as the optimization subject, as the integral interval is from O to 1, we convert r; into
time-space deltas At; with softmax normalization function to force their summation to 1. We can
access timestep t; 1 through ¢, = ¢; + At;. We initialize {ri}il\gol with 1.0 to obtain a uniform
timestep distribution.

Coefficients Parametrization. Inspired by Xue et al.(2024). Given Equation (T5) and Equation .,
when the velocity field vg(x, t) yields constant value, an implicit constraint y ., _, ¢t =1 emerges

This observation motivates us to re-parameterize the diagonal value of M as {1 — Zj B C‘Z,

We initialize {c¥, } with zeros to mimic the behavior of the Euler solver.

Mono-alignment Supervision. We take the L-step Euler solver’s ODE trajectory {&}F_ as refer-
ence. We minimize the gap between the target and source trajectories with the MSE loss. We also
adopt Huber loss as auxiliary supervision for x:, .

6 EXTENDING TO DDPM/VP FRAMEWORK

Applying our differentiable solver search to DDPM is infeasible. However, Song et al.| (2020b)
suggests that there exists a continuous SDE process with {f(t) = —1;; g(t) = /B, } correspond-
ing to discrete DDPM. This motivates us to transform the search space from the infeasible discrete
space to its continuous SDE counterpart. |Lu et al.| (2022) and |[Zhang & Chen| (2023) discover the
semi-linear structure of diffusion and propose exponential integral with e parametrization to tackle

the fast sampling problem of DDPM models, where o, = efo ~38:d5 5, = \/1 — eJo —Psds and
At = log % Lu et al.[(2023) further discovers that x parametrization is more powerful for diffusion

sampling under limited steps, where & = *£-

At
xr; = ﬂms + O't/ EA:f}g(GCt()\),t(/\))d)\ a7

s s

We opt to follow the & parametrization as DPM-Solver++. However, we find directly interpolating
e xg(zy,t) as a whole part is hard for searching, and yields worse results. To avoid conflating the
. . . . S T o .

?nterpolatl(')n coefﬁmeets Wlﬂ'l e?(poeentlal 1ntegral, we employ w; = o and transform Equation |i
into Equation (18) with a similar interpolation format as Equation (14), where ¢(w) maps w to

timestep.
i

o _
€T~ U—tms + o (wy — wg) Zc?mg(mk,tk) (18)
8 k=1

7 EXPERIMENT

We demonstrate the efficiency of our differentiable solver search by conducting experiments on pub-
licly available diffusion models. Specifically, we utilize DiT-XL/2 |Peebles & Xie| (2023) trained
with DDPM scheduling and rectified-flow models SiT-XL/2 [Ma et al.| (2024) and FlowDCN-
XL/2 |Anonymous| (2024). Our default training setting employs the Lion optimizer Chen et al.
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Figure 4: Ablations studies of Differentiable Solver Search. We evaluate the searched solver on SiT-
XL/2, and report the FID performance curve of searched solvers.
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Figure 5: The same searched solver on different Rectified-Flow Models. R256 and R512 indi-
cate the generation resolution of given model. We search solver with FlowDCN-B/2 on ImageNet-256 x 256
and evaluate it with SiT-XL/2 and FlowDCN-XL/2 on different resolution datasets. Our searched solver out-
performs traditional solvers by a significant margin. More metrics(sFID, IS, Precision, Recall) are places at
Appendix

(2024b)) with a constant learning rate of 0.01 and no weight decay. We sample 50,000 images
for the entire search process. Notably, searching with 50,000 samples using FlowDCN-B/2 requires
approximately 30 minutes on 8 x H20 computation cards. During the search, we deliberately avoid
using CFG to construct reference and source trajectories, thereby preventing misalignment.

7.1 RECTIFIED FLOW MODELS

We search solver with FlowDCN-B/2, FlowDCN-S/2 and SiT-XL/2. We compare the search
solver’s performance with the second-order and fourth-order Adam multi-step method on SiT-XL/2,
FlowDCN-XL/2 trained on 256 x 256 and FlowDCN-XL/2 trained on 512 x 512.

Search Model. We tried different search models among different size and architecture. We report
the FID performance and reconstruction error of SiT-XL/2 in Figure [4aland Figure 4b|respectively.
Surprisingly, we find that the FID performance of SiT-XL/2 equipped with the solver searched using
FlowDCN-B/2 outperforms the solver searched on SiT-XL/2 itself. Meanwhile, the reconstruction
error between the sampled result produced by Euler-250 steps is as expected. These findings suggest
that there exists a minor discrepancy between FID and the pursuit of minimal error in the current
solver design.

Step of Reference Trajectory. We provide reference trajectory {&}£ , of different sampling step
L for differentiable solver search. We take FlowDCN-B/2 as the search model and report the FID
measured on SiT-XL/2 in Figure 4c| As the sampling step of reference trajectory increases, the FID
of SiT-XL/2 further improves and becomes better. However, the performance improvement is not
significant at 5 and 6 steps, suggesting that the improvement bound for extremely limited steps.

ImageNet 256 x 256. We validate the searched solver on SiT-XL/2 and FlowDCN-XL/2. We arm
the pre-trained model with CFG of 1.375. As shown in Figure [5a] our searched solver improves
FID performance significantly and achieves 2.40 FID under 10 steps. As shown in Figure [5b} our
searched solver achieves 2.35 FID under 10 steps, beating traditional solvers by large margins.
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Figure 6: The images generated from PixArt-> with CFG=2.0 equipped with Our DS-Solver (
searched on DiT-XL/2-R256 ).In comparison to DPM-Solver++ and UniPC, our results consistently ex-
hibit greater clarity and possess more details. Our solver (DS-Solver) achieves better quality from 5 to 10
steps(NFE).

ImageNet 512 x 512. Since has not released SiT-XL/2 trained on 512 x 512
resolution, we directly report the performance collected from FlowDCN-XL/2. We arm FlowDCN-
XL/2 with CFG of 1.375 and four channels. Our searched solver achieves 2.77 FID under 10 steps,
beating traditional solver by a large margin, even slightly outperforming the Euler solver with 50
steps(2.81FID).

Text to Image. Shown in Figure 2] and Figure 3| we apply our solver search on FlowDCN-B/2 and
SiT-XL/2 to the most advanced Rectified-Flow model Flux.1-dev and SD3 [Esser et al.| (2024). We
find Flux.1-Dev would produce grid points in generation. To alleviate the grid pattern, we decouple
the velocity field into mean and direction, only apply our solver to the direction, and replace the
mean with an exponential decayed mean. The details can be found in the appendix.

7.2 DDPM/VP MODELS

We choose the open-source model DiT-XL/2 trained on ImageNet 256 x 256 as the search model to
conduct experiments. We compare the performance of the searched solver with DPM-Solver++ and
UniPC on ImageNet 256 x 256 and ImageNet 512 x 512.

ImageNet 256 x 256. Following [Peebles & Xie| (2023 and [Xue et al] (2024), We arm pre-trained
DiT-XL/2 with CFG of 1.5 and apply CFG only on the first three channels. As shown in Table [T}

our searched solver improves FID performance significantly and achieves 2.33 FID under 10 steps.

ImageNet 512 x 512. We directly apply the solver searched on 256 x 256 resolution to ImageNet
512 x 512. The result is also great to some extent, DiT-XL/2(512 x 512) achieves 3.64 FID under
10 steps, outperforming DPM-Solver++ and UniPC with a large gap.

Text to Image. As we search solver with DiT and its corresponding noise scheduler, so it is
infeasible to apply our solver to other DDPM models with different S, and B« Fortunately, we
find|Chen et al.|(20244) and [Chen et al.|(2023)) also employ the same S, and Sy« as DiT. So we can
provide the visualization results of our searched solver on PixArt-3 and PixArt-a.. Our visualization
result is produced with CFG of 2.
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Methods \NFEs 5 6 7 8 9 10
DPM-Solver++ with uniform-A|Lu et al.|(2023) 38.04 2096 14.69 11.09 832 647
DPM-Solver++ with uniform-¢ Lu et al.|(2023) 3132 1436 7.62 493 377 323

DPM-Solver++ with uniform-A-opt Xue et al.|(2024) 12.53 5.44 3.58 754 597 4.12
DPM-Solver++ with uniform-t-opt [Xue et al.|(2024) 1253 544 389 381 3.13 279

UniPC with uniform-A|Zhao et al.|(2023) 41.89 30.51 19.72 1294 849 6.13
UniPC with uniform-¢ Zhao et al.|(2023) 23.48 10.31 5.73 4.06 3.39 3.04
UniPC with uniform--opt|Xue et al.|{(2024) 8.66 446 357 372 340 3.01
UniPC with uniform-¢-opt [Xue et al.|{(2024) 8.66 446 374 329 301 274
Searched-Solver 740 394 279 251 237 233

Table 1: FID (|) of different NFEs on DiT-XL/2 (trained on ImageNet 256 x 256). -opr indicates
online optimization of the timesteps scheduler.

Methods \NFEs 5 6 7 8 9 10

UniPC with uniform-) Zhao et al.|(2023) 41.14 1981 13.01 9.83 831 7.01
UniPC with uniform-¢|Xue et al.|(2024) 2028 1047 657 513 446 4.14
UniPC with uniform-A-opt|Xue et al.|(2024) 1140 595 482 468 693 6.01
UniPC with uniform-t-opt|Xue et al.|(2024) 11.40 595 464 436 405 381

Searched-solver(searched on DiT-XL./2-R256) 10.28 6.02 431 3.74 3.54 3.64

Table 2: FID ({) of different NFEs on DiT-XL/2 (trained on ImageNet 512x512).
7.3 VISUALIZATION OF SOLVER PARAMETERS

Searched Coefficients are visualized in Figure[I] The absolute value of searched coefficients corre-
sponding to DDPM/VP shares a different pattern, coefficients in DDPM/VP are more concentrated
on the diagonal while rectified-flow demonstrates a more flattened distribution. This indicates there
exists a more curved sampling path in DDPM/VP compared to rectified-flow.

Searched Timesteps are visualized in Figure Compared to DDPM/VP, rectified-flow models
more focus on the more noisy region, exhibiting small time deltas at the beginning. We fit the
searched timestep of different NFE with polynomials and provide the respacing curves in Equa-
tion (19) and Equation (20). ¢ € [0, 1], and ¢ = 0 indicates the most noisy timestep.

Rectified-Flow : — 1.96t* + 3.51¢> — 0.97¢% + 0.43¢ — 0.003 (19)
DDPM/VP : — 2.73t* + 6.30t3 — 4.744t> + 2.17t — 0.0002 (20)

8 CONCLUSION

We find a compact solver search space and propose a novel differentiable solver search algorithm
to identify the optimal solver. Our searched solver outperforms traditional solvers by a significant
margin. Equipped with the searched solver, DDPM/VP and Rectified Flow models significantly
improve under limited sampling steps. However, our proposed solver still has several limitations(See
Appendix), which we plan to address in future work.
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REBUTTALS

Q.1 MORE METRICS OF SEARCHED SOLVER

We adhere to the evaluation guidelines provided by ADM and DM-nonuniform, reporting only the
FID as the standard metric in Figure[5al To clarify, we do not report selective results on rectified flow
models; we present sFID, IS, PR, and Recall metrics for SiT-XL(R256), FlowDCN-XL/2(R256),
and FlowDCN-B/2(R256). Our solver searched on FlowDCN-B/2, consistently outperforms the

handcrafted solvers across FID, sFID,

Performance of solvers on SiT-XL/2

IS, and Recall metrics.

Performance of solvers on FlowDCN-XL/2(256x256)

Performance of solvers on FlowDCN-XL/2(512x512)
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Figure 7: The same searched solver on different Rectified-Flow Models. R256 and R512 indicate
the generation resolution of given model. We search solver with FlowDCN-B/2 on ImageNet-256 x 256 and
evaluate it with SiT-XL/2 and FlowDCN-XL/2 on different resolution datasets. Our searched solver outper-

(§) SiT-XL/2-R256

(k) FlowDCN-XL/2-R256

forms traditional solvers by a significant margin.
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Q.210-STEP SOLVER OUTPERFORMING 50 EULER STEPS.

Linear multistep-based high-order solvers can significantly boost performance in simulations with
a limited number of time steps. By leveraging the reference trajectory from the Euler solver with
100 steps, it is possible to outperform the Euler solver with 50 steps. As illustrated in all metrics,
our solver enables SiT-XL/2-R256 and FlowDCN-XL/2-R256 to achieve better Recall scores than
the Euler solver with 50 steps. Notably, FlowDCN-XL/2-R512 with our solver surpasses its Euler
counterpart in terms of sFID, Precision, and Recall, demonstrating its exceptional performance.

Q.3 COMPUTATIONAL COMPLEXITY COMPARED TO OTHER METHODS.

For sampling. When performing sampling over n time steps, our solver caches all pre-sampled
predictions, resulting in a memory complexity of @(n). The model function evaluation also has a
complexity of O(n) (O(2 x n) for CFG enabled). It is important to note that the memory required
for caching predictions is negligible compared to that used by model weights and activations. Be-
sides classic methods, we have also included a comparison with the latest Flowturbo published on
NeurIPS24.

Steps | NFE | NFE-CFG | Cache Pred | Order | search samples

Adam?2 n n 2n 2 2 /

Adam4 n n 2n 4 4 /

heun n 2n 4n 2 2 /

DPM-Solver++ | n n 2n 2 2 /

UniPC n n 2n 3 3 /

FlowTurbo n >n >2n 2 2 540000(Real)

our n n 2n n n 50000(Generated)

For searching. Solver-based algorithms, limited by their searchable parameter sizes, demon-
strate significantly lower performance in few-step settings compared to distillation-based algo-
rithms(5/6steps), making direct comparisons inappropriate. Consequently, we selected algorithms
that are both acceleratable on ImageNet and comparable in performance, including popular meth-
ods such as DPM-Solver++, UniPC, and classic Adams-like linear multi-step methods. Since our
experiments primarily utilize SiT, DiT, and FlowDCN that trained on the ImageNet dataset. We also
provide fair comparisons by incorporating the latest acceleration method, FlowTurbo. Additionally,
we have included results from the heun method as reported in FlowTurbo.

SiT-XL-R256 | Steps | NFE-CFG | Extra-Paramters | FID | IS PR | Recall
Heun 8 16x2 0 3.68 | / / /
Heun 11 22x2 0 279 |/ / /
Heun 15 30x2 0 242 |/ / /
Adam?2 16 16x2 0 242 | 237 0.80 | 0.60
Adam4 16 16x2 0 227 | 243 0.80 | 0.60
FlowTurbo 6 (7+3)x2 30408704(29M) | 3.93 | 223.6 | 0.79 | 0.56
FlowTurbo 8 (8+2)x2 30408704(29M) | 3.63 | / / /
FlowTurbo 10 (1242)x2 | 30408704(29M) | 2.69 | / / /
FlowTurbo 15 (17+3)x2 | 30408704(29M) | 2.22 | 248 0.81 | 0.60
ours 6 6x2 21 3.57 | 214 0.77 | 0.58
ours 7 7x2 28 278 | 229 0.79 | 0.60
ours 8 8x2 36 2.65 | 234 0.79 | 0.60
ours 10 10x2 55 2.40 | 238 0.79 | 0.60
ours 15 15x2 55 224 | 244 0.80 | 0.60

Q.4 ABLATION ON SEARCH SAMPLES

We ablate the number of search samples on the 10-step and 8-step solver settings. Samples means
the total training samples the searched solver has seen. Unique Samples means the total distinct
samples the searched solver has seen. Our searched solver converges fast and gets saturated near
30000 samples.
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iters(10-step-solver) | samples | unique samples | FID | IS PR | Recall
313 10000 10000 2.54 1 239 | 0.79 | 0.59
626 20000 10000 2.38 | 239 | 0.79 | 0.60
939 30000 10000 249 | 240 | 0.79 | 0.59
1252 40000 10000 2.29 | 239 | 0.80 | 0.60
1565 50000 10000 241 | 240 | 0.80 | 0.59
626 20000 20000 2.47 | 237 | 0.78 | 0.60
939 30000 30000 240 | 238 | 0.79 | 0.60
1252 40000 40000 248 | 237 | 0.80 | 0.59
1565 50000 50000 241 | 239 | 0.80 | 0.59
iters(8-step-solver) | samples | unique samples | FID | IS PR Recall
313 10000 10000 299 | 228 | 0.78 | 0.59
626 20000 10000 2778 | 229 | 0.79 | 0.60
939 30000 10000 2772 | 235 | 0.79 | 0.60
1252 40000 10000 2.67 | 228 | 0.79 | 0.60
1565 50000 10000 2.69 | 235 | 0.79 | 0.59
626 20000 20000 270 | 231 | 0.79 | 0.59
939 30000 30000 2.82 | 2321 0.79 | 0.59
1252 40000 40000 279 | 231 | 0.79 | 0.60
1565 50000 50000 2.65 | 234 | 0.79 | 0.60

Q.5 STOPPED EVALUATION AT 5 STEPS.

Since DM-nonuniform introduced the most effective online optimization solver before our search-
based approach, we leveraged their results for comparison on DDPM models. We followed the
evaluation pipeline established by DM-nonuniform to report performance within 5 and 10 optimiza-
tion steps. In general, solver-based methods tend to exhibit inferior results under extremely limited
numbers of function evaluations (NFE), such as 5 or 6 steps. As the solving difficulty increases and
the number of searchable parameters decreases (e.g., only 10 searchable parameters for 4 steps and
6 searchable parameters for 3 steps), the performance of solver-based methods falls significantly
behind that of distillation methods when limited to fewer than 5 steps. Notably, it is unlikely for
solver-based methods to achieve performance comparable to or exceeding that of distillation meth-
ods, such as CM, given that their number of learnable parameters is tens of thousands of times larger
than our searchable parameters.

Furthermore, integrating denoiser distillation with solver search holds significant promise for achiev-
ing even greater performance enhancements.

Steps | NFE-CFG | Extra-Paramters | FID IS PR Recall

Euler 1 1x2 / 300 2.32 / /

Euler 50 50x2 / 2.23 244 0.80 | 0.59
Adam2 | 3 3x2 / 41.2 68.6 0.44 | 0.46
Adam? | 4 4x2 / 15.25 | 133.6 | 0.65 | 0.50
Adam?2 | 5 5x2 / 8.96 170 0.73 | 0.53
Adam2 | 6 6x2 / 6.35 191 0.76 | 0.55
Adam?2 | 15 15x2 / 2.49 236 0.79 | 0.59

| Adam4 [ 15 [ 15x2 [ / [ 2.33 [ 242 [ 0.80 [ 0.59 ]

ours 1 1x2 0 300 2.32 / /

ours 3 3x2 6 39.3 68.6 0.46 | 0.52
ours 4 4x2 10 13.9 135 0.65 | 0.55
ours 5 5x2 15 4.52 194 0.75 | 0.58
ours 6 6x2 21 3.57 214 0.77 | 0.58
ours 15 15x2 55 2.24 244 0.80 | 0.60
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Q.6ERROR BOUND ANALYSIS IN SECTION 4.3

Our primary objective is to design a compact search space that enables the identification of a solver
that achieves near-optimal performance. To accomplish this, we must first establish the constituent
components of the search space for the optimal solution. Notably, if the error bound is independent
of the number of steps, our search can be limited to the coefficients alone. In fact, it can be proved
that the error bound is dictated by the time selection and the coefficients.

Q.7 REPHRASE NARRATIVE STYLE WRITING AS THEOREMS.

Thanks for your suggestions. We will re-organize the structure of our paper. We will add some
summarization theorems in each subsection.

Q.8 WHAT IS 7 IN SECTION 4.3?

7 is a constant scalar. We will add more explanation of notations in the finial version.

Q.9 RICHARDSON’S EXTRAPOLATION FOR SOLVING ODE

Yes, the Adams-like linear multi-step method employs Lagrange interpolation to determine its co-
efficients, which makes it feasible to substitute Lagrange interpolation with alternative interpolation
(or extrapolation) techniquesFekete & Loczil (2022)), such as Richardson’s method. Nevertheless,
Richardson functions also solely rely on the variable ¢, without considering x.

Q.10 SOLVER ACROSS DIFFERENT VARIANCE SCHEDULES

Since our solvers are searched on a specific noise scheduler and its corresponding pre-trained mod-
els, applying the searched coefficients and timesteps to other noise schedulers yields meaning-
less results. We have tried applied searched solver on SiT(Rectified flow) and DiT(DDPM with
Bmin = 0.1, Bimaz = 20) to SD1.5(DDPM with 5,5, = 0.085, Smaz = 12), but the results were in-
conclusive. Notably, despite sharing the DDPM name, DiT and SD1.5 employ distinct 8,55, Bmaz
values, thereby featuring different noise schedulers. A more in-depth discussion of these experi-
ments can be found in Section(Extend to DDPM/VP).

Q.11 SOLVER FOR DIFFERENT VARIANCE SCHEDULES

As every DDPM has a corresponding continuous VP scheduler, so we can transform the discreet
DDPM into continuous VP, thus we successfully searched better solver compared to DPM-Solvers.
The details can be found in Section[6] To put it simply, under the empowerment of our high-order
solver, the performance of DDPM and FM does not differ significantly (8, 9, 10 steps), which
contradicts the common belief that FM is stronger at limited sampling steps.

Q.12 TEXT TO IMAGE METRICS RESULT

We take PixArt-alpha as the text-to-image model. We follow the evaluation pipeline of ADM and
take COCO17-Val as the reference batch. We generate Sk images using DPM-Solver++, UniPC and
our solver searched on DiT-XL/2-R256.

Q.13 LIMITATIONS.

We place the limitation at the appendix, in order to provide more discussion space and obtain more
insights from reviews. We copy the original limitation content and add more.

Misalignd Reconstrucion loss and Performance. Our proposed methods are specifically designed
to minimize integral error within a limited number of steps. However, ablation studies reveal a mis-
match between FID performance and Reconstruction error. To address this issue, we plan to enhance
our searched solver by incorporating distribution matching supervision, thereby better aligning sam-
pling quality.
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Steps | FID | sFID | IS PR Recall
DPM++ | 5 60.0 | 209 25.59 | 0.36 | 0.20
DPM++ | 8 384 | 1169 | 33.0 | 0.50 | 0.36
DPM++ | 10 356 | 114.7 | 33.7 | 0.53 | 0.37
UniPC 5 57.9 | 2064 | 25.88 | 0.38 | 0.20
UniPC 8 37.6 | 1153 | 333 | 0.51 | 0.36
UniPC 10 353 | 1133 | 33.6 | 0.54 | 0.36
Ours 5 46.4 | 204 28.0 | 046 | 0.23
Ours 8 33.6 | 1152 | 32.6 | 0.54 | 0.39
Ours 10 334 | 1147 | 325 | 0.55 | 0.39

Larger CFG Inference. In the main paper, we demonstrate text-to-image visualization with a small
CFG value. However, it is intuitive that utilizing a larger CFG would result in superior image quality.
We attribute the inferior performance of large CFGs on our solver to the limitations of current naive
solver structures and searching techniques. We hypothesize that incorporating predictor-corrector
solver structures would enhance numerical stability and yield better images. Additionally, training
with CFGs may also be beneficial.

Resource Consumption We can hard code the searched coefficients and timesteps into the program
files. However, Compared to hand-crafted solvers, our solver still needs a searching process.
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A PROOF OF PRE-INTEGRAL ERROR EXPECTATION

Theorem A.1. Given sampling time interval [t;,t;, 1] and suppose Cj(x) = g;(x)+ b, Adams-like
linear multi-step methods will introduce an upper error bound of (t; 41 —t;)Eq,|| Z;‘:o v;g; ()]l

Our solver search(replacing Cj(x) with Eq,[C;(x;)]) owns an upper error bound of (tiy1 —
ti)Eq, Z;‘:O v;[gj(xi) — Ex,g;(z:)|

Proof. Suppose Cj(x;) = g;j(x;) + bz . Adams-like linear multi-step methods would not consider
z-related interpolation. thus pre-integral coefficients of Adams-like linear multi-step methods will
only reduce into b.

We obtain the error expectation of the pre-integral of Adams-like linear multi-step methods:

21> 0[Ci (@) (tigr — ti) = Y 0;b] (ti1 — t:)| (21)
= pard

Eo, Zvj i1 1)[Cj (i) — b]| (22)

=(tiy1 —ts) Ee, I Z'Ujgj x;)| 23)

We obtain the error expectation of the pre-integral of our solver search methods:

2l D0 [Ci(@)) (i — 1) = > vEa [Cj(ai)] (tia — 1) 24)
i=0 =0

=Ez,|| Z vj(tiv1 — 1) [Cj(wi) — Ea,Cj ()| (25)

=(tit1 — ti)Ea, ||ZU] 95 (@i) — Ea,g; ()| (26)

Next, define the optimization problem:
E =Eq,|| Y vilgi(x:) — aj]lf3.
§=0

We suppose different v; are orthogonal and ||v;]|3 = 1. As we leave ¢’ as the expectation of C;(;),
we will demonstrate this choice is optimal.

5 = —2Ea, (v 13(0; (2:) — a,)) @D

Ea, gi (i)l ]v5]13
Ez, [[v;113

= Eq,9;(xi) = Ea,Cj(x:) — b1,

OF _ s —
Let 55 = 0, we obtain: a; = :

So our searched solver has a lower and optimal error expectation:
(tivr —ti) wzHZv.} 95 (@) — Ea,gj(@i)]|| < (tiv1 — i) wzHZng] z;)|| (28)

18
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Recall Assumption 4.1} the integral upper error bound of universal interpolation P will be:

t'i+1 i ti+1
||/ v(wt,t)dt—Zvj/ Plas,t,x;,t;)dt||.
ti §j=0 ti
tit1 tig1 ¢
:||/ v(a:t,t)dt—/ S Pty g, )yt
t; t; =0

1+1
_|| v(@y, t Z?mf,t,mj, Jv,]dt]|.
i+1

</ [lv(e, t ZP (x4, t, 5, t5)v,||dt.
¢

i

<(tiy1 —t;)[O(dz™ ) + O(dt™)]

(29)

(30)

€2y

(32)

(33)

Combining Equation and the error expectation of the pre-integral part, we will get the total error

bound of the solver search.

tit1

I (@, t)dt — Y 0 Bq, [Cj ()] (fi1 — )]
ti jZO
tit1 i tit1
=||/ v(a:t,t)dt—z'vj/ Plwst, @yt )di+
t; =0 t;
i+1
Z%/ Plant,z,t; Z% (@)](tie — )]
tl+1 t1+1
<||/ v(xy, t dt—Zvj/ P(xy,t,x),t;)dt||+
it1
||Z"’J/ P(ae,t, Z"’J o, [Cj(®i)] (i1 — ).
i+1 i+1
—||/ v(@y, t dtfz'v]/ Play, t, @, t;)dt||+
7=0 t
| ZUJ x;)](tiv1 — ;) — Z%‘Ewi [Cj ()] (titr — )]l
3=0

<(E+1—tﬁmxdmm)+cxdfﬁ]+(E+1—tJE&J|§:”HQﬂwO'—Em9ﬂ$0H

> wjilgj (i) — Ea,g;(:)]]])

Jj=0

<(tiss — t)([(Oda™) + O(dt")] + Eq,

(34)

(35)

(36)

(37

(38)

(39)

(40)

(41)

(42)

Since ((O(dx™) + O(dt™)) is much smaller than E,|| Z;:o v;(gj(x;) — Eg,95(x;)]||. We can

omit the ((O(dz™) + O(dt™)) term.

B PROOF OF TOTAL UPPER ERROR BOUND

O

Theorem B.1. Compared to Adams-like linear multi-step methods. Our Solver search has a small

upper error bound.

19
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The total upper error bound of Adams-like linear multi-step methods is:

N-1 [ %
> () Sl + B 1S wslgs (ol
i=0 =0 j=0

The total upper error bound of Our solver search is:

N-1 i 7
D (tisr =) Y nlBa,g; (@) + U] + B, || Y 0j9;(x:) — B, g5(:)|])
i=0 j=0 =0

Proof. We donate the continuous integral result of the ideal velocity field ¥ as &, the solved integral
result of the ideal velocity field © as &, the continuous integral result of the pre-trained velocity
model vy as &, the solved integral result of the pre-trained velocity model vy as x .

N—1 i
TN = €+ Z Z 'chg(ti—i-l - ti) 43)
i=0 j=0
The error caused by the non-ideal velocity estimation model can be formulated in the following
equation. we can employ triangular inequalities to obtain the error-bound ||xx — Z /||, which is
related to solver coefficients and timestep choices.

N—-1 1

ey —@nll =1 > (v c(tivr — i)
=0 j=0
N—-1 1 )
<D0 My = By)e (tig — 1)
i=0 j—=0
N—-1 1 )
< v — 9;)] x [ (tig1 — 1)
i=0 j—=0
-1 1 ]
<n |c] (tiva — ti)]
i=0 j=0

The total error of our searched solver is:
ey — 2|
:||.’1}N — N +ITN — :f3||
<|len — 2n|| + ||[ZN — 2]

N-1 i
<n YD lel(tin — )|+

i=0 j=0

2

(tir1 = t:)(O(da™) + O(dt") + Eq, || Y vlg;(@i) — Ea,g;(@i)][])

Jj=0

nz|c it — )| + (s — 1B || 3 05195 (@:) — Ea,g ()]
=0

Q
M7
S ,_,o

=2

=) (tiy1— 1) Z NEa,g;(2:) + |+ Ea, || Y vjlg;(:) — Ea,g;(2)][])
=0 =0

<.
[}

The total error of Adams-like linear multi-step method is:
N—-1

Z Zn\bJHEwIHZ'vJ g;(

1=0
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Obviously, as (Z;IO n|b? |+ Ea, Z;:o v;[g;j(x:)]]|) is not equal between different timestep inter-
vals, Optimized timesteps owns smaller upper error bound than uniform timesteps.

>0 vilgi (@)

Recall that E, || Z;:O v;(gj () — Eg,95(x:)]|] < Eg, Z;:o v;[g;j(2;)]||, thus our solver search
has a minimal upper error bound because we search coefficients and timesteps simultaneously.

Recall that ) < ||v;][, the error is mainly determined by E,,

O

21
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C SEARCHED PARAMETERS

We provide the searched parameters At and cZ Note c{ needs to be converted into M follwing
Algorithm[T]}

C.1

SOLVER SEARCHED ON SI1T-XL/2

NFE TimeDeltas At

Coeffcients C‘Z]

[0.0424] 0.0 0.0 0.0 0.0 0.0
0.1225 -1.17 0.0 0.0 0.0 0.0
5 0.2144 1.07 -1.83 0.0 0.0 0.0
0.3073 0.0 0.0 —-093 00 0.0
10.3135 ] 0.0 0.0 0.0 -0.71 0.0
[0.0389] 0.0 0.0 0.0 0.0 0.0 0.0
0.0976 —-1.04 0.0 0.0 0.0 0.0 0.0
6 0.161 1.62 —-298 0.0 0.0 0.0 0.0
0.2046 —-1.32 252 -2.04 0.0 0.0 0.0
0.2762 0.0 0.0 0.0 —-0.76 0.0 0.0
10.2217 | 0.0 0.0 0.0 0.0 —0.66 0.0
r0.02997 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0735 -0.93 0.0 0.0 0.0 0.0 0.0 0.0
0.1119 1.23 =231 0.0 0.0 0.0 0.0 0.0
7 0.1451 -0.59 153 -=2.09 0.0 0.0 0.0 0.0
0.1959 -0.09 -0.07r 099 -191 0.0 0.0 0.0
0.2698 0.06 -021 0.09 055 -147 0.0 0.0
L0.1738] -0.05 0.19 -031 037 067 —1.79 0.0
r0.03037 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0702 -0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0716 0.78  —-1.7 0.0 0.0 0.0 0.0 0.0 0.0
3 0.1112 0.06 052 -176 0.0 0.0 0.0 0.0 0.0
0.1501 -0.02 -0.16 098 -1.8 0.0 0.0 0.0 0.0
0.1833 -0.02 -0.12 0.22 024 -136 0.0 0.0 0.0
0.2475 -01 006 -0.02 018 012 -1.1 0.0 0.0
10.1358] |—0.16 0.14 -0.02 -0.02 0.38 0.32 -—-1.72 0.0
[0.028 7 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0624 -0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0717 0.63 -1.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0894 039 -0.11 -141 0.0 0.0 0.0 0.0 0.0 0.0
9 0.1092 -0.07 —-0.05 083 -1.59 0.0 0.0 0.0 0.0 0.0
0.1307 0.07 -0.11 027 027 -153 0.0 0.0 0.0 0.0
0.1729 —-0.05 0.03 0.01 0.15 017 -1.15 0.0 0.0 0.0
0.2198 -0.21 027 -0.07 -0.03 019 009 -0.99 00 0.0
10.1159 ] |1—0.15 0.15 0.03 —-0.09 0.25 0.25 021 -1.71 0.0
[0.02797 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0479 —-0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0646 059 -1.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0659 035 -0.11 —-145 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.1045 —-0.13 0.01 0.7 =149 0.0 0.0 0.0 0.0 0.0 0.0
0.1066 0.05 —=0.05 0.31 029 -1.59 0.0 0.0 0.0 0.0 0.0
0.1355 0.05 -0.03 -0.09 023 017 -1.19 0.0 0.0 0.0 0.0
0.1622 -0.03 0.07r -0.09 -0.03 0.27v -0.03 -091 0.0 0.0 0.0
0.1942 -0.15 0.17  0.03 -0.09 0.05 009 005 -079 00 0.0
10.0908 |—0.17 0.11 0.15 0.03 0.05 025 005 -0.07 —-1.49 0.0
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C.2 SOLVER SEARCHED ON FLOWDCN-B/2

NFE TimeDeltas At

Coeffcients CZ

[0.05217 0.0 0.0 0.0 0.0 0.0
0.1475 -1.26 0.0 0.0 0.0 0.0
5 0.2114 1.38 =226 0.0 0.0 0.0
0.2797 0.0 0.0 =092 0.0 0.0
10.3092 | 0.0 0.0 0.0 -0.7 0.0
[0.0391] 0.0 0.0 0.0 0.0 0.0 0.0
0.0924 -1.22 0.0 0.0 0.0 0.0 0.0
6 0.165 112 -2.0 0.0 0.0 0.0 0.0
0.2015 -03 09 -1.56 0.0 0.0 0.0
0.2511 0.0 0.0 0.0 -0.74 0.0 0.0
10.2511 0.0 0.0 0.0 0.0 -0.62 0.0
r0.03877 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0748 -1.11 0.0 0.0 0.0 0.0 0.0 0.0
0.103 1.03 —-199 0.0 0.0 0.0 0.0 0.0
7 0.1537 0.07 043 —-1.57 0.0 0.0 0.0 0.0
0.184 -0.21 -0.15 1.53 -229 0.0 0.0 0.0
0.234 -0.05 0.07 -023 061 -133 0.0 0.0
10.2117] -0.17 031 -0.41 0.17 059 -1.31 0.0
r0.00717 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0613 —-243 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.078 0.61 —-1.55 0.0 0.0 0.0 0.0 0.0 0.0
3 0.1163 099 -0.11 -2.07 0.0 0.0 0.0 0.0 0.0
0.1421 0.06 -049 133 -193 0.0 0.0 0.0 0.0
0.188 0.06 =033 023 073 -171 0.0 0.0 0.0
0.2077 -0.09 025 -029 005 061 -145 0.0 0.0
10.1996] |1—0.23 0.21 -0.01 -0.25 0.25 041 -1.25 0.0]
[0.00177 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.051 —-6.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0636 —-0.11 =081 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0911 0.73 -017 -137 0.0 0.0 0.0 0.0 0.0 0.0
9 0.1007 031 -005 019 -145 0.0 0.0 0.0 0.0 0.0
0.1443 0.03 -023 029 035 -135 0.0 0.0 0.0 0.0
0.1694 -0.19 0.056 0.01 0.21 025 -1.23 0.0 0.0 0.0
0.191 -0.23 0.21 -0.13 0.17v 0.09 0.09 -1.09 00 0.0
10.1872] |-0.1v 0.15 011 -0.19 0.03 023 017 -—-1.21 0.0
[0.00167] [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07
0.0538 —7.8801 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0347 -04 -0.74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0853 0.48 -0.18 —-0.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0853 0.26 —-0.04 -0.04 -1.28 0.0 0.0 0.0 0.0 0.0 0.0
0.1198 0.0 -0.06 026 026 -142 0.0 0.0 0.0 0.0 0.0
0.1351 -0.1 —-0.06 0.08 0.2 022 -1.24 0.0 0.0 0.0 0.0
0.165 —0.18 0.14 -0.08 0.1 0.08 014 -1.06 0.0 0.0 0.0
0.1788 —0.12 0.16 -0.1 0.04 008 006 008 -—=1.02 0.0 0.0
10.1406 | —0.16 0.02 0.14 0.0 —0.14 0.08 014 034 —-1.38 0.0]
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C.3 SOLVER SEARCHED ON DIT-XL/2

NFE TimeDeltas At Coeffcients c]
[0.2582] 0.0 0.0 0.0 0.0 0.0
0.1766 -1.43 0.0 0.0 0.0 0.0

5 0.1766 093 —-155 0.0 0.0 0.0
0.2156 0.0 0.0 —-069 00 0.0
10.1731] 0.0 0.0 0.0 -0.59 0.0
[0.2483] 0.0 0.0 0.0 0.0 0.0 0.0
0.1506 -1.36 0.0 0.0 0.0 0.0 0.0

6 0.1476 09 -—-184 0.0 0.0 0.0 0.0
0.1568 -0.08 05 —1.08 0.0 0.0 0.0
0.1733 0.0 0.0 0.0 -056 0.0 0.0
10.1233 ] 0.0 0.0 0.0 0.0 —0.56 0.0
r0.22417 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1415 —1.38 0.0 0.0 0.0 0.0 0.0 0.0
0.1205 1.08 —-2.02 0.0 0.0 0.0 0.0 0.0

7 0.1158 —0.28 078 —-1.52 00 0.0 0.0 0.0
0.1443 —1.490le—-08 —-0.1 064 —-15 0.0 0.0 0.0
0.1627 0.06 -0.06 —-0.06 0.26 -1.0 00 0.0
L0.0911] 0.0 —-0.1  0.02 0.2 026 -1.12 0.0
r0.20337 r 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1476 —-1.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1094 0.8 —1.76 0.0 0.0 0.0 0.0 0.0 0.0

] 0.099 0.02 048 -1.62 0.0 0.0 0.0 0.0 0.0
0.1116 —-0.12  0.06 0.62 —-142 0.0 0.0 0.0 0.0
0.1233 0.04 -01 0.12 0.16 —-1.04 0.0 0.0 0.0
0.131 0.06 —-0.04 -0.06 0.08 -0.08 —0.56 0.0 0.0
10.0748] |—0.02 —-0.04 -0.04 0.12 0.14 0.04 -0.9 0.0
[0.19597 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0  0.07
0.1313 —-1.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1142 078 =162 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0863 —-0.02 044 148 0.0 0.0 0.0 0.0 0.0 0.0

9 0.0898 —-0.1  0.16 036 —1.3 0.0 0.0 0.0 0.0 0.0
0.0916 -0.06 -0.04 0.22 012 -1.08 0.0 0.0 0.0 0.0
0.1119 0.08 -01 -0.04 024 -006 -0.86 0.0 0.0 0.0
0.1054 0.04 -0.04 —-0.04 0.0 0.06 -0.08 —-05 0.0 0.0
10.0735] |—0.04 0.0 0.0 -0.02 014 002 0.0 -0.74 0.0]
[0.21747 [ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1123 —-1.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.1037 035 -099 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0724 025 -011 -0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10 0.0681 0.03 005 —-0.07r —-0.85 0.0 0.0 0.0 0.0 0.0 0.0
0.0816 -0.03 0.03 025 -0.09 -093 0.0 0.0 0.0 0.0 0.0
0.0938 -0.01 -0.03 -0.01 021 -0.11 -0.67 0.0 0.0 0.0 0.0
0.0977 0.01 -0.03 —-0.03 0.07 009 -0.03 -0.81 0.0 0.0 0.0
0.0849 0.03 -0.03 -0.03 -0.03 005 0.01 -0.11 -027 0.0 0.0
10.0681 | |—-0.01 -0.01 -0.01 -0.01 0.03 0.07 -0.01 —-0.05 —-0.57 0.0

D SoOLVER CODE

D.1 DDPM/VP CoDE

# corresponding to DDPM (beta_min=0.0001 beta_max=0.02)

class VPScheduler:
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def

def

def

def

__init
self,
beta_min=0.1,
beta_max=20,
super () .__init__ ()
self.beta_min = beta_min
self.beta_d = beta_max - beta_min
beta(self, t) —-> Tensor:
t = torch.clamp(t, min=le-3, max=1)
return (self.beta_min + (self.beta_d * t)).view(-1, 1, 1, 1)
sigma (self, t) —-> Tensor:
t = torch.clamp(t, min=le-3, max=1)
inter_beta:Tensor = 0.5xself.beta_d*tx+x2 + self.beta_minx t
return (l-torch.exp_(-inter_beta)) .sqgrt () .view(-1, 1, 1, 1)
alpha(self, t) —-> Tensor:
t = torch.clamp(t, min=le-3, max=1)

inter_beta: Tensor = 0.5 » self.beta_d » t x%x 2 + self.beta_min * t
return torch.exp(-0.5xinter_beta) .view(-1, 1, 1, 1)

class Scheduler (SchedulerMixin, ConfigMixin) :
@register_to_config

def

def

def

_init_ (

self,

num_train_timesteps: int = 1000,

self.num_train_timesteps = num_train_timesteps

self.vp_scheduler = VPScheduler ()

self.init_noise_sigma = 1.0

self.buffer = []

self._index = 0

set_timesteps (self, num_inference_steps: int, device: torch.device):

# index Params according to num_inference_steps

self._timedeltas =

self._coeffs =

self._contiguous_timestep = [0.999,]

for 1 in range (num_inference_steps-1):
t = max(self._contiguous_timestep[-1l] - self._timedeltas[i], 0.0)
self._timestep.append(t)

self.timesteps = torch.tensor(self._timestep)*self.num_train_timesteps

self.timesteps = self.timesteps.to(torch.int64)

self._contiguous_timestep = torch.tensor(self._contiguous_timestep)

self.num_inference_steps = num_inference_steps

step (

self,

eps: torch.Tensor,

timestep: int,

x: torch.Tensor,

return_dict: bool = True,

) —> Tuple:

if timestep == self.num_train_timesteps -1:
self.buffer.clear()
self._index = 0

t_cur = self._timestep[self._index]
dt = self._timedeltas[self._index]
sigma = self.vp_scheduler.sigma (t_cur)
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alpha = self.vp_scheduler.alpha (t_cur)

lamda = (alpha / sigma)

sigma_next = self.vp_scheduler.sigma (t_cur - dt)
alpha_next = self.vp_scheduler.alpha(t_cur - dt)
lamda_next = (alpha_next / sigma_next)

x0 = (x - sigma * eps) / alpha

self.buffer.append(x0)

dpmx = torch.zeros_like (x0)

sum_solver_coeff = 0.0

for j in range(self._index):
dpmx += self._coeffs[self._index, J] % self.buffer[j]
sum_solver_coeff += self._coeffs[self._index, 7]

dpmx += (1 - sum_solver_coeff) % self.buffer[-1]
delta_lamda = lamda_next - lamda
x = (sigma_next / sigma) * x + sigma_next x (delta_lamda) * dpmx

x = x.to(dtype)
self._index += 1
return (x,)

D.2 RECTIFIED FLOW CODE

class Scheduler (SchedulerMixin, ConfigMixin) :
@register_to_config
def  init_
self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,

base_shift: Optional[float] = 0.5,
max_shift: Optional[float] = 1.15,
base_image_seq len: Optional[int] = 256,
max_image_seq_len: Optionallint] = 4096,

) :
self.num_train_timesteps = num_train_timesteps

self.buffer = []

def set_timesteps(self, sigmas, device: torch.device, =*args, =*xkwargs):
num_inference_steps = len(sigmas)
self._index = 0
self._timedeltas =
self._coeffs

self._timesteps = [1.0, ]
for t in range (num_inference_steps - 1):
self._timesteps.append(self._timesteps[-1] - self._timedeltas[t])
self.timesteps = self.timesteps*self.num_train_timesteps
self._timesteps = torch.tensor(self._timesteps)
self.num_inference_steps = num_inference_steps
def step(
self,

v: torch.Tensor,
timestep: int,
x: torch.Tensor,
return_dict: bool = True,
) —> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
if int (timestep) == self.num_train_timesteps:
self.buffer.clear ()
self. index = 0
dtype = x.dtype
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dt = self._timedeltas[self._index]

mean = torch.mean (v, [1l,], keepdim=True)

v = Vv — mean

self.buffer.append(v)

v = torch.zeros_like (v)

sum_solver_coeff = 0

for j in range(self._index):
v += self._coeffs[self._index, Jj] % self.buffer[]]
sum_solver_coeff += self._coeffs[self._index, 7l

+= (1 - sum_solver_coeff) * self.buffer[-1]

replace with decayed mean

= v + mean/ (self._index+1)

= x — v % dt

= x.to(dtype)

self._index +=1

return (x,)

X g

X

E LIMITATIONS

E.1 MISALIGND RECONSTRUCION LOSS AND PERFORMANCE.

Our proposed methods are specifically designed to minimize integral error within a limited number
of steps. However, ablation studies reveal a mismatch between FID performance and Reconstruction
error. To address this issue, we plan to enhance our searched solver by incorporating distribution
matching supervision, thereby better aligning sampling quality.

E.2 LARGER CFG INFERENCE.

In the main paper, we demonstrate text-to-image visualization with a small CFG value. However,
it is intuitive that utilizing a larger CFG would result in superior image quality. We attribute the
inferior performance of large CFGs on our solver to the limitations of current naive solver structures
and searching techniques. We hypothesize that incorporating predictor-corrector solver structures
would enhance numerical stability and yield better images. Additionally, training with CFGs may
also be beneficial.
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