
Supplementary material for434

Variational Monte Carlo on a Budget –435

Fine-tuning pre-trained Neural Wavefunction436

A Molecule datasets437

Bicyclobutane For the Bicyclobutane to 1,3-butadiene transition we use the geometries from Kinal438

et al. [30] and compare against the reference energies stated in Spencer et al. [5].439

N2 For the N2 potential energy surface with various bond-lengths we used the geometries including440

reference calculations from [8].441

Propadiene The global rotation of 360° degrees for propadiene is performed on the geometry442

which is part of the test set for 3 heavy atoms. For the torsion experiment we used the equilibrium443

geometry and rotated the torsion angle by 90° degrees in steps of 10° degrees.444

Zero-shot and fine-tuning dataset The results on zero-shot and few-shot predictions for increasing445

number of heavy atoms are performed on random subsets of molecules. For 5-7 heavy atoms we446

sample 4 unique and distorted molecules from QM7-X [26]. For 4 heavy atoms we use all geometries447

from the Bicyclobutane dataset. For 3 heavy atoms we use the ablation dataset.448

Ablation dataset For the ablation study, we use one geometry per molecule from the out-of-449

distribution test set from Scherbela et al. [25], leading to a set of four distinct molecules. We ensure450

that these molecules are not part of the training set.451

Large scale experiment For the large scale experiment we used a stratified random sample of 250452

molecules from QM7 [31]. It contains all molecules with up to 4 heavy atoms, and additionally 65453

randomly chosen molecules for 5, 6 and 7 heavy atoms each.454

Pre-training dataset for transferable neural wavefunctions To train our pre-trained wavefunc-455

tions we use two datasets, consisting of 18 and 98 disparate molecules. For part of the ablation we use456

the dataset proposed in [25] and an extended version with 80 additional molecules. The additional457

compounds are a combination of all valid SMILES generated with RDKit [34] with 3 heavy atoms,458

allowing only Nitrogen, Oxygen and Carbon with single-, double- or triple-bonds, and all molecules459

up to four heavy atoms from QM7-X [26] (excluding molecule containing Fluorine). To prevent a460

train-test leakage, we remove Bicyclobutane (including all conformations) and the four molecules461

from the ablations dataset. Since the normal-mode-distortions by design do not generate strongly462

distorted geometries, we augment the 98-molecule-dataset with rotated dihedral angles. To generate a463

subset of all possible dihedral angles for a heavy-atom bond we first generate samples with equidistant464

angles for all possible dihedral angles and compute Hartree-Fock energies with a minimal basis-set.465

We include the equilibrium geometry and all extrema of the potential energy surface with respect to466

the rotation of a single dihedral angle if the energy of the extrema is significantly different to already467

included geometries of the same molecule. Additionally, we include the transition geometry towards468

the respective extrema and again only include energetic diverse states. Finally, to make sure that469

certain molecules are not underrepresented in the dataset we make sure that all molecules have at470

least 5 geometries that get distorted during pre-training by adding copies of the equilibrium geometry.471

Overall this yields 699 initial geometries R0 for pre-training.472

B Electron MCMC initialization473

To investigate the impact of the initial distribution of electron positions on the equilibration of the474

Markov Chain, we run two evaluations for a glycine molecule, using a pre-trained wavefunction. We475

perform no initial burn-in and use every 50th sample for energy evaluation. If the chain was perfectly476

equilibrated right after initialization, all sampled energies would fluctuate around the mean energy.477

However as Fig. 6b shows, it takes several thousand steps for the sampled energies to converge to478

the correct mean. This is particularly pronounced with Gaussian initialization of electron positions,479

1



which is the default in state-of-the-art DL-VMC codes such as FermiNet [3]. Using an exponential480

distribution of the initial electron positions much more closely resembles the correct electron density481

 
2 (cf. Fig. 6a) and thus reaches equilibrium substantially faster.482

Figure 6: Effect of electron initialization: Initializing the electron positions using an exponential
distribution instead of Gaussian, better fits the actual density (a), and thus leads to faster equilibration
of observables during evaluation (b).

C Orbital localization483

Our model uses orbital embeddings xorb as inputs to parameterize the backflows f orb, and exponents484

g
orb of the orbitals. These orbital embeddings were introduced by Scherbela et al. [25] in the form of485

molecular orbital expansion coefficients, obtained from a self consistent Hartree-Fock calculation. In486

this setting, the coefficients xorb are not uniquely defined, but only up to a linear transformation U487

with determinant ±1488

x
orb
Ik =

NorbX

n=1

Uknx̂
orb
Ik , U 2 RNorb⇥Norb , detU = ±1. (15)

This stems from the fact that the corresponding Hartree-Fock wavefunction is invariant under such a489

transformation. Consequently there is free choice, which linear combination of embeddings xorb to490

choose from without any loss of information. We follow the approach of [25], by choosing U such491

that the corresponding Hartree-Fock orbitals are maximally localized according to the Foster-Boys492

metric, i.e. minimize the spatial variance L:493

�k(r, U) =
NnucX

I=1

NbasisX

µ=1

bIµ(r)Uknx̂
orb
Inµ (16)

L(U) =
X

k

Z
�
2
k(r, U)r2dr �

✓Z
�
2
k(r, U)rdr

◆2

(17)

Here bIµ(r) denotes µ-th basis function of the Hartree-Fock expansion, centered on the I-th nucleus.494

In practice the integrals of Eq. 17 do not have to be evaluated explicitly, but can instead be computed495

via the overlap matrix S. The minimization of L is typically done iteratively, requires on the order of496

10 steps, and is readily implemented in many open-source quantum chemistry codes such as pySCF497

[35].498

D Tables of energies499

D.1 Conformers of Bicyclobutane500

In Tab. 1 we list the relative energies of our method and all reference energies corresponding to Fig.501

3.502
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Table 1: Energies relative to the energy of bicyclobutane in mHa, including the zero-point vibrational
energy correction from Kinal et al. [30]

structure CCSD(T)
[30]

DMC
[30]

FermiNet 200k
[5]

FermiNet 10k
[5]

Our work
zero-shot

Our work
700 per geom

con_TS 64.4 64.4 64.1 63.9 94.0 66.6
dis_TS 34.7 93.4 92.0 87.1 183.8 94.5
g-but -40.0 -40.2 -40.3 -44.9 -48.5 -40.4
gt-TS -35.5 -35.4 -35.9 -42.9 -46.9 -36.7
t-but -44.6 -44.5 -45.3 -47.5 -51.8 -43.2

E Reference energies503

CCSD(T) All CCSD(T) energies – except explicitly stated otherwise – were obtained using ORCA504

[36] starting from a restricted Hartree-Fock calculation. We use correlation consistent basis sets of the505

cc-pCVXZ family, with X in {2, 3, 4}. To extrapolate to the complete basis set limit (CBS), we use506

the approach outlined in [3] and fit the following functions with free parameters EHF
CBS, E

corr
CBS, a, b, c:507

E
HF
X = E

HF
CBS + ae

�bX

E
corr
X := E

HF
X � E

CCSD(T)
X = E

corr
CBS + cX

�3

E
CCSD(T)
CBS = E

HF
CBS + E

corr
CBS

We stress that although CCSD(T)-energies are often considered as "gold-standard", they do not508

necessarily represent the actual ground-state energy. There are many cases, where CCSD(T) either509

overestimates the true ground-state energy, or even underestimates it, because CCSD(T) does not510

yield upper bounds to the true ground-state energy.511

PsiFormer For Fig. 2 we used the open-source FermiNet codebase [37]. The codebase didn’t allow512

for inference calculation, therefore a slight fix was applied. All calculations were performed with the513

small settings as proposed in von Glehn et al. [6].514

F Adaption of PhisNet515

We heavily rely on PhisNet by Unke et al. [20] to obtain orbital descriptors without the need for a516

separate SCF calculation. Compared to their original work, we made several simplifications, which517

are motivated by the fact that we do not predict final high-accuracy orbitals in a large basis set, but518

only use PhisNet as a feature extractor by predicting orbitals in a minimal basis-set:519

• Layer Norm We found deep variants of PhisNet to be unstable to train and mitigated the520

issue by adding an (equivariant) layer norm after each PhisNet module.521

• Simplified Fock matrix prediction The original PhisNet implementation uses a final522

interaction between the node embeddings, before predicting the elements of the Fock matrix.523

We found this interaction to be superfluous for our purposes and left it out for simplicity.524

• Separate energy head The original PhisNet computes energies via the eigenvalues obtained525

by diagonalization of the Fock matrix. We instead predict energies using a separate head on526

top of the scalar features of the node embeddings.527

• Smaller network We changed the hyperparameters to obtain a smaller and faster version of528

PhisNet which obtained sufficient accuracy for our purposes. We used 2 layers (instead of 5)529

and Lmax = 2 (instead of 4). This reduces the number of parameters from 17M to 3M.530

• Diverse training set While the original work optimized separate models for each molecule531

(e.g. by training on different geometries of a molecular dynamics simulation), we optimize a532

single model to predict F , S, E, and rE across a dataset of 47k geometries sampled from533

QM7-X [26].534

• JAX re-implementation We re-implemented PhisNet in JAX, using the e3nn library [38] to535

construct the SE(3)-equivariant operations.536
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We train the PhisNet-model on a dataset of 47k molecules from QM7X [26], using the Adam optimizer537

[39] on the following loss538

L =
X

n

�
E

phis(Rn
,Z

n)� E
ref,n�2 + (18)

+
X

nI⇣

 
@

@R
n
I⇣

E
phis(Rn

,Z
n)�G

ref,n
I⇣

!2

+ (19)

+
X

nIJµ⌫

⇣
F

phis
IJµ⌫(R

n
,Z

n)� F
ref,n
IJµ⌫

⌘2
+ (20)

+
X

nIJµ⌫

⇣
S

phis
IJµ⌫(R

n
,Z

n)� S
ref,n
IJµ⌫

⌘2
. (21)

Here E denotes energies, G denotes gradients of energies, F Fock matrices, and S overlap matrices.539

The indices I, J run over nuclei, the indices µ, ⌫ over basis functions, and the index n over samples540

in a batch.541

G Hyperparameters542

A detailed description of the hyperparameter used in this work can be found below (cf. Tab. 2). For543

the mapping of the orbital descriptors to the electron embeddings to build the orbitals we rely on the544

hyperparameter from [25]. For optimization we rely on the second-order method KFAC [29] and use545

their Python implementation [40]. During the continuous sampling of the geometries we allow each546

geometry to perform a maximum of 20 steps of normal-mode distortion from the initial geometry and547

reset to the original one once the threshold is reached.548

H Computational resources549

We used ⇡ 5k GPUhs (A100) for development and training of our base models, and another 5k GPUhs550

(A40) on evaluations and fine-tuning. Additionally we required ⇡ 20k CPUhs for CCSD(T) reference551

calculations.552

I Code and data availability553

All code, configuration files, geometries, datasets and obtained energies are available in the supple-554

mentary information.555
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Table 2: Hyperparameter settings used in this work

Electron Embedding Hidden dimension Nemb 256
№ iterations 4

Nuclear Embedding Hidden dimension x̃
nuc 64

№ layer MLP 1

Message passing
Activation function SiLU
№ layer edge embedding 3
Dimension edge embedding 64
Dimension linear layer 32

Markov Chain
Monte Carlo

№ walkers 2048
№ decorrelation steps 50
Target acceptance prob. 50%

PhisNet [20]

Pre-trained against basis set STO-6G
№ iterations 2
Harmonic degree L 2
№ radial basis functions 128
Hidden dimension of xnuc 128
Distance cutoff (bohr) 30

Transferable
atomic orbitals [25]

№ determinants Ndet 8
№ hidden layers f orb 2
Hidden dimension of f orb 256
№ hidden layers gorb 2
Hidden dimension g

orb 128
№ iterations MPNN 2
№ radial basis functions 16
Hidden edge embedding dimension 32
Hidden node embedding dimension 16
Activation function SiLU

Variational
pre-training

Optimizer KFAC
Batch size 2048
Norm constraint 3⇥ 10�3

Initial damping d0 1
Minimal damping dmin 0.001
Damping rate decay d(t) = d0 exp(�t/20000)
Initial learning rate lr0 0.1
Learning rate decay lr(t) = lr0(1 + t/6000)�1

Optimization steps 128,000 - 256,000

Changes for
fine-tuning

Learning rate decay lr(t) = lr0(7 + t/6000)�1

Optimization steps 0 - 32,000

Sampling
geometries

Distortion energy � 0.005 Ha
Max age 20
Bias towards original geometry ↵ 0.2
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