
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIFFERENTIABLE SOLVER SEARCH FOR FAST DIFFU-
SION SAMPLING

Anonymous authors
Paper under double-blind review

Figure 1: Visualization of searched Solver Parameters of DDPM/VP and Rectified Flow. We
limited the order of solver coefficients of the last two steps for 5/6 NFE. The left images show the absolute
value of searched coefficients {cji}. The right image shows the searched timesteps of different NFE and fitted
curves.

ABSTRACT

Diffusion models have demonstrated remarkable generation quality but at the cost
of numerous function evaluations. Recently, advanced ODE-based solvers have
been developed to mitigate the substantial computational demands of reverse-
diffusion solving under limited sampling steps. However, these solvers, heavily
inspired by Adams-like multistep methods, rely solely on t-related Lagrange inter-
polation. We show that t-related Lagrange interpolation is suboptimal for diffusion
model and reveal a compact search space comprised of time steps and solver coef-
ficients. Building on our analysis, we propose a novel differentiable solver search
algorithm to identify more optimal solver. Equipped with the searched solver,
rectified-flow models, e.g., SiT-XL/2 and FlowDCN-XL/2, achieve FID scores of
2.40 and 2.35, respectively, on ImageNet-256 × 256 with only 10 steps. Mean-
while, DDPM model, DiT-XL/2, reaches a FID score of 2.33 with only 10 steps.
Notably, our searched solver outperforms traditional solvers by a significant mar-
gin. Moreover, our searched solver demonstrates generality across various model
architectures, resolutions, and model sizes.

1 INTRODUCTION

Image generation is a fundamental task in computer vision research, which aims at capturing the
inherent data distribution of original image datasets and generating high-quality synthetic images
through distribution sampling. Diffusion models Ho et al. (2020); Song et al. (2020b); Karras et al.
(2022); Liu et al. (2022); Lipman et al. (2022) have recently emerged as highly promising solu-
tions to learn the underline data distribution in image generation, outperforming GAN-based mod-
els Brock et al. (2018); Sauer et al. (2022) and Auto-Regressive models Chang et al. (2022) by a
significant margin.

However, diffusion models necessitate numerous denoising steps during inference, which incur a
substantial computational cost, thereby limiting the widespread deployment of pre-trained diffu-
sion models. To achieve fast diffusion sampling, the existing studies have explored two distinct
approaches. Training-based techniques involve distilling the fast ODE trajectory into the model
parameters, thereby circumventing redundant refinement steps. In addition, solver-based methods
Lu et al. (2023); Zhang & Chen (2023); Song et al. (2020a) tackle the fast sampling problem by
designing high-order numerical ODE solvers.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

For training-based acceleration, Salimans & Ho (2022) aligns the single-step student denoiser with
the multi-step teacher output, thereby reducing inference burdens. The consistency model concept,
introduced by Song et al. (2023), directly teaches the model to produce consistent predictions at
any arbitrary timesteps. Building upon Song et al. (2023), subsequent works Zheng et al. (2024);
Kim et al. (2023); Wang et al. (2024); Xu et al. (2024) propose improved techniques to mitigate
discreet errors in LCM training. Furthermore, Lin et al. (2024); Kang et al. (2024); Yin et al. (2024);
Zhou et al. (2024) leverage adversarial training and distribution matching to enhance the quality of
generated samples. To improve the training efficiency of distribution matching. However, training-
based methods introduce changes to the model parameters, resulting in an inability to fully exploit
the pre-training performance.

Solver-based methods rely heavily on the ODE formulation in the reverse-diffusion dynamics and
hand-crafted multi-step solvers. Lu et al. (2023; 2022) and Zhang & Chen (2023) point out the
semi-linear structure of the diffusion ODE and propose an exponential integrator to tackle faster
sampling in diffusion models. Zhao et al. (2023) further enhances the sampling quality by borrowing
the predictor-corrector structure. Thanks to the multistep-based ODE solver methods, high-quality
samples can be generated within as few as 10 steps. To further improve efficiency, Gao et al. (2023)
tracks the backward error and determines the adaptive step. Moreover, Karras et al. (2022); Lu et al.
(2022) propose a handcrafted timesteps scheduler to sample respaced timesteps. Xue et al. (2024)
argues that timesteps sampled in Karras et al. (2022); Lu et al. (2022) are suboptimal, thus proposing
an online optimization algorithm to find the optimal sampling timesteps for generation. Apart from
timesteps optimization, Shaul et al. (2023) learns a specific path transition to improve the sampling
efficiency.

In contrast to training-based acceleration methods, solver-based approaches do not necessitate pa-
rameter adjustments and preserve the optimal performance of the pre-trained model. Moreover,
solvers can be seamlessly applied to any arbitrary diffusion model trained with a similar noise
scheduler, offering a high degree of flexibility and adaptability. This motivates us to investigate the
generative capabilities of pre-trained diffusion models within limited steps from a diffusion solver
perspective.

Current state-of-the-art diffusion solvers Lu et al. (2023); Zhao et al. (2023) adopt Adams-like multi-
step methods that use the Lagrange interpolation function to minimize integral errors. We argue that
an optimal solver should be tailored to specific pre-trained denoising functions and their correspond-
ing noise schedulers. In this paper, we explore solver-based methods for fast diffusion sampling by
improving diffusion solvers using data-driven approaches without destroying the pre-training inter-
nality in diffusion models. Inspired by Xue et al. (2024), we investigate the sources of error in
the diffusion ODE and discover that the interpolation function form is inconsequential and can be
reduced to coefficients. Furthermore, we define a compact search space related to the timesteps
and solver coefficients. Therefore, we propose a differentiable solver search method to identify the
optimal parameters in the compact search space.

Based on our novel differentiable solver search algorithm, we investigate the upper bound perfor-
mance of pre-trained diffusion models under limited steps. Our searched solver significantly im-
proves the performance of pre-trained diffusion models, and outperforms traditional solvers with
a large gap. On ImageNet-256 × 256, armed with our solver, rectified-flow models of SiT-XL/2
and FlowDCN-XL/2 achieve 2.40 and 2.35 FID respectively under 10 steps, while DDPM model
of DiT-XL/2 achieves 2.33 FID. Surprisingly, our findings reveal that when equipped with an op-
timized high-order solver, the DDPM can achieve comparable or even surpass the performance of
rectified flow models under similar step constraints.

To summarize, our contributions are

• We reveal that the interpolation function choice is not important and can be reduced to
coefficients through the pre-integral technique. We demonstrate that the upper bound of
discretization error in reverse-diffusion ODE is related to both timesteps and solver coeffi-
cients and define a compact solver search space.

• Based on our analysis, we propose a novel differentiable solver search algorithm to find the
optimal solver parameter for given diffusion models.

• For DDPM/VP time scheduling, armed with our searched solver, DiT-XL/2 achieves 2.33
FID under 10 steps, beating DPMSolver++/UniPC by a significant margin.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• For Rectified-flow models, armed with our searched solver, SiT-XL/2 and FlowDCN-XL/2
achieve 2.40 and 2.35 FID respectively under 10 steps on ImageNet-256× 256.

• For Text-to-Image diffusion models like FLUX, SD3, PixArt-Σ, our solver searched on
ImageNet-256× 256 consistently yields better images compared to traditional solvers with
the same CFG scale.

2 RELATED WORKS

Diffusion Model gradually adds x0 with Gaussian noise ϵ to perturb the corresponding known data
distribution p(x0) into a simple Gaussian distribution. The discrete perturbation function of each t
satisfies N (xt|αtx0, σ

2
t I), where αt, σt > 0. It can also be written as Equation (1).

xt = αtxreal + σtϵ (1)

Moreover, as shown in Equation (2), Equation (1) has a forward continuous-SDE description, where
f(t) = d logαt

dt and g(t) =
dσ2

t

dt − d logαt

dt σ2
t . Anderson (1982) establishes a pivotal theorem that the

forward SDE has an equivalent reverse-time diffusion process as in Equation (3), so the generating
process is equivalent to solving the diffusion SDE. Typically, diffusion models employ neural net-
works and distinct prediction parametrization to estimate the score function ∇ logx pxt

(xt) along
the sampling trajectory Song et al. (2020b); Karras et al. (2022); Ho et al. (2020).

dxt = f(t)xtdt+ g(t)dw (2)

dxt = [f(t)xt − g(t)2∇x log p(xt)]dt+ g(t)dw (3)

Song et al. (2020b) also shows that there exists a corresponding deterministic process Equation (4)
whose trajectories share the same marginal probability densities of Equation (3).

dxt = [f(t)xt −
1

2
g(t)2∇x log p(xt)]dt (4)

Rectified Flow Model simplifies diffusion model under the framework of Equation (2) and Equa-
tion (3). Different from Ho et al. (2020) introduces non-linear transition scheduling, the rectified-
flow model adopts linear function to transform data to standard Gaussian noise.

xt = txreal + (1− t)ϵ (5)

Instead of estimating the score function ∇ logxt
pt(xt), rectified-flow models directly learn a neural

network vθ(xt, t) to predict the velocity field vt = dxt = (xreal − ϵ).

L(θ) = E[
∫ 1

0

||vθ(xt, t)− vt||2dt] (6)

Solver-based Fast Sampling Method does not necessitate parameter adjustments and preserves the
optimal performance of the pre-trained model. It can be seamlessly applied to an arbitrary diffusion
model trained with a similar noise scheduler, offering a high degree of flexibility and adaptability.
Solvers heavily rely on the reverse diffusion ODE in Equation (4). Current solvers are mainly
focused on DDPM/VP noise schedules. Lu et al. (2022); Zhang & Chen (2023) discovered the semi-
linear structure in DDPM/VP reverse ODEs. Furthermore, Zhao et al. (2023) enhanced the sampling
quality by borrowing the predictor-corrector structure. Thanks to the multi-step ODE solvers, high-
quality samples can be generated within as few as 10 steps. To further improve efficiency, Gao
et al. (2023) tracks the backward error and determines the adaptive step. Moreover, Karras et al.
(2022); Lu et al. (2022) proposed a handcrafted timestep scheduler to sample respaced timesteps.
However, Xue et al. (2024) argued that the timestep sampled in Karras et al. (2022); Lu et al. (2022)
is suboptimal, and thus proposed an online optimization algorithm to find the optimal sampling
timestep for generation. Apart from timestep optimization, Shaul et al. (2023) learned a specific
path transition to improve the sampling efficiency.

3 PROBLEM DEFINITION

As rectified-flow constitutes a simple yet elegant formulation within the diffusion family, we choose
rectified-flow as the primary subject of discussion in this paper to enhance readability. Importantly,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Generated images from Flux.1-dev with Guidance=2.0 and our solver (searched on
SiT-XL/2). Euler-Shift3 is the default solver provided by diffusers and Flux community. Our solver(DS-
Solver) achieves better visual quality from 5 to 10 steps(NFE).

our proposed algorithm is not constrained to rectified-flow models. We explore its applicability to
other diffusion models such as DDPM/VP in Section 6.

Recall the continuous integration of reverse-diffusion in Equation (7) with the pre-defined inter-
val {t0, t1, ...tN}. Given the pre-trained diffusion models and their corresponding ODE defined in
Equation (4), before we tackle the integration of interval [ti, ti+1], we have already obtained the
sampled velocity field of previous timestep {(xj , tj ,vj = vθ(xj , tj)}ij=0. Here, we directly denote
xti as xi for presentation clarity:

xi+1 = xi +

∫ ti+1

ti

vθ(xt, t)dt (7)

As shown in Equation (8), we strive to develop a more optimal solver that minimizes the integral
error while enhancing image quality under limited sampling steps (NFE) without requiring any
parameter adjustments for the pre-trained model.

Φ = argminE[||Φ(ϵ,vθ)− (ϵ+

∫ 1

0

vθ(xt, t)dt)||]. (8)

4 ANALYSIS OF REVERSE-DIFFUSION ODE SAMPLING

Initially, we revisit the multi-step methods commonly used by Zhao et al. (2023); Zhang & Chen
(2023); Lu et al. (2023) and identify potential limitations. Specifically, we argue that the La-
grange interpolation function used in Adams-Bashforth methods is suboptimal for diffusion models.
Moreover, we show that the specific form of the interpolation function is inconsequential, as pre-
integration and expectation estimation ultimately reduce it to a set of coefficients. Inspired by Xue
et al. (2024), we prove that timesteps and these coefficients effectively constitute our search space.

4.1 RECAP THE MULTI-STEP METHODS

As shown in Equation (9), the Euler method employs vi as the estimation of Equation (9) in whole
interval [ti, ti+1]. Higher-order multi-step solvers further improve the estimation quality of the
integral by incorporating interpolation functions and leveraging previously sampled values.

xi+1 = xi + (ti+1 − ti)vθ(xi, ti). (9)

The most classic multi-step solver Adams–Bashforth method Bashforth & Adams (1883) incorpo-
rates the Lagrange polynomial to improve the estimation accuracy within a given interval. It is
noteworthy that the number of NFE and sampling steps are essentially the same for multi-step meth-
ods. In contrast, Runge-Kutta and Huen methods require more NFE for a given number of sampling

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

steps.

xi+1 ≈ xi +

∫ ti+1

ti

i∑
j=0

(

i∏
k=0,k ̸=j

t− tk
tj − tk

)vjdt (10)

xi+1 ≈ xi +

i∑
j=0

vj

∫ ti+1

ti

(

i∏
k=0,k ̸=j

t− tk
tj − tk

)dt (11)

As Equation (11) states,
∫ ti+1

ti
(
∏i

k=0,k ̸=j
t−tk
tj−tk

)dt of the Lagrange polynomial can be pre-integrated
into a constant coefficient, resulting in only naive summation being required for ODE solving.
Current SoTA multi-step solvers Lu et al. (2023); Zhao et al. (2023) are heavily inspired by
Adams–Bashforth-like multi-step solvers. These solvers employ the Lagrange interpolation function
or difference formula to estimate the value in the given interval.

However, the Lagrange interpolation function and other similar methods only take t into account
while the v(x, t) also needs x as inputs. Using first-order Taylor expansion of x at xi and higher-
order expansion of t at ti, we can readily derive the error bound of the estimation.

4.2 FOCUS ON SOLVER COEFFICIENTS INSTEAD OF THE INTERPOLATION FUNCTION

Different from general ODE solving problems, a compact searching space exists given reverse-
diffusion ODE and pre-trained models. We define a universal interpolation function P without an
explicit form. P measures the distance of (xt, t) between previous sampled points {(xj , tj)}ij=0 to
determine the interpolation weight for {vj}ij=0.

xi+1 ≈ xi +

∫ ti+1

ti

i∑
j=0

P(xt, t,xj , tj)vjdt. (12)

Assumption 4.1. We assume that the remainder term of the universal interpolation function∑i
j=0 P(xt, t,xj , tj)vj for v(x, t) is bound as O(dxm) + O(dtn), where O(dxm) is the mth-

order infinitesimal for dx, O(dtm) is the nth-order infinitesimal for dt.

Equation (12) has a recurrent dependency, as xt also relies on
∑i

j=0 P(xt, t,xj , tj)vjdt. To elimi-
nate the recurrent dependency, shown in Equation (13), we simply use the first order Taylor expan-
sion of x(t) at xi to replace the original form. Recall that vi is already determined by xi and ti, thus
the partial integral of Equation (13) can be formulated as Equation (14). Different from the naive
Lagrange interpolation, Cj(xi) is a function of current xi instead of a constant scalar. Learning a
Cj(xi) function will cause the generalization to be lost. This limits the actual usage in diffusion
model sampling.

xi+1 ≈ xi +

i∑
j=0

vj

∫ ti+1

ti

P(xi + vi(t− ti), t,xj , tj)dt (13)

xi+1 ≈ xi +

i∑
j=0

vjCj(xi)(ti+1 − ti) (14)

Theorem 4.2. Given sampling time interval [ti, ti+1] and suppose Cj(xi) = gj(xi) + bji , Adams-
like linear multi-step methods have an error expectation of (ti+1 − ti)Exi ||

∑i
j=0 vjgj(xi)||. re-

placing Cj(x) with Exi [Cj(xi)] is the optimal choice and owns an error expectation of (ti+1 −
ti)Exi

||
∑i

j=0 vj [gj(xi)− Exi
gj(xi)||. We place the proof in Appendix A.

According to Theorem 4.2, we opt to replace Cj(xi) with its expectation Exi
[Cj(xi)], thus we obtain

diffusion-scheduler related coefficients while keeping generalization ability. Finally, given the pre-
defined time intervals, we obtain the optimization target Equation (15), where cji = Exi

[Cj(xi)].
The expectation can be deemed as optimized through massive data and gradient descent.

xi+1 ≈ xi +

i∑
j=0

vjc
j
i (ti+1 − ti) (15)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Generated images from SD3 with CFG=4.0 and our solver (searched on SiT-XL/2).
Euler-Shift3 is the default solver provided by diffusers and SD3 community. Our solver achieves better visual
quality in from 8 to 10 steps(NFE).

4.3 OPTIMAL SEARCH SPACE FOR A SOLVER

Assumption 4.3. As shown in Equation (16), the pre-trained velocity model vθ is not perfect and
the error between vθ and ideal velocity field v̂ is L1-bounded, where η is a constant scalar.

||v̂ − vθ|| ≤ η ≪ ||v̂|| (16)

Previous discussions assume we have a perfect velocity function. However, the ideal velocity is
hard to obtain, we only have pre-trained velocity models. Following Equation (15), we can expand
Equation (15) from ti=0 to ti=N to obtain the error bound caused by non-ideal velocity estimation.
Theorem 4.4. The error caused by the non-ideal velocity estimation model can be formulated
in the following equation. We can employ triangle inequalities to obtain the error-bound(L1) of
||xN − x̂N ||, the proof can be found in the Appendix B.

||xN − x̂N || ≤ η

N−1∑
i=0

i∑
j=0

|cji (ti+1 − ti)|

Based on Theorem 4.4, since the error bound is related to timesteps and solver coefficients, we can
define a much more compact search space consisting of {cji}Nj<i,j=0,i=1 and {ti}Ni=0.
Theorem 4.5. Based on Theorem 4.4 and Theorem 4.2. We can derive the total upper error
bound(L1) of our solver search method and other counterparts. The total upper error bound of
Our solver search is:

N−1∑
i=0

(ti+1 − ti)(

i∑
j=0

η|Exigj(xi) + bji |+ Exi ||
i∑

j=0

vjgj(xi)− Exigj(xi)||)

Compared to Adams-like linear multi-step methods. Our searched solver has a small upper error
bound. The proof can be found in the Appendix B.

Through Theorem 4.5, our searched solvers own a relatively small upper error bound. Thus we can
theoretically guarantee optimal compared to Adams-like methods.

5 DIFFERENTIABLE SOLVER SEARCH.

Through previous discussion and analysis, we identify {cji}Nj<i,j=0,i=1 and {ti}Ni=0 as the target
search items. To this end, we propose a data-driven, differentiable solver search approach to deter-
mine these target items.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 Solver Parametrization

Requires: {ri, } and {cji , }
TimeDeltas: ∆t0,∆t1, ...,∆tn−1.
SolverCoefficients:M∈ RN×N

{∆ti, }=Softmax({ri})

M =


1
c01 1− c01
...

...
...

. . .
c0n−1 c1n−1 · · · 1−

∑n−1
k=0 ckn−1



Algorithm 2 Differentiable Solver Search

Require: vθ model, {∆ti, }N−1
i=0 ,M, A buffer Q.

Compute {x̃l, }Ll=0 = Euler(ϵ, vθ) .
for i = 0 to N − 1 do

Q
buffer← vθ(xti , ti)

Compute v =
∑i

j=0MijQj .
ti+1 = ti +∆ti
xti+1 = xti + v∆ti

end for
return: x̃tn−1 , L({x̃l}Ll=0, {xi}Ni=0)

Timestep Parametrization. As shown in Algorithm 1, we employ unbounded parameters
{ri, }N−1

i=0 as the optimization subject, as the integral interval is from 0 to 1, we convert ri into
time-space deltas ∆ti with softmax normalization function to force their summation to 1. We can
access timestep ti+1 through ti+1 = ti + ∆ti. We initialize {ri}N−1

i=0 with 1.0 to obtain a uniform
timestep distribution.

Coefficients Parametrization. Inspired by Xue et al. (2024). Given Equation (15) and Equation (7),
when the velocity field vθ(x, t) yields constant value, an implicit constraint

∑i
k=0 c

i
k = 1 emerges.

This observation motivates us to re-parameterize the diagonal value of M as {1 −
∑i−1

j=0 c
j
i , }

N−1
i=0 .

We initialize {cki , } with zeros to mimic the behavior of the Euler solver.

Mono-alignment Supervision. We take the L-step Euler solver’s ODE trajectory {x̃}Ll=0 as refer-
ence. We minimize the gap between the target and source trajectories with the MSE loss. We also
adopt Huber loss as auxiliary supervision for xtN .

6 EXTENDING TO DDPM/VP FRAMEWORK

Applying our differentiable solver search to DDPM is infeasible. However, Song et al. (2020b)
suggests that there exists a continuous SDE process with {f(t) = − 1

2βt; g(t) =
√
βt} correspond-

ing to discrete DDPM. This motivates us to transform the search space from the infeasible discrete
space to its continuous SDE counterpart. Lu et al. (2022) and Zhang & Chen (2023) discover the
semi-linear structure of diffusion and propose exponential integral with ϵ parametrization to tackle
the fast sampling problem of DDPM models, where αt = e

∫ t
0
− 1

2βsds, σt =
√
1− e

∫ t
0
−βsds and

λt = log αt

σt
. Lu et al. (2023) further discovers that x parametrization is more powerful for diffusion

sampling under limited steps, where x̄ = xt−σϵ
αt

.

xt =
σt

σs
xs + σt

∫ λt

λs

eλx̄θ(xt(λ), t(λ))dλ (17)

We opt to follow the x̄ parametrization as DPM-Solver++. However, we find directly interpolating
eλxθ(xt, t) as a whole part is hard for searching, and yields worse results. To avoid conflating the
interpolation coefficients with exponential integral, we employ ωt =

αt

σt
and transform Equation (17)

into Equation (18) with a similar interpolation format as Equation (14), where t(ω) maps ω to
timestep.

xt ≈
σt

σs
x̄s + σt(ωt − ωs)

i∑
k=1

cki xθ(x̄k, tk) (18)

7 EXPERIMENT

We demonstrate the efficiency of our differentiable solver search by conducting experiments on pub-
licly available diffusion models. Specifically, we utilize DiT-XL/2 Peebles & Xie (2023) trained
with DDPM scheduling and rectified-flow models SiT-XL/2 Ma et al. (2024) and FlowDCN-
XL/2 Anonymous (2024). Our default training setting employs the Lion optimizer Chen et al.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) FID of Search Model (b) RecError of Search Model (c) FID of RefTraj Steps

Figure 4: Ablations studies of Differentiable Solver Search. We evaluate the searched solver on SiT-
XL/2, and report the FID performance curve of searched solvers.

(a) SiT-XL/2-R256 (b) FlowDCN-XL/2-R256 (c) FlowDCN-XL/2-R512

Figure 5: The same searched solver on different Rectified-Flow Models. R256 and R512 indi-
cate the generation resolution of given model. We search solver with FlowDCN-B/2 on ImageNet-256 × 256
and evaluate it with SiT-XL/2 and FlowDCN-XL/2 on different resolution datasets. Our searched solver out-
performs traditional solvers by a significant margin. More metrics(sFID, IS, Precision, Recall) are places at
Appendix

(2024b) with a constant learning rate of 0.01 and no weight decay. We sample 50,000 images
for the entire search process. Notably, searching with 50,000 samples using FlowDCN-B/2 requires
approximately 30 minutes on 8 × H20 computation cards. During the search, we deliberately avoid
using CFG to construct reference and source trajectories, thereby preventing misalignment.

7.1 RECTIFIED FLOW MODELS

We search solver with FlowDCN-B/2, FlowDCN-S/2 and SiT-XL/2. We compare the search
solver’s performance with the second-order and fourth-order Adam multi-step method on SiT-XL/2,
FlowDCN-XL/2 trained on 256× 256 and FlowDCN-XL/2 trained on 512× 512.

Search Model. We tried different search models among different size and architecture. We report
the FID performance and reconstruction error of SiT-XL/2 in Figure 4a and Figure 4b respectively.
Surprisingly, we find that the FID performance of SiT-XL/2 equipped with the solver searched using
FlowDCN-B/2 outperforms the solver searched on SiT-XL/2 itself. Meanwhile, the reconstruction
error between the sampled result produced by Euler-250 steps is as expected. These findings suggest
that there exists a minor discrepancy between FID and the pursuit of minimal error in the current
solver design.

Step of Reference Trajectory. We provide reference trajectory {x̃}Ll=0 of different sampling step
L for differentiable solver search. We take FlowDCN-B/2 as the search model and report the FID
measured on SiT-XL/2 in Figure 4c. As the sampling step of reference trajectory increases, the FID
of SiT-XL/2 further improves and becomes better. However, the performance improvement is not
significant at 5 and 6 steps, suggesting that the improvement bound for extremely limited steps.

ImageNet 256 × 256. We validate the searched solver on SiT-XL/2 and FlowDCN-XL/2. We arm
the pre-trained model with CFG of 1.375. As shown in Figure 5a, our searched solver improves
FID performance significantly and achieves 2.40 FID under 10 steps. As shown in Figure 5b, our
searched solver achieves 2.35 FID under 10 steps, beating traditional solvers by large margins.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 6: The images generated from PixArt-Σ with CFG=2.0 equipped with Our DS-Solver (
searched on DiT-XL/2-R256).In comparison to DPM-Solver++ and UniPC, our results consistently ex-
hibit greater clarity and possess more details. Our solver (DS-Solver) achieves better quality from 5 to 10
steps(NFE).

ImageNet 512 × 512. Since Ma et al. (2024) has not released SiT-XL/2 trained on 512 × 512
resolution, we directly report the performance collected from FlowDCN-XL/2. We arm FlowDCN-
XL/2 with CFG of 1.375 and four channels. Our searched solver achieves 2.77 FID under 10 steps,
beating traditional solver by a large margin, even slightly outperforming the Euler solver with 50
steps(2.81FID).

Text to Image. Shown in Figure 2 and Figure 3, we apply our solver search on FlowDCN-B/2 and
SiT-XL/2 to the most advanced Rectified-Flow model Flux.1-dev and SD3 Esser et al. (2024). We
find Flux.1-Dev would produce grid points in generation. To alleviate the grid pattern, we decouple
the velocity field into mean and direction, only apply our solver to the direction, and replace the
mean with an exponential decayed mean. The details can be found in the appendix.

7.2 DDPM/VP MODELS

We choose the open-source model DiT-XL/2 trained on ImageNet 256× 256 as the search model to
conduct experiments. We compare the performance of the searched solver with DPM-Solver++ and
UniPC on ImageNet 256× 256 and ImageNet 512× 512.

ImageNet 256 × 256. Following Peebles & Xie (2023) and Xue et al. (2024), We arm pre-trained
DiT-XL/2 with CFG of 1.5 and apply CFG only on the first three channels. As shown in Table 1,
our searched solver improves FID performance significantly and achieves 2.33 FID under 10 steps.

ImageNet 512 × 512. We directly apply the solver searched on 256 × 256 resolution to ImageNet
512 × 512. The result is also great to some extent, DiT-XL/2(512 × 512) achieves 3.64 FID under
10 steps, outperforming DPM-Solver++ and UniPC with a large gap.

Text to Image. As we search solver with DiT and its corresponding noise scheduler, so it is
infeasible to apply our solver to other DDPM models with different βmin and βmax. Fortunately, we
find Chen et al. (2024a) and Chen et al. (2023) also employ the same βmin and βmax as DiT. So we can
provide the visualization results of our searched solver on PixArt-Σ and PixArt-α. Our visualization
result is produced with CFG of 2.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Methods \NFEs 5 6 7 8 9 10

DPM-Solver++ with uniform-λ Lu et al. (2023) 38.04 20.96 14.69 11.09 8.32 6.47

DPM-Solver++ with uniform-t Lu et al. (2023) 31.32 14.36 7.62 4.93 3.77 3.23

DPM-Solver++ with uniform-λ-opt Xue et al. (2024) 12.53 5.44 3.58 7.54 5.97 4.12

DPM-Solver++ with uniform-t-opt Xue et al. (2024) 12.53 5.44 3.89 3.81 3.13 2.79

UniPC with uniform-λ Zhao et al. (2023) 41.89 30.51 19.72 12.94 8.49 6.13

UniPC with uniform-t Zhao et al. (2023) 23.48 10.31 5.73 4.06 3.39 3.04

UniPC with uniform-λ-opt Xue et al. (2024) 8.66 4.46 3.57 3.72 3.40 3.01

UniPC with uniform-t-opt Xue et al. (2024) 8.66 4.46 3.74 3.29 3.01 2.74

Searched-Solver 7.40 3.94 2.79 2.51 2.37 2.33

Table 1: FID (↓) of different NFEs on DiT-XL/2 (trained on ImageNet 256 × 256). -opt indicates
online optimization of the timesteps scheduler.

Methods \NFEs 5 6 7 8 9 10

UniPC with uniform-λ Zhao et al. (2023) 41.14 19.81 13.01 9.83 8.31 7.01

UniPC with uniform-t Xue et al. (2024) 20.28 10.47 6.57 5.13 4.46 4.14

UniPC with uniform-λ-opt Xue et al. (2024) 11.40 5.95 4.82 4.68 6.93 6.01

UniPC with uniform-t-opt Xue et al. (2024) 11.40 5.95 4.64 4.36 4.05 3.81

Searched-solver(searched on DiT-XL/2-R256) 10.28 6.02 4.31 3.74 3.54 3.64

Table 2: FID (↓) of different NFEs on DiT-XL/2 (trained on ImageNet 512x512).

7.3 VISUALIZATION OF SOLVER PARAMETERS

Searched Coefficients are visualized in Figure 1. The absolute value of searched coefficients corre-
sponding to DDPM/VP shares a different pattern, coefficients in DDPM/VP are more concentrated
on the diagonal while rectified-flow demonstrates a more flattened distribution. This indicates there
exists a more curved sampling path in DDPM/VP compared to rectified-flow.

Searched Timesteps are visualized in Figure 1. Compared to DDPM/VP, rectified-flow models
more focus on the more noisy region, exhibiting small time deltas at the beginning. We fit the
searched timestep of different NFE with polynomials and provide the respacing curves in Equa-
tion (19) and Equation (20). t ∈ [0, 1], and t = 0 indicates the most noisy timestep.

Rectified-Flow : − 1.96t4 + 3.51t3 − 0.97t2 + 0.43t− 0.003 (19)

DDPM/VP : − 2.73t4 + 6.30t3 − 4.744t2 + 2.17t− 0.0002 (20)

8 CONCLUSION

We find a compact solver search space and propose a novel differentiable solver search algorithm
to identify the optimal solver. Our searched solver outperforms traditional solvers by a significant
margin. Equipped with the searched solver, DDPM/VP and Rectified Flow models significantly
improve under limited sampling steps. However, our proposed solver still has several limitations(See
Appendix), which we plan to address in future work.

REFERENCES

Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Ap-
plications, 12(3):313–326, 1982.

Anonymous. Exploring DCN-like architecture for fast image generation with arbitrary resolution.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=e57B7BfA2B.

Francis Bashforth and John Couch Adams. An attempt to test the theories of capillary action by
comparing the theoretical and measured forms of drops of fluid. University Press, 1883.

10

https://openreview.net/forum?id=e57B7BfA2B

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman. Maskgit: Masked generative
image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 11315–11325, 2022.

Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
Kwok, Ping Luo, Huchuan Lu, et al. Pixart-\alpha: Fast training of diffusion transformer for
photorealistic text-to-image synthesis. arXiv preprint arXiv:2310.00426, 2023.

Junsong Chen, Chongjian Ge, Enze Xie, Yue Wu, Lewei Yao, Xiaozhe Ren, Zhongdao Wang, Ping
Luo, Huchuan Lu, and Zhenguo Li. Pixart-\sigma: Weak-to-strong training of diffusion trans-
former for 4k text-to-image generation. arXiv preprint arXiv:2403.04692, 2024a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, et al. Symbolic discovery of optimization algorithms.
Advances in neural information processing systems, 36, 2024b.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
high-resolution image synthesis. arXiv preprint arXiv:2403.03206, 2024.

Imre Fekete and Lajos Lóczi. Linear multistep methods and global richardson extrapolation. Applied
Mathematics Letters, 133:108267, 2022.

Yansong Gao, Zhihong Pan, Xin Zhou, Le Kang, and Pratik Chaudhari. Fast diffusion probabilistic
model sampling through the lens of backward error analysis. arXiv preprint arXiv:2304.11446,
2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Minguk Kang, Richard Zhang, Connelly Barnes, Sylvain Paris, Suha Kwak, Jaesik Park, Eli Shecht-
man, Jun-Yan Zhu, and Taesung Park. Distilling diffusion models into conditional gans. arXiv
preprint arXiv:2405.05967, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Uesaka,
Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning proba-
bility flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan LI, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. In S. Koyejo, S. Mohamed,
A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems, volume 35, pp. 5775–5787, 2022.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models, 2023.

Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Sain-
ing Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant
transformers. arXiv preprint arXiv:2401.08740, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to large diverse
datasets. In ACM SIGGRAPH 2022 conference proceedings, pp. 1–10, 2022.

Neta Shaul, Juan Perez, Ricky TQ Chen, Ali Thabet, Albert Pumarola, and Yaron Lipman. Bespoke
solvers for generative flow models. arXiv preprint arXiv:2310.19075, 2023.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv:2010.02502, October 2020a. URL https://arxiv.org/abs/2010.02502.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Fu-Yun Wang, Zhaoyang Huang, Alexander William Bergman, Dazhong Shen, Peng Gao, Michael
Lingelbach, Keqiang Sun, Weikang Bian, Guanglu Song, Yu Liu, et al. Phased consistency model.
arXiv preprint arXiv:2405.18407, 2024.

Chen Xu, Tianhui Song, Weixin Feng, Xubin Li, Tiezheng Ge, Bo Zheng, and Limin Wang.
Accelerating image generation with sub-path linear approximation model. arXiv preprint
arXiv:2404.13903, 2024.

Shuchen Xue, Zhaoqiang Liu, Fei Chen, Shifeng Zhang, Tianyang Hu, Enze Xie, and Zhenguo Li.
Accelerating diffusion sampling with optimized time steps. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8292–8301, 2024.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024.

Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
In The Eleventh International Conference on Learning Representations, 2023.

Wenliang Zhao, Lujia Bai, Yongming Rao, Jie Zhou, and Jiwen Lu. Unipc: A unified predictor-
corrector framework for fast sampling of diffusion models. arXiv preprint arXiv:2302.04867,
2023.

Jianbin Zheng, Minghui Hu, Zhongyi Fan, Chaoyue Wang, Changxing Ding, Dacheng Tao, and
Tat-Jen Cham. Trajectory consistency distillation. arXiv preprint arXiv:2402.19159, 2024.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

12

https://arxiv.org/abs/2010.02502

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

REBUTTALS

Q.1 MORE METRICS OF SEARCHED SOLVER

We adhere to the evaluation guidelines provided by ADM and DM-nonuniform, reporting only the
FID as the standard metric in Figure 5a. To clarify, we do not report selective results on rectified flow
models; we present sFID, IS, PR, and Recall metrics for SiT-XL(R256), FlowDCN-XL/2(R256),
and FlowDCN-B/2(R256). Our solver searched on FlowDCN-B/2, consistently outperforms the
handcrafted solvers across FID, sFID, IS, and Recall metrics.

(a) SiT-XL/2-R256 (b) FlowDCN-XL/2-R256 (c) FlowDCN-XL/2-R512

(d) SiT-XL/2-R256 (e) FlowDCN-XL/2-R256 (f) FlowDCN-XL/2-R512

(g) SiT-XL/2-R256 (h) FlowDCN-XL/2-R256 (i) FlowDCN-XL/2-R512

(j) SiT-XL/2-R256 (k) FlowDCN-XL/2-R256 (l) FlowDCN-XL/2-R512

Figure 7: The same searched solver on different Rectified-Flow Models. R256 and R512 indicate
the generation resolution of given model. We search solver with FlowDCN-B/2 on ImageNet-256 × 256 and
evaluate it with SiT-XL/2 and FlowDCN-XL/2 on different resolution datasets. Our searched solver outper-
forms traditional solvers by a significant margin.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Q.210-STEP SOLVER OUTPERFORMING 50 EULER STEPS.

Linear multistep-based high-order solvers can significantly boost performance in simulations with
a limited number of time steps. By leveraging the reference trajectory from the Euler solver with
100 steps, it is possible to outperform the Euler solver with 50 steps. As illustrated in all metrics,
our solver enables SiT-XL/2-R256 and FlowDCN-XL/2-R256 to achieve better Recall scores than
the Euler solver with 50 steps. Notably, FlowDCN-XL/2-R512 with our solver surpasses its Euler
counterpart in terms of sFID, Precision, and Recall, demonstrating its exceptional performance.

Q.3 COMPUTATIONAL COMPLEXITY COMPARED TO OTHER METHODS.

For sampling. When performing sampling over n time steps, our solver caches all pre-sampled
predictions, resulting in a memory complexity of O(n). The model function evaluation also has a
complexity of O(n) (O(2 × n) for CFG enabled). It is important to note that the memory required
for caching predictions is negligible compared to that used by model weights and activations. Be-
sides classic methods, we have also included a comparison with the latest Flowturbo published on
NeurIPS24.

Steps NFE NFE-CFG Cache Pred Order search samples
Adam2 n n 2n 2 2 /
Adam4 n n 2n 4 4 /
heun n 2n 4n 2 2 /
DPM-Solver++ n n 2n 2 2 /
UniPC n n 2n 3 3 /
FlowTurbo n >n >2n 2 2 540000(Real)
our n n 2n n n 50000(Generated)

For searching. Solver-based algorithms, limited by their searchable parameter sizes, demon-
strate significantly lower performance in few-step settings compared to distillation-based algo-
rithms(5/6steps), making direct comparisons inappropriate. Consequently, we selected algorithms
that are both acceleratable on ImageNet and comparable in performance, including popular meth-
ods such as DPM-Solver++, UniPC, and classic Adams-like linear multi-step methods. Since our
experiments primarily utilize SiT, DiT, and FlowDCN that trained on the ImageNet dataset. We also
provide fair comparisons by incorporating the latest acceleration method, FlowTurbo. Additionally,
we have included results from the heun method as reported in FlowTurbo.

SiT-XL-R256 Steps NFE-CFG Extra-Paramters FID IS PR Recall
Heun 8 16x2 0 3.68 / / /
Heun 11 22x2 0 2.79 / / /
Heun 15 30x2 0 2.42 / / /
Adam2 16 16x2 0 2.42 237 0.80 0.60
Adam4 16 16x2 0 2.27 243 0.80 0.60
FlowTurbo 6 (7+3)x2 30408704(29M) 3.93 223.6 0.79 0.56
FlowTurbo 8 (8+2)x2 30408704(29M) 3.63 / / /
FlowTurbo 10 (12+2)x2 30408704(29M) 2.69 / / /
FlowTurbo 15 (17+3)x2 30408704(29M) 2.22 248 0.81 0.60
ours 6 6x2 21 3.57 214 0.77 0.58
ours 7 7x2 28 2.78 229 0.79 0.60
ours 8 8x2 36 2.65 234 0.79 0.60
ours 10 10x2 55 2.40 238 0.79 0.60
ours 15 15x2 55 2.24 244 0.80 0.60

Q.4 ABLATION ON SEARCH SAMPLES

We ablate the number of search samples on the 10-step and 8-step solver settings. Samples means
the total training samples the searched solver has seen. Unique Samples means the total distinct
samples the searched solver has seen. Our searched solver converges fast and gets saturated near
30000 samples.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

iters(10-step-solver) samples unique samples FID IS PR Recall
313 10000 10000 2.54 239 0.79 0.59
626 20000 10000 2.38 239 0.79 0.60
939 30000 10000 2.49 240 0.79 0.59
1252 40000 10000 2.29 239 0.80 0.60
1565 50000 10000 2.41 240 0.80 0.59
626 20000 20000 2.47 237 0.78 0.60
939 30000 30000 2.40 238 0.79 0.60
1252 40000 40000 2.48 237 0.80 0.59
1565 50000 50000 2.41 239 0.80 0.59

iters(8-step-solver) samples unique samples FID IS PR Recall
313 10000 10000 2.99 228 0.78 0.59
626 20000 10000 2.78 229 0.79 0.60
939 30000 10000 2.72 235 0.79 0.60
1252 40000 10000 2.67 228 0.79 0.60
1565 50000 10000 2.69 235 0.79 0.59
626 20000 20000 2.70 231 0.79 0.59
939 30000 30000 2.82 232 0.79 0.59
1252 40000 40000 2.79 231 0.79 0.60
1565 50000 50000 2.65 234 0.79 0.60

Q.5 STOPPED EVALUATION AT 5 STEPS.

Since DM-nonuniform introduced the most effective online optimization solver before our search-
based approach, we leveraged their results for comparison on DDPM models. We followed the
evaluation pipeline established by DM-nonuniform to report performance within 5 and 10 optimiza-
tion steps. In general, solver-based methods tend to exhibit inferior results under extremely limited
numbers of function evaluations (NFE), such as 5 or 6 steps. As the solving difficulty increases and
the number of searchable parameters decreases (e.g., only 10 searchable parameters for 4 steps and
6 searchable parameters for 3 steps), the performance of solver-based methods falls significantly
behind that of distillation methods when limited to fewer than 5 steps. Notably, it is unlikely for
solver-based methods to achieve performance comparable to or exceeding that of distillation meth-
ods, such as CM, given that their number of learnable parameters is tens of thousands of times larger
than our searchable parameters.

Furthermore, integrating denoiser distillation with solver search holds significant promise for achiev-
ing even greater performance enhancements.

Steps NFE-CFG Extra-Paramters FID IS PR Recall
Euler 1 1x2 / 300 2.32 / /
Euler 50 50x2 / 2.23 244 0.80 0.59
Adam2 3 3x2 / 41.2 68.6 0.44 0.46
Adam2 4 4x2 / 15.25 133.6 0.65 0.50
Adam2 5 5x2 / 8.96 170 0.73 0.53
Adam2 6 6x2 / 6.35 191 0.76 0.55
Adam2 15 15x2 / 2.49 236 0.79 0.59
Adam4 15 15x2 / 2.33 242 0.80 0.59
ours 1 1x2 0 300 2.32 / /
ours 3 3x2 6 39.3 68.6 0.46 0.52
ours 4 4x2 10 13.9 135 0.65 0.55
ours 5 5x2 15 4.52 194 0.75 0.58
ours 6 6x2 21 3.57 214 0.77 0.58
ours 15 15x2 55 2.24 244 0.80 0.60

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Q.6ERROR BOUND ANALYSIS IN SECTION 4.3

Our primary objective is to design a compact search space that enables the identification of a solver
that achieves near-optimal performance. To accomplish this, we must first establish the constituent
components of the search space for the optimal solution. Notably, if the error bound is independent
of the number of steps, our search can be limited to the coefficients alone. In fact, it can be proved
that the error bound is dictated by the time selection and the coefficients.

Q.7 REPHRASE NARRATIVE STYLE WRITING AS THEOREMS.

Thanks for your suggestions. We will re-organize the structure of our paper. We will add some
summarization theorems in each subsection.

Q.8 WHAT IS η IN SECTION 4.3?

η is a constant scalar. We will add more explanation of notations in the finial version.

Q.9 RICHARDSON’S EXTRAPOLATION FOR SOLVING ODE

Yes, the Adams-like linear multi-step method employs Lagrange interpolation to determine its co-
efficients, which makes it feasible to substitute Lagrange interpolation with alternative interpolation
(or extrapolation) techniquesFekete & Lóczi (2022), such as Richardson’s method. Nevertheless,
Richardson functions also solely rely on the variable t, without considering x.

Q.10 SOLVER ACROSS DIFFERENT VARIANCE SCHEDULES

Since our solvers are searched on a specific noise scheduler and its corresponding pre-trained mod-
els, applying the searched coefficients and timesteps to other noise schedulers yields meaning-
less results. We have tried applied searched solver on SiT(Rectified flow) and DiT(DDPM with
βmin = 0.1, βmax = 20) to SD1.5(DDPM with βmin = 0.085, βmax = 12), but the results were in-
conclusive. Notably, despite sharing the DDPM name, DiT and SD1.5 employ distinct βmin, βmax

values, thereby featuring different noise schedulers. A more in-depth discussion of these experi-
ments can be found in Section(Extend to DDPM/VP).

Q.11 SOLVER FOR DIFFERENT VARIANCE SCHEDULES

As every DDPM has a corresponding continuous VP scheduler, so we can transform the discreet
DDPM into continuous VP, thus we successfully searched better solver compared to DPM-Solvers.
The details can be found in Section 6. To put it simply, under the empowerment of our high-order
solver, the performance of DDPM and FM does not differ significantly (8, 9, 10 steps), which
contradicts the common belief that FM is stronger at limited sampling steps.

Q.12 TEXT TO IMAGE METRICS RESULT

We take PixArt-alpha as the text-to-image model. We follow the evaluation pipeline of ADM and
take COCO17-Val as the reference batch. We generate 5k images using DPM-Solver++, UniPC and
our solver searched on DiT-XL/2-R256.

Q.13 LIMITATIONS.

We place the limitation at the appendix, in order to provide more discussion space and obtain more
insights from reviews. We copy the original limitation content and add more.

Misalignd Reconstrucion loss and Performance. Our proposed methods are specifically designed
to minimize integral error within a limited number of steps. However, ablation studies reveal a mis-
match between FID performance and Reconstruction error. To address this issue, we plan to enhance
our searched solver by incorporating distribution matching supervision, thereby better aligning sam-
pling quality.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Steps FID sFID IS PR Recall
DPM++ 5 60.0 209 25.59 0.36 0.20
DPM++ 8 38.4 116.9 33.0 0.50 0.36
DPM++ 10 35.6 114.7 33.7 0.53 0.37
UniPC 5 57.9 206.4 25.88 0.38 0.20
UniPC 8 37.6 115.3 33.3 0.51 0.36
UniPC 10 35.3 113.3 33.6 0.54 0.36
Ours 5 46.4 204 28.0 0.46 0.23
Ours 8 33.6 115.2 32.6 0.54 0.39
Ours 10 33.4 114.7 32.5 0.55 0.39

Larger CFG Inference. In the main paper, we demonstrate text-to-image visualization with a small
CFG value. However, it is intuitive that utilizing a larger CFG would result in superior image quality.
We attribute the inferior performance of large CFGs on our solver to the limitations of current naive
solver structures and searching techniques. We hypothesize that incorporating predictor-corrector
solver structures would enhance numerical stability and yield better images. Additionally, training
with CFGs may also be beneficial.

Resource Consumption We can hard code the searched coefficients and timesteps into the program
files. However, Compared to hand-crafted solvers, our solver still needs a searching process.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A PROOF OF PRE-INTEGRAL ERROR EXPECTATION

Theorem A.1. Given sampling time interval [ti, ti+1] and suppose Cj(x) = gj(x)+bji , Adams-like
linear multi-step methods will introduce an upper error bound of (ti+1 − ti)Exi

||
∑i

j=0 vjgj(xi)||.

Our solver search(replacing Cj(x) with Exi
[Cj(xi)]) owns an upper error bound of (ti+1 −

ti)Exi
||
∑i

j=0 vj [gj(xi)− Exi
gj(xi)||

Proof. Suppose Cj(xi) = gj(xi) + bji . Adams-like linear multi-step methods would not consider
x-related interpolation. thus pre-integral coefficients of Adams-like linear multi-step methods will
only reduce into b.

We obtain the error expectation of the pre-integral of Adams-like linear multi-step methods:

Exi
||

i∑
j=0

vj [Cj(xi)](ti+1 − ti)−
i∑

j=0

vjb
j
i (ti+1 − ti)|| (21)

=Exi
||

i∑
j=0

vj(ti+1 − ti)[Cj(xi)− bji || (22)

=(ti+1 − ti)Exi
||

i∑
j=0

vjgj(xi)|| (23)

We obtain the error expectation of the pre-integral of our solver search methods:

Exi
||

i∑
j=0

vj [Cj(xi)](ti+1 − ti)−
i∑

j=0

vjExi
[Cj(xi)](ti+1 − ti)|| (24)

=Exi
||

i∑
j=0

vj(ti+1 − ti)[Cj(xi)− Exi
Cj(xi)|| (25)

=(ti+1 − ti)Exi
||

i∑
j=0

vj [gj(xi)− Exi
gj(xi)|| (26)

Next, define the optimization problem:

E = Exi
||

i∑
j=0

vj [gj(xi)− aj]||22.

We suppose different vj are orthogonal and ||vj ||22 = 1. As we leave cij as the expectation of Cj(xi),
we will demonstrate this choice is optimal.

∂E

∂aj
= −2Exi

(||vj ||22(gj(xi)− aj)) (27)

Let ∂E
∂aj

= 0, we obtain: aj =
Exi

gi(xi)||vj ||22
Exi

||vj ||22
= Exi

gj(xi) = Exi
Cj(xi)− bji .

So our searched solver has a lower and optimal error expectation:

(ti+1 − ti)Exi
||

i∑
j=0

vj [gj(xi)− Exi
gj(xi)]|| ≤ (ti+1 − ti)Exi

||
i∑

j=0

vjgj(xi)|| (28)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Recall Assumption 4.1, the integral upper error bound of universal interpolation P will be:

||
∫ ti+1

ti

v(xt, t)dt−
i∑

j=0

vj

∫ ti+1

ti

P(xt, t,xj , tj)dt||. (29)

=||
∫ ti+1

ti

v(xt, t)dt−
∫ ti+1

ti

i∑
j=0

P(xt, t,xj , tj)vjdt||. (30)

=||
∫ ti+1

ti

[v(xt, t)−
i∑

j=0

P(xt, t,xj , tj)vj]dt||. (31)

<

∫ ti+1

ti

||v(xt, t)−
i∑

j=0

P(xt, t,xj , tj)vj ||dt. (32)

<(ti+1 − ti)[O(dxm) +O(dtn)] (33)

Combining Equation (33) and the error expectation of the pre-integral part, we will get the total error
bound of the solver search.

||
∫ ti+1

ti

v(xt, t)dt−
i∑

j=0

vjExi
[Cj(xi)](ti+1 − ti)||. (34)

=||
∫ ti+1

ti

v(xt, t)dt−
i∑

j=0

vj

∫ ti+1

ti

P(xt, t,xj , tj)dt+ (35)

i∑
j=0

vj

∫ ti+1

ti

P(xt, t,xj , tj)dt−
i∑

j=0

vjExi [Cj(xi)](ti+1 − ti)||. (36)

<||
∫ ti+1

ti

v(xt, t)dt−
i∑

j=0

vj

∫ ti+1

ti

P(xt, t,xj , tj)dt||+ (37)

||
i∑

j=0

vj

∫ ti+1

ti

P(xt, t,xj , tj)dt−
i∑

j=0

vjExi
[Cj(xi)](ti+1 − ti)||. (38)

=||
∫ ti+1

ti

v(xt, t)dt−
i∑

j=0

vj

∫ ti+1

ti

P(xt, t,xj , tj)dt||+ (39)

||
i∑

j=0

vj [Cj(xi)](ti+1 − ti)−
i∑

j=0

vjExi
[Cj(xi)](ti+1 − ti)||. (40)

<(ti+1 − ti)[O(dxm) +O(dtn)] + (ti+1 − ti)Exi
||

i∑
j=0

vj [gj(xi)− Exi
gj(xi)]|| (41)

<(ti+1 − ti)([O(dxm) +O(dtn)] + Exi
||

i∑
j=0

vj [gj(xi)− Exi
gj(xi)]||) (42)

Since ((O(dxm) + O(dtn)) is much smaller than Exi
||
∑i

j=0 vj [gj(xi) − Exi
gj(xi)]||. We can

omit the ((O(dxm) +O(dtn)) term.

B PROOF OF TOTAL UPPER ERROR BOUND

Theorem B.1. Compared to Adams-like linear multi-step methods. Our Solver search has a small
upper error bound.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The total upper error bound of Adams-like linear multi-step methods is:
N−1∑
i=0

(
1

N
)

i∑
j=0

η|bji |+ Exi
||

i∑
j=0

vj [gj(xi)]||)

The total upper error bound of Our solver search is:
N−1∑
i=0

(ti+1 − ti)

i∑
j=0

η|Exi
gj(xi) + bji |+ Exi

||
i∑

j=0

vjgj(xi)− Exi
gj(xi)||)

Proof. We donate the continuous integral result of the ideal velocity field v̂ as x̂, the solved integral
result of the ideal velocity field v̂ as x̂N , the continuous integral result of the pre-trained velocity
model vθ as x̂, the solved integral result of the pre-trained velocity model vθ as xN .

xN = ϵ+

N−1∑
i=0

i∑
j=0

vjc
j
i (ti+1 − ti) (43)

The error caused by the non-ideal velocity estimation model can be formulated in the following
equation. we can employ triangular inequalities to obtain the error-bound ||xN − x̂N ||, which is
related to solver coefficients and timestep choices.

||xN − x̂N || = |
N−1∑
i=0

i∑
j=0

(vj − v̂j)c
j
i (ti+1 − ti)|

≤
N−1∑
i=0

i∑
j=0

|(vj − v̂j)c
j
i (ti+1 − ti)|

≤
N−1∑
i=0

i∑
j=0

|vj − v̂j)| × |cji (ti+1 − ti)|

≤ η

N−1∑
i=0

i∑
j=0

|cji (ti+1 − ti)|

The total error of our searched solver is:

||xN − x̂||
=||xN − x̂N + x̂N − x̂||
≤||xN − x̂N ||+ ||x̂N − x̂||

≤η

N−1∑
i=0

i∑
j=0

|cji (ti+1 − ti)|+

N−1∑
i=0

(ti+1 − ti)(O(dxm) +O(dtn) + Exi ||
i∑

j=0

vj [gj(xi)− Exigj(xi)]||)

≈
N−1∑
i=0

η

i∑
j=0

|cji (ti+1 − ti)|+ (ti+1 − ti)Exi ||
i∑

j=0

vj [gj(xi)− Exigj(xi)]||)

=

N−1∑
i=0

(ti+1 − ti)

i∑
j=0

η|Exigj(xi) + bji |+ Exi ||
i∑

j=0

vj [gj(xi)− Exigj(xi)]||)

The total error of Adams-like linear multi-step method is:
N−1∑
i=0

(
1

N
)

i∑
j=0

η|bji |+ Exi
||

i∑
j=0

vj [gj(xi)]||)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Obviously, as (
∑i

j=0 η|b
j
i |+Exi

||
∑i

j=0 vj [gj(xi)]||) is not equal between different timestep inter-
vals, Optimized timesteps owns smaller upper error bound than uniform timesteps.

Recall that η ≪ ||vj ||, the error is mainly determined by Exi
||
∑i

j=0 vj [gj(xi)]||.

Recall that Exi ||
∑i

j=0 vj [gj(xi)−Exigj(xi)]|| ≤ Exi ||
∑i

j=0 vj [gj(xi)]||, thus our solver search
has a minimal upper error bound because we search coefficients and timesteps simultaneously.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C SEARCHED PARAMETERS

We provide the searched parameters ∆t and cji . Note cji needs to be converted into M follwing
Algorithm 1.

C.1 SOLVER SEARCHED ON SIT-XL/2

NFE TimeDeltas ∆t Coeffcients cji

5


0.0424
0.1225
0.2144
0.3073
0.3135




0.0 0.0 0.0 0.0 0.0
−1.17 0.0 0.0 0.0 0.0
1.07 −1.83 0.0 0.0 0.0
0.0 0.0 −0.93 0.0 0.0
0.0 0.0 0.0 −0.71 0.0



6


0.0389
0.0976
0.161
0.2046
0.2762
0.2217




0.0 0.0 0.0 0.0 0.0 0.0

−1.04 0.0 0.0 0.0 0.0 0.0
1.62 −2.98 0.0 0.0 0.0 0.0
−1.32 2.52 −2.04 0.0 0.0 0.0
0.0 0.0 0.0 −0.76 0.0 0.0
0.0 0.0 0.0 0.0 −0.66 0.0



7



0.0299
0.0735
0.1119
0.1451
0.1959
0.2698
0.1738





0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.93 0.0 0.0 0.0 0.0 0.0 0.0
1.23 −2.31 0.0 0.0 0.0 0.0 0.0
−0.59 1.53 −2.09 0.0 0.0 0.0 0.0
−0.09 −0.07 0.99 −1.91 0.0 0.0 0.0
0.05 −0.21 0.09 0.55 −1.47 0.0 0.0
−0.05 0.19 −0.31 0.37 0.67 −1.79 0.0



8



0.0303
0.0702
0.0716
0.1112
0.1501
0.1833
0.2475
0.1358





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.78 −1.7 0.0 0.0 0.0 0.0 0.0 0.0
0.06 0.52 −1.76 0.0 0.0 0.0 0.0 0.0
−0.02 −0.16 0.98 −1.8 0.0 0.0 0.0 0.0
−0.02 −0.12 0.22 0.24 −1.36 0.0 0.0 0.0
−0.1 0.06 −0.02 0.18 0.12 −1.1 0.0 0.0
−0.16 0.14 −0.02 −0.02 0.38 0.32 −1.72 0.0



9



0.028
0.0624
0.0717
0.0894
0.1092
0.1307
0.1729
0.2198
0.1159





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.63 −1.29 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.39 −0.11 −1.41 0.0 0.0 0.0 0.0 0.0 0.0
−0.07 −0.05 0.83 −1.59 0.0 0.0 0.0 0.0 0.0
0.07 −0.11 0.27 0.27 −1.53 0.0 0.0 0.0 0.0
−0.05 0.03 0.01 0.15 0.17 −1.15 0.0 0.0 0.0
−0.21 0.27 −0.07 −0.03 0.19 0.09 −0.99 0.0 0.0
−0.15 0.15 0.03 −0.09 0.25 0.25 0.21 −1.71 0.0



10



0.0279
0.0479
0.0646
0.0659
0.1045
0.1066
0.1355
0.1622
0.1942
0.0908





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.59 −1.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.35 −0.11 −1.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.13 0.01 0.75 −1.49 0.0 0.0 0.0 0.0 0.0 0.0
0.05 −0.05 0.31 0.29 −1.59 0.0 0.0 0.0 0.0 0.0
0.05 −0.03 −0.09 0.23 0.17 −1.19 0.0 0.0 0.0 0.0
−0.03 0.07 −0.09 −0.03 0.27 −0.03 −0.91 0.0 0.0 0.0
−0.15 0.17 0.03 −0.09 0.05 0.09 0.05 −0.79 0.0 0.0
−0.17 0.11 0.15 0.03 0.05 0.25 0.05 −0.07 −1.49 0.0


22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C.2 SOLVER SEARCHED ON FLOWDCN-B/2

NFE TimeDeltas ∆t Coeffcients cji

5


0.0521
0.1475
0.2114
0.2797
0.3092




0.0 0.0 0.0 0.0 0.0
−1.26 0.0 0.0 0.0 0.0
1.38 −2.26 0.0 0.0 0.0
0.0 0.0 −0.92 0.0 0.0
0.0 0.0 0.0 −0.7 0.0



6


0.0391
0.0924
0.165
0.2015
0.2511
0.2511




0.0 0.0 0.0 0.0 0.0 0.0

−1.22 0.0 0.0 0.0 0.0 0.0
1.12 −2.0 0.0 0.0 0.0 0.0
−0.3 0.9 −1.56 0.0 0.0 0.0
0.0 0.0 0.0 −0.74 0.0 0.0
0.0 0.0 0.0 0.0 −0.62 0.0



7



0.0387
0.0748
0.103
0.1537
0.184
0.234
0.2117





0.0 0.0 0.0 0.0 0.0 0.0 0.0
−1.11 0.0 0.0 0.0 0.0 0.0 0.0
1.03 −1.99 0.0 0.0 0.0 0.0 0.0
0.07 0.43 −1.57 0.0 0.0 0.0 0.0
−0.21 −0.15 1.53 −2.29 0.0 0.0 0.0
−0.05 0.07 −0.23 0.61 −1.33 0.0 0.0
−0.17 0.31 −0.41 0.17 0.59 −1.31 0.0



8



0.0071
0.0613
0.078
0.1163
0.1421
0.188
0.2077
0.1996





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−2.43 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.61 −1.55 0.0 0.0 0.0 0.0 0.0 0.0
0.99 −0.11 −2.07 0.0 0.0 0.0 0.0 0.0
0.05 −0.49 1.33 −1.93 0.0 0.0 0.0 0.0
0.05 −0.33 0.23 0.73 −1.71 0.0 0.0 0.0
−0.09 0.25 −0.29 0.05 0.61 −1.45 0.0 0.0
−0.23 0.21 −0.01 −0.25 0.25 0.41 −1.25 0.0



9



0.0017
0.051
0.0636
0.0911
0.1007
0.1443
0.1694
0.191
0.1872





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−6.19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.11 −0.81 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.73 −0.17 −1.37 0.0 0.0 0.0 0.0 0.0 0.0
0.31 −0.05 0.19 −1.45 0.0 0.0 0.0 0.0 0.0
0.03 −0.23 0.29 0.35 −1.35 0.0 0.0 0.0 0.0
−0.19 0.05 0.01 0.21 0.25 −1.23 0.0 0.0 0.0
−0.23 0.21 −0.13 0.17 0.09 0.09 −1.09 0.0 0.0
−0.17 0.15 0.11 −0.19 0.03 0.23 0.17 −1.21 0.0



10



0.0016
0.0538
0.0347
0.0853
0.0853
0.1198
0.1351
0.165
0.1788
0.1406





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−7.8801 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.4 −0.74 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.48 −0.18 −0.86 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.26 −0.04 −0.04 −1.28 0.0 0.0 0.0 0.0 0.0 0.0
0.0 −0.06 0.26 0.26 −1.42 0.0 0.0 0.0 0.0 0.0
−0.1 −0.06 0.08 0.2 0.22 −1.24 0.0 0.0 0.0 0.0
−0.18 0.14 −0.08 0.1 0.08 0.14 −1.06 0.0 0.0 0.0
−0.12 0.16 −0.1 0.04 0.08 0.06 0.08 −1.02 0.0 0.0
−0.16 0.02 0.14 0.0 −0.14 0.08 0.14 0.34 −1.38 0.0


23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

C.3 SOLVER SEARCHED ON DIT-XL/2

NFE TimeDeltas ∆t Coeffcients cji

5


0.2582
0.1766
0.1766
0.2156
0.1731




0.0 0.0 0.0 0.0 0.0
−1.43 0.0 0.0 0.0 0.0
0.93 −1.55 0.0 0.0 0.0
0.0 0.0 −0.69 0.0 0.0
0.0 0.0 0.0 −0.59 0.0



6


0.2483
0.1506
0.1476
0.1568
0.1733
0.1233




0.0 0.0 0.0 0.0 0.0 0.0

−1.36 0.0 0.0 0.0 0.0 0.0
0.9 −1.84 0.0 0.0 0.0 0.0

−0.08 0.5 −1.08 0.0 0.0 0.0
0.0 0.0 0.0 −0.56 0.0 0.0
0.0 0.0 0.0 0.0 −0.56 0.0



7



0.2241
0.1415
0.1205
0.1158
0.1443
0.1627
0.0911





0.0 0.0 0.0 0.0 0.0 0.0 0.0
−1.38 0.0 0.0 0.0 0.0 0.0 0.0
1.08 −2.02 0.0 0.0 0.0 0.0 0.0
−0.28 0.78 −1.52 0.0 0.0 0.0 0.0

−1.4901e− 08 −0.1 0.64 −1.5 0.0 0.0 0.0
0.06 −0.06 −0.06 0.26 −1.0 0.0 0.0
0.0 −0.1 0.02 0.2 0.26 −1.12 0.0



8



0.2033
0.1476
0.1094
0.099
0.1116
0.1233
0.131
0.0748





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−1.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.8 −1.76 0.0 0.0 0.0 0.0 0.0 0.0
0.02 0.48 −1.62 0.0 0.0 0.0 0.0 0.0
−0.12 0.06 0.62 −1.42 0.0 0.0 0.0 0.0
0.04 −0.1 0.12 0.16 −1.04 0.0 0.0 0.0
0.06 −0.04 −0.06 0.08 −0.08 −0.56 0.0 0.0
−0.02 −0.04 −0.04 0.12 0.14 0.04 −0.9 0.0



9



0.1959
0.1313
0.1142
0.0863
0.0898
0.0916
0.1119
0.1054
0.0735





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−1.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.78 −1.62 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−0.02 0.44 −1.48 0.0 0.0 0.0 0.0 0.0 0.0
−0.1 0.16 0.36 −1.3 0.0 0.0 0.0 0.0 0.0
−0.06 −0.04 0.22 0.12 −1.08 0.0 0.0 0.0 0.0
0.08 −0.1 −0.04 0.24 −0.06 −0.86 0.0 0.0 0.0
0.04 −0.04 −0.04 0.0 0.06 −0.08 −0.5 0.0 0.0
−0.04 0.0 0.0 −0.02 0.14 0.02 0.0 −0.74 0.0



10



0.2174
0.1123
0.1037
0.0724
0.0681
0.0816
0.0938
0.0977
0.0849
0.0681





0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
−1.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.35 −0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.25 −0.11 −0.99 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.03 0.05 −0.07 −0.85 0.0 0.0 0.0 0.0 0.0 0.0
−0.03 0.03 0.25 −0.09 −0.93 0.0 0.0 0.0 0.0 0.0
−0.01 −0.03 −0.01 0.21 −0.11 −0.67 0.0 0.0 0.0 0.0
0.01 −0.03 −0.03 0.07 0.09 −0.03 −0.81 0.0 0.0 0.0
0.03 −0.03 −0.03 −0.03 0.05 0.01 −0.11 −0.27 0.0 0.0
−0.01 −0.01 −0.01 −0.01 0.03 0.07 −0.01 −0.05 −0.57 0.0



D SOLVER CODE

D.1 DDPM/VP CODE

corresponding to DDPM(beta_min=0.0001 beta_max=0.02)
class VPScheduler:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

def __init__(
self,
beta_min=0.1,
beta_max=20,

):
super().__init__()
self.beta_min = beta_min
self.beta_d = beta_max - beta_min

def beta(self, t) -> Tensor:
t = torch.clamp(t, min=1e-3, max=1)
return (self.beta_min + (self.beta_d * t)).view(-1, 1, 1, 1)

def sigma(self, t) -> Tensor:
t = torch.clamp(t, min=1e-3, max=1)
inter_beta:Tensor = 0.5*self.beta_d*t**2 + self.beta_min* t
return (1-torch.exp_(-inter_beta)).sqrt().view(-1, 1, 1, 1)

def alpha(self, t) -> Tensor:
t = torch.clamp(t, min=1e-3, max=1)
inter_beta: Tensor = 0.5 * self.beta_d * t ** 2 + self.beta_min * t
return torch.exp(-0.5*inter_beta).view(-1, 1, 1, 1)

class Scheduler(SchedulerMixin, ConfigMixin):
@register_to_config
def __init__(

self,
num_train_timesteps: int = 1000,

):
self.num_train_timesteps = num_train_timesteps
self.vp_scheduler = VPScheduler()
self.init_noise_sigma = 1.0
self.buffer = []
self._index = 0

def set_timesteps(self, num_inference_steps: int, device: torch.device):
index Params according to num_inference_steps
self._timedeltas = ...
self._coeffs = ...
self._contiguous_timestep = [0.999,]
for i in range(num_inference_steps-1):

t = max(self._contiguous_timestep[-1] - self._timedeltas[i], 0.0)
self._timestep.append(t)

self.timesteps = torch.tensor(self._timestep)*self.num_train_timesteps
self.timesteps = self.timesteps.to(torch.int64)
self._contiguous_timestep = torch.tensor(self._contiguous_timestep)
self.num_inference_steps = num_inference_steps

def step(
self,
eps: torch.Tensor,
timestep: int,
x: torch.Tensor,
return_dict: bool = True,

) -> Tuple:
if timestep == self.num_train_timesteps -1:

self.buffer.clear()
self._index = 0

t_cur = self._timestep[self._index]
dt = self._timedeltas[self._index]
sigma = self.vp_scheduler.sigma(t_cur)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

alpha = self.vp_scheduler.alpha(t_cur)
lamda = (alpha / sigma)
sigma_next = self.vp_scheduler.sigma(t_cur - dt)
alpha_next = self.vp_scheduler.alpha(t_cur - dt)
lamda_next = (alpha_next / sigma_next)
x0 = (x - sigma * eps) / alpha
self.buffer.append(x0)
dpmx = torch.zeros_like(x0)
sum_solver_coeff = 0.0
for j in range(self._index):

dpmx += self._coeffs[self._index, j] * self.buffer[j]
sum_solver_coeff += self._coeffs[self._index, j]

dpmx += (1 - sum_solver_coeff) * self.buffer[-1]
delta_lamda = lamda_next - lamda
x = (sigma_next / sigma) * x + sigma_next * (delta_lamda) * dpmx
x = x.to(dtype)
self._index += 1
return (x,)

D.2 RECTIFIED FLOW CODE

class Scheduler(SchedulerMixin, ConfigMixin):
@register_to_config
def __init__(

self,
num_train_timesteps: int = 1000,
shift: float = 1.0,
use_dynamic_shifting=False,
base_shift: Optional[float] = 0.5,
max_shift: Optional[float] = 1.15,
base_image_seq_len: Optional[int] = 256,
max_image_seq_len: Optional[int] = 4096,

):
self.num_train_timesteps = num_train_timesteps
self.buffer = []

def set_timesteps(self, sigmas, device: torch.device, *args, **kwargs):
num_inference_steps = len(sigmas)
self._index = 0
self._timedeltas = ...
self._coeffs = ...
self._timesteps = [1.0,]
for t in range(num_inference_steps - 1):

self._timesteps.append(self._timesteps[-1] - self._timedeltas[t])
self.timesteps = self.timesteps*self.num_train_timesteps
self._timesteps = torch.tensor(self._timesteps)
self.num_inference_steps = num_inference_steps

def step(
self,
v: torch.Tensor,
timestep: int,
x: torch.Tensor,
return_dict: bool = True,

) -> Union[FlowMatchEulerDiscreteSchedulerOutput, Tuple]:
if int(timestep) == self.num_train_timesteps:

self.buffer.clear()
self._index = 0

dtype = x.dtype

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

dt = self._timedeltas[self._index]
mean = torch.mean(v, [1,], keepdim=True)
v = v - mean
self.buffer.append(v)
v = torch.zeros_like(v)
sum_solver_coeff = 0
for j in range(self._index):

v += self._coeffs[self._index, j] * self.buffer[j]
sum_solver_coeff += self._coeffs[self._index, j]

v += (1 - sum_solver_coeff) * self.buffer[-1]
replace with decayed mean
v = v + mean/(self._index+1)
x = x - v * dt
x = x.to(dtype)
self._index += 1
return (x,)

E LIMITATIONS

E.1 MISALIGND RECONSTRUCION LOSS AND PERFORMANCE.

Our proposed methods are specifically designed to minimize integral error within a limited number
of steps. However, ablation studies reveal a mismatch between FID performance and Reconstruction
error. To address this issue, we plan to enhance our searched solver by incorporating distribution
matching supervision, thereby better aligning sampling quality.

E.2 LARGER CFG INFERENCE.

In the main paper, we demonstrate text-to-image visualization with a small CFG value. However,
it is intuitive that utilizing a larger CFG would result in superior image quality. We attribute the
inferior performance of large CFGs on our solver to the limitations of current naive solver structures
and searching techniques. We hypothesize that incorporating predictor-corrector solver structures
would enhance numerical stability and yield better images. Additionally, training with CFGs may
also be beneficial.

27

	Introduction
	Related Works
	Problem Definition
	Analysis of reverse-diffusion ODE Sampling
	Recap the multi-step methods
	Focus on Solver coefficients instead of the interpolation function
	Optimal search space for a solver

	Differentiable solver search.
	Extending to DDPM/VP framework
	Experiment
	Rectified Flow Models
	DDPM/VP Models
	Visualization Of Solver Parameters

	Conclusion
	Proof of pre-integral error expectation
	Proof of total upper error bound
	Searched Parameters
	Solver Searched on SiT-XL/2
	Solver Searched on FlowDCN-B/2
	Solver Searched on DiT-XL/2

	Solver Code
	DDPM/VP Code
	Rectified Flow Code

	Limitations
	Misalignd Reconstrucion loss and Performance.
	Larger CFG Inference.

