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1. Abstract

We present a novel hybrid U-NET model for
biosensing applications that simultaneously per-
forms segmentation and centroid detection of
nanoparticles bound to supported lipid bilayer
systems. Our approach leverages the full spatial
and spectral information in the RGB channels,
enabling more accurate detection of extremely
noisy but persistent nanoparticle binding events
under dark-field illumination. This method sur-
passes previous single-channel U-NET variants and
outperforms state-of-the-art techniques such as
T-Rex2 in crowded, low signal-to-noise environ-
ments. Implemented in PyTorch and harnessing
GPU acceleration, the hybrid U-NET model achieves
up to two orders of magnitude speed improve-
ments, making it suitable for high-throughput and
real-time on-the-fly analysis. As a first step in a
broader diagnostic pipeline, this technique holds
promise for detecting rare molecular interactions
and mutations (e.g., single-base-pair mismatches or
low-abundance proteins) with high sensitivity and
specificity.
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Fig. 1: Schematic of NANOparticle Point spread
function-Informed Centroiding and Segmentation
(NANO-PICS). NANO-PICS is a hybrid U-NET
model that incorporates optical constrains to
perform segmentation and centroid detection
simultaneously.

2. Introduction

In recent years, there has been growing interest
in nanoparticle-based biosensing due to its potential
for ultra-sensitive diagnostics in fields ranging from
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genomics to proteomics [1, 2]. Nanoparticles, func-
tionalized with specialized receptors, can bind to
target biomolecules at extraordinarily low concen-
trations, and does not suffer from photo-bleaching,
making them promising labels for single-molecule
detection assays [3, 4, 5, 6]. One of the most com-
pelling platforms for these investigations is the sup-
ported lipid bilayer (SLB) system, which can be engi-
neered to immobilize nanoparticles in a controlled
2D environment [7, 8, 9, 10]. However, reliably
identifying and tracking these nanoparticle binding
events is a longstanding challenge, primarily due to
the confounding presence of noise and the crowded
background signals that are typical in micrographs
with a large field-of-view to encompass more parti-
cles.

Recent advances in computer vision and arti-
ficial intelligence (AI) have significantly pushed
the boundaries of image segmentation, particularly
through convolutional neural networks (CNNs) such
as DeconvNet [11], SegNet [12], and U-NET [13],
which deliver state-of-the-art results on everyday ob-
jects. Despite these advances, these standard seg-
mentation networks often struggle to accurately seg-
ment and localize diffraction-limited micrographs of
nanoparticles. This is largely due to their limited ex-
posure to niche image data. For example, electron
microscopy images, hyperspectral/multispectral im-
agery from remote sensing, or tomography scans.
Recent methods like T-Rex2 [14], while powerful
in sparse environments, have difficulty separating
closely spaced or strongly overlapping nanoparticle
clusters in noisy data. Our approach directly ad-
dresses these limitations by coupling segmentation
with centroid detection, facilitated by a Gaussian
prior that emphasizes likely nanoparticle locations.

Moreover, for single-molecule biosensing appli-
cations that involve nanoparticle detection, obtain-
ing the spatial location of the nanoparticles is cru-
cial for downstream analysis [15, 16, 17]. How-
ever, this centroid detection capability is not sup-
ported by those CNNs. To address these chal-
lenges, we have developed NANOparticle Point
spread function-Informed Centroiding and Segmen-
tation (NANO-PICS), a hybrid U-NET model that inte-
grates simultaneous segmentation and centroid de-
tection capabilities while leveraging the color infor-
mation of multichannel (RGB) microscopy images.
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Fig. 2: Comparison with state-of-the-art segmentation architectures. Previous segmentation models like U-
NET and T-Rex2 are unable to satisfactorily segment dark-field images of nanoparticles. The crowded and
noisy environment of the images causes these models to perform poorly. The ground truth segmentation was
obtained by aggregating masks from manually determined thresholds of raw images, described in Figure A2.

3. Discussion

The key novelty of NANO-PICS is summarized in
the following paragraphs.

Improved multi-channel analysis: Conventional
single-channel approaches to localization (for exam-
ple, in fluorescence microscopy), does not utilize
the valuable spectral information carried in the RGB
channels, leading to reduced accuracy. Moreover,
the dynamic range of signals in fluorescence mi-
croscopy can vary significantly across channels, pro-
viding essential clues for disambiguating nanoparti-
cle binding events from background noise. The pro-
posed NANO-PICS solves this by operating simulta-
neously on all three channels.

Simultaneous segmentation and centroid detec-
tion: The combined information of segmentation
and centroid detection is incorporated in the loss
function of the model. This allows for a single model
to perform two tasks simultaneously. This reduces
the need for other ad-hoc image processing steps.

PSF-informed segmentation The dual-design
that explicitly separates segmentation from centroid
detection allows each network head to learn spe-
cialized features, one focusing on object boundary
delineation and the other on localizing the brightest
point of interest. The point-spread function (PSF)
prior, in this case, a Gaussian profile, further refines
centroid predictions, a critical step when signals are
faint or overlapping, and standard neural networks
tend to blur or over-segment.

High-throughput imaging capability: High sen-
sitivity biosensing applications require analyzing
large volumes of data quickly, to detect and sift statis-
tically important signals, whether for real-time diag-
nostics or high-throughput screening. The PyTorch
implementation of our NANO-PICS allows seamless
GPU acceleration, delivering speed-ups of up to
10x-100x compared to CPU-based or less optimized
pipelines. Such performance gains are needed
for “on-the-fly” analysis, enabling timely decision-
making in clinical or laboratory settings.

4. Conclusion

This study demonstrates that simultaneously seg-
menting and detecting nanoparticle centroids in
noisy, multichannel microscopy images of sup-
ported lipid bilayer systems is both feasible and ad-
vantageous. By leveraging the hybrid U-NET archi-
tecture, one can achieve robust, high-throughput
performance that outstrips both classic single-
channel U-NET variants and more modern, but less
specialized methods like T-Rex2. The deployment-
ready PyTorch implementation offers immediate
benefits for large-scale experiments or point-of-care
diagnostics.

In the broader context of biosensing and med-
ical diagnostics, this represents a key first step in
a pipeline aimed at ultra-sensitive detection tasks,
such as identifying single-base-pair mismatches in
nucleic acids [7, 15] or capturing trace concentra-
tions of proteins of diseases markers [18]. The im-
proved fidelity and throughput of the model pave
the way for subsequent analytical stages—e.g., ad-
vanced classification, quantitative measurements of
binding kinetics, or multiplexed assays—where pre-
cise localization and segmentation of nanoparticles
are foundational. As the field shifts toward ever
more sensitive, low-volume biosensing techniques,
this hybrid U-NET approach stands poised to enable
rapid, accurate, and cost-effective diagnostic work-
flows.
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Appendix A. Methods

1.1 Data Acquisition and Preparation

Nanoparticle synthesis: Nanoparticles for the red signal are gold nanorods synthesized by a seed-mediated
growth mechanism. Nanoparticles for the green signal are spherical gold nanoparticles (50 nm) purchased
from BBI Solutions (Cardiff, UK). Nanoparticles for the blue signal are gold-silver core-shell nanoparticles syn-
thesized by a core-shell growth mechanism. The spectral response and other characterization are described
in [15]. Microscopy Setup: We captured images of nanoparticles bound to supported lipid bilayers under dark-
field conditions. The data consisted of images with three channels corresponding to red, green, and blue
emissions. Preprocessing: Images were normalized to reduce channel-to-channel intensity variations.

Fig. Al: Samples of input data used. A total of 1120 frames of 256 pixels by 256 pixels were used.

1.2 Model Architecture: NANO-PICS

Segmentation U-NET: Trained to produce a soft mask that differentiates nanoparticles from background.
Centroid Detection U-NET: Generates a heatmap capturing the most probable locations of nanoparticle cen-
troids, using a Gaussian prior as additional training signal. Gaussian Prior Enhancement: The centroid de-
tection U-NET outputs a heatmap, which is convolved (element-wise multiplied) with a precomputed 2D Gaus-
sian kernel prior. This prior emphasizes Gaussian-like structures corresponding to nanoparticles in each color
channel, effectively guiding the training toward accurate localization even under high noise.

1.3 Loss Function

For segmentation, binary cross-entropy loss was employed. For centroid detection, mean squared error
(MSE) and a sparsity metric was used to promote small, high-intensity regions corresponding to centroids. The
full loss function is shown in Appendix C. Implementation: The model was built using PyTorch, leveraging
GPU acceleration (NVIDIA GTX 1080).

1.4 Segmentation Performance

Quantified using intersection over union (IoU) and the F1 score to evaluate how closely the predicted mask
matches the ground truth. Centroid Detection Accuracy: Computed via the precision and recall of predicted
centroid locations (within a fixed radius of the ground-truth positions), as well as the mean Euclidean distance
between predicted and true centroids. Speed Benchmarking: Execution times were recorded for CPU-only vs.
GPU-accelerated runs across a range of image sizes and batch configurations.

Appendix B. Obtaining ground truth segmentation

Ground truth segmentation was performed by manually adjusting a threshold level for each color channel
in the images, shown in Figure A2. This step helps ensure that brighter nanoparticle signals are separated
from the background. However, setting the threshold too high can unintentionally exclude dimmer particles,
leading to an undercount. Conversely, setting it too low may include noise or non-nanoparticle structures.
As a result, each color channel demands its own careful tuning so that the segmentation captures as many
particles as possible while minimizing false positives. This manual process can be labor-intensive and prone
to variability, particularly when dealing with multiple channels and different imaging conditions.
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Fig. A2: Ground truth segmentation was determined by manual determination of threshold level for each color
channel. At higher threshold levels, dimmer particles are excluded. Manual tuning for each channel is
required to capture as many particles as possible.



Al4X 2025, Singapore, 8-11 July 2025

Appendix C. Loss function of NANO-PICS

The loss function of NANO-PICS consist of two major parts. One from the segmentation and one from the
centroiding.

»Ctotal = »Cseg + »Ccentroida (Al)

where L, is the segmentation loss and Lentroid 1S the centroid loss.

3.1 Segmentation loss
The segmentation loss is simply the Binary Cross-Entropy loss,

Eseg = BCE(Sprem Starget)a (AZ)
where Sreq is the predicted segmentation and Siarget is the target segmentation.
3.2 Centroiding loss

The centroiding loss can be further broken down into two components. One from the determination of
peaks and one novel component (in this work) that relates to the "shape" of the nanoparticle.

Ecentroid = Epeaks + Lgaussian (A?’)
1| 1
Lpeaks = B Z P Z mln [P —qll2 + BCE(C; pred’ Otlarget) + Rsparsny ) (A4)
i=1 out pepoi q€ larg

where B is the batch size, P}, is the set of peak positions in the i-th predicted centroid map, P, targ is the set of
peak positions in the i-th target centroid map, Cpred is the i-th predicted centroid map, C{,,y is the i-th target

centroid map and Rsparsﬁy is the sparsity regularization term.

P : i ] '
‘ qut‘ 1f|Pgut‘ > ‘P)éirg|and|P)tlarg| 3&0

[P
i IPar | i
Rsparsﬁy ‘Pttg‘ ) 1f| targ| > ‘ out| and |Pgut| 7& 0> (AS)
1, otherwise

This sparsity term penalizes the model if there is a difference between the number of predicted peaks and the
number of ground truth peaks.

B
EGausswm - E Eﬁ

H W
Z Z CE G * Cpred)h ws Stargeth w) (A6)
h: w=1

1,2+ 2
where G is the Gaussian kernel: G(z,y) = 5ize” 27, x denotes the convolution operation, H and W are

the height and width of the feature maps. This Gaussian loss provides an additional constraint between the
predicted peaks and the segmentation model.

Appendix D. CNN architectures
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Fig. A3: Basic U-NET architecture inspired from [13]. Here, 256x256 pixels input were used instead of the
original 128x128 pixels.
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Fig. A4: NANO-PICS architecture. NANO-PICS is a hybrid of two U-NETs. The left arm was trained for segmen-
tation, while the right arm was trained for centroiding.
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