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ABSTRACT

Three-dimensional (3D) cellular morphology is a critical indicator of cellular
function, disease states, and drug responses. However, capturing and interpret-
ing the complex relationships between cell shape, treatment conditions, and their
biological implications remains a challenge. To address this, we present “Build
Your Own Cell” (BYOC), a multichannel 3D generative framework that com-
bines vector quantisation and diffusion models to synthesise biologically realis-
tic 3D cell structures. BYOC captures intricate morphological changes induced
by different drug treatments, enabling high-throughput in silico simulations and
screening of cell shapes in response to varied conditions. This novel framework
represents a significant step towards accelerating pre-clinical drug development by
synthesising high-resolution, biologically realistic 3D cells, potentially reducing
reliance on labour-intensive experimental studies. By ensuring phenotypic consis-
tency between cell and nucleus volumes through joint modelling, BYOC provides
high-fidelity reconstructions that could facilitate downstream analyses, including
drug efficacy evaluation and mechanistic studies. Our project repository is at
https://anonymous.4open.science/r/ICLR_BYOC/README.md.

Figure 1: BYOC-generated 3D cellular structures, showcasing a continuous transformation of cell
and nucleus morphologies under distinct drug treatments; (1) Nocodazole, (2) Binimetinib and (3)
Blebbistatin. This visual highlights the adaptability of our generative model in capturing biologically
relevant morphological diversity.
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1 INTRODUCTION

Generative models have made remarkable strides in achieving realistic synthetic outputs (Rombach
et al., 2022; Ramesh et al., 2022; 2021), but are still far from presenting a convincing understanding
of complex biological structures. As these methods expand into safety-critical domains, such as
drug discovery and clinical decision-making, the demand for generated samples that are not only
realistic but also phenotypically accurate has grown. Medical imaging, in particular, requires 3D
volumetric synthesis that can faithfully capture intricate dimension- and channel-specific features
essential for precise analysis. A lack of inter- and intra-channel consistency in synthetic biological
structures can lead to erroneous conclusions, affecting both diagnostic accuracy and treatment evalu-
ation. Current high-resolution 3D synthesis methods are often not tailored to model the associations
and relationships between channels that together define a biological structure. In contrast, machines
that do attend to each channel in a unified framework hold the potential to synthesise structures that
more closely resemble natural biological forms. In this paper, we address these challenges by intro-
ducing a novel framework for multichannel 3D volumetric generation, focusing on the simultaneous
synthesis of cell and nucleus structures in response to different drug treatments.

Within the broader family of generative models, diffusion models have emerged as compelling tools
for image synthesis. These models can operate in an unconditional framework, where realistic out-
puts are synthesised from random Gaussian noise (Ho et al., 2020), or in a conditional framework,
where specific tasks guide the generative process. Notable examples of the latter include text-to-
image generation (Zhang et al., 2023; Ramesh et al., 2022; Saharia et al., 2022), image-to-video
translation (Ni et al., 2023), and 2D-to-3D reconstruction (Shi et al., 2024; Poole et al., 2022). Other
works have explored multimodal diffusion modelling (Ruan et al., 2023) for multi-modality gener-
ation. Despite these advancements, the synthesis of full 3D volumetric images remains relatively
underexplored, particularly when compared to the progress made in point cloud (zeng et al., 2022)
and mesh-based (Liu et al., 2023) 3D representations. Addressing the literature gap, the works of
Khader et al. (2023), Tudosiu et al. (2024), and Sun et al. (2022) investigated the generation of
high-resolution 3D volumetric images, with a focus on MRI and CT scans. These works exemplify
the potential of generative models in medical imaging, highlighting their capability to synthesise
detailed, high-fidelity 3D structures. These contributions pave the way for broader applications of
medically-derived volumetric generation but fall short when considering medical samples that are
comprised of multiple channels.

A significant area where multichannel volumetric generation holds promise is in the synthesis of
cellular structures. Cellular morphology encodes biological information such as cellular function
and state (Bakal et al., 2007; Lomakin et al., 2020), providing insights into processes such as dis-
ease progression and drug response. Traditionally, studying these phenomena has relied heavily
on labour-intensive lab experimentation and 3D imaging, limiting the scale and efficiency of such
investigations. The ability to generate biologically realistic 3D cellular structures represents a foun-
dational first step toward virtual screening pipelines, enabling high-throughput analysis of drug-
induced morphological changes. By replicating the intricate features of cellular architectures, this
approach facilitates new opportunities for understanding the effects of therapeutic interventions ef-
ficiently and at scale.

However, achieving realistic synthesis of multichannel 3D cellular volumes introduces unique
technical challenges. Fluorescence microscopy datasets often comprise multiple channels (Chan-
drasekaran et al., 2023; Chen et al., 2023), each encoding distinct but related biological features,
comprising multiple organelles and cellular compartments. In our work, we specifically focus on
the synthesis of 3D cellular structures comprising two key channels: the cell and nucleus, which play
central roles in encoding cellular state and function. The relationship between the cell and nucleus is
biologically intertwined, necessitating a generative framework that captures both inter-channel de-
pendencies and intra-channel consistency. In fluorescence microscopy, additional challenges arise
from high-resolution single-cell data being both high-dimensional and inconsistent in size, referring
to the varying dimensions of the images themselves. These variations stem from biological hetero-
geneity, making accurate synthesis particularly demanding. To address these challenges, our key
contributions are as follows:

1. We propose the first 3D fluorescence cell generative model, introducing a library of code-
books designed to independently process each biological channel (cell and nucleus) while
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simultaneously learning the intricate interdependencies between them, ensuring biologi-
cally accurate synthesis.

2. We adopt multimodal diffusion modelling to synthesise cell and nucleus volumes in paral-
lel, preserving structural consistency and spatial relationships across channels.

2 RELATED WORK

3D Synthesis. Generative models, unlike discriminative frameworks that prioritise predictive accu-
racy and can overlook task-irrelevant details, model the underlying distribution explicitly to produce
realistic and convincing outputs. As an example, a discriminative framework may be trained to clas-
sify drug-treated cells, but they may ignore subtle morphological phenotypes that do not influence
classification accuracy. Generative models, in contrast, must capture the finer details that align with
the complete input distribution to synthesise biological realism. This makes 3D generative tasks par-
ticularly challenging, as the synthesis must capture fine-grained details across all spatial dimensions
and channels. Notably, the advent of 3D reconstruction has been popularised with methods that alter
the representation of inputs to facilitate more tractable generative pipelines. Early approaches pri-
marily focused on point clouds (zeng et al., 2022; Charles et al., 2017; Lassner & Zollhofer, 2021),
voxel grids (Ren et al., 2024; Schwarz et al., 2022; Nguyen-Phuoc et al., 2019), neural fields (Xie
et al., 2022), and mesh-based representations (Liu et al., 2023; Gao et al., 2022). Each of these meth-
ods offers unique benefits in terms of processing 3D data representations, laying the groundwork for
more efficient 3D generation pipelines.

To facilitate the processing of these diverse data representations, techniques such as Denoising Dif-
fusion Probabilistic Models (DDPMs) (Ho et al., 2020), Variational Autoencoders (VAEs) (Kingma
& Welling, 2022), autoregressive models (van den Oord et al., 2019), and Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014; Wu et al., 2016) have emerged as key players in gen-
erative modelling. Among these, DDPMs have demonstrated particularly promising results for 3D
generation. Unlike GANs, which often struggle with generating coherent latent representations,
DDPMs are able to synthesise detailed 3D volumes from latent inputs with greater accuracy. Addi-
tionally, they produce higher-quality outputs compared to VAEs, which are often limited by blurry
reconstructions (Anciukevičius et al., 2024).

Diffusion Models for High-dimensional data. Generative models often carry the drawback of
computational inefficiency, especially when encountered with high-dimensional data. A step toward
universality and controllability in generative frameworks involves enabling architectures to better
process and represent such complex data, ultimately enabling more efficient and flexible generation
of complex structures. Mitigating this drawback, recent literature has demonstrated the effectiveness
of downsampling high-dimensional continuous voxel representations into vector quantised latent
spaces (Esser et al., 2021). These quantised representations often facilitate GAN- and VAE-based
architectures, enabling high-quality synthesis, particularly in medical imaging domains (Khader
et al., 2023; Tudosiu et al., 2024; Sun et al., 2022). Latent compression helps overcome the com-
putational challenges of high-dimensional datasets while preserving key features for realistic 3D
generation. However, methods that focus on storing latent representations across channels remain
largely underexplored.

Multimodal synthesis. Building on the success of single-modal generative models, multimodal
generative modelling extends these capabilities by leveraging a “joint representation” across mul-
tiple data sources, commonly referred to as a “general-purpose prior.” This joint representation
allows for richer and more cohesive generation across various domains, where the goal is to ensure
that the underlying characteristics of each modality are maintained while capturing the relationships
between them. A strong multimodal representation can be decoded into multiple perturbations while
retaining the integrity of the original multimodal inputs. Representation learning has been employed
to achieve this objective, with techniques like VAEs being used to enforce consistency across modal-
ities (Bengio et al., 2013). A notable example is MM-Diffusion (Ruan et al., 2023), which introduces
a unified framework for joint high-fidelity audio-video synthesis. Multimodal generative approaches
(Lee et al., 2018; Zhu et al., 2017) have shown significant promise and are certainly not limited to
frameworks with distinct modalities. In fact, multiple colour channels within the same input can be
treated as distinct modalities, extending this framework to use cases like biological imaging, where
each channel captures related but distinct information.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

In this work, we aim to address the challenges of generating high-resolution, multichannel 3D cel-
lular structures by building upon a hybrid generative framework (Khader et al., 2023) that leverages
vector quantisation and denoising diffusion models. Our approach builds on the ability of autoen-
coders to efficiently represent complex data in a latent space and extends this representation using
diffusion processes for realistic synthesis of multichannel volumetric data. By capturing the nu-
ances of both global and local structures, particularly across multiple biological channels (cell and
nucleus), we ensure that the synthesised volumes maintain high fidelity and consistency between the
channels.

The core contribution of our framework consists of two components: (1) a library of vector quantised
codebooks to learn distinct representations for each channel, and (2) a multichannel diffusion-based
model for refining these representations. Section 3.1 introduces the construction of the library of
codebooks using a VQGAN-based architecture (Esser et al., 2021), while Section 3.2 describes the
incorporation of multichannel denoising diffusion models to ensure realistic and coherent genera-
tion of 3D volumes. By combining these two methodologies, we offer a solution that generates
detailed 3D volumes from multichannel data, overcoming the limitations of previous single-channel
generative approaches.

3.1 A LIBRARY OF CODEBOOKS

Initially dubbed as taming transformers for high-resolution image synthesis (Esser et al., 2021),
the departure from individual pixel representation was proposed through a vector quantisation step.
More specifically, the authors introduce a discrete codebook of learned representations, such that any
input can be represented as a spatial collection of a subset of these codebook entries. Extending this
concept to multichannel volumetric data—comprising both cell and nucleus channels—we define a
library of codebooks as a collection of independently learned representations that encode the distinct
features of each channel.

Figure 2: Depiction of the adapted multichannel VQGAN, comprising an encoding and decoding
step. The library of codebooks encodes distinct spatial features for both the cell and nucleus com-
ponents, which are then decoded to generate the final output.

Consider a 3D multichannel volume, x ∈ RC×H×W×D, where C represents the number of channels,
H the height, W the width, and D the depth of the volume. The volume can be decomposed into
two distinct components: the cell channel, denoted as xcell ∈ R1×H×W×D, and the nucleus channel,
denoted as xnuc ∈ R1×H×W×D. The encoded representations,

ẑcell = E(xnuc) ∈ R1×h×w×nz and ẑnuc = E(xnuc) ∈ R1×h×w×nv , (1)

where E denotes the encoder and nz and nv represent the dimensionality of latent feature maps, are
leveraged for representation learning (Van Den Oord et al., 2017). This process maps the inputs into
separate spatial sets of codebook entries—known as quantised representations—denoted as zqcell
and zqnuc , which correspond to the downsampled spatial representations of the input volumes (h <
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H,w < W, and nz, nv < D). The learned library of discrete codebooks enables the formulation of
the corresponding quantised representations, where each codebook is formally defined as:

Zcell = {zk}Kk=1 ∈ R1×nz and Znuc = {zp}Pp=1 ∈ R1×nv , (2)

where K and P denote the number of codebook entries. More precisely, obtaining the quantised rep-
resentations, leveraging the learned library of discrete codebooks, is enabled through a quantisation
step, denoted by q. This operates on ẑij ∈ Rnz and ẑmn ∈ Rnv , and is defined as follows:

zqcell = q(ẑcell) =
(
arg min

zk∈Zcell

||ẑij − zk||
)
, and (3)

zqnuc = q(ẑnuc) =
(
arg min

zp∈Znuc

||ẑmn − zp||
)
. (4)

Equations 3 and 4, highlighting the vector quantisation, can be understood as a process whereby
each vector in the unquantised representations, zqcell ∈ R1×h×w×nz and zqnuc ∈ R1×h×w×nv , are
replaced with the closest vector in their corresponding learned codebooks, Zcell and Znuc. After
this quantisation step, the decoder uses these quantised representations to generate the final output.
Formally, the generative output, x̂, is defined as follows, where G denotes the decoder:

x̂ = G(zqcell , zqnuc) = G(q(E(xcell)),q(E(xnuc))). (5)

After obtaining the generative output, x̂, the quality and accuracy of this synthesis are guided by a set
of optimisation objectives. Specifically, the learning objective of the VQGAN, as an adapted mul-
tichannel formulation (Esser et al., 2021), combines minimising a reconstruction loss, commitment
loss, and discriminator loss:

Lrec = 1/2[||xcell − x̂cell||2 + ||xnuc − x̂nuc||2], (6)

Lcomm = 1/2[||sg[zqcell ]− E(xcell)||22 + ||sg[zqnuc
]− E(xnuc)||22], (7)

Ldisc = 1/2[Ex(ReLU(1−D(x)) + Ex̂(ReLU(1−D(x̂))], (8)

where sg is the stop gradient operation, and D(x), D(x̂) denote the discriminator outputs for the real
and generated samples, respectively. In our adaptation, the combined channel-specific reconstruc-
tion, commitment, and discriminator losses enable the VQGAN to compress semantically rich latent
representations from both cell and nucleus channels. The reconstruction loss ensures accuracy, the
commitment loss maintains consistency with the quantised codebooks, and the discriminator loss
promotes realism in the generated outputs. Employing a quantisation step that leverages a library
of independently learned codebooks facilitates a robust framework for learning multichannel 3D
representations.

3.2 COMPOSITION OF MULTICHANNEL VOLUMES WITH DENOISING DIFFUSION

Building on the latent representations established in Section 3.1, the next stage of our approach
leverages multimodal DDPMs to generate realistic multichannel volumes. This process refines the
unquantised representations of the cell and nucleus components, ensuring that both spatial and inter-
channel dependencies are preserved throughout the synthesis.

Diffusion preliminaries: DDPMs (Ho et al., 2020; Song et al., 2022) comprise a noising and
de-noising iterative process. In the forward process, noise is gradually added over T timesteps,
transforming the input sample,x0 , into a latent representation that follows a unit variance normal
distribution. The noisy sample, xt, at each timestep, t, is generated according to:

xt =
√
ᾱtx0 +

√
1− αtz, z ∼ N (0, I), (9)

where αt = 1 − βt, ᾱt = Πt
s=1αs, and βt is a predefined variance schedule. The noise schedule

βt typically increases over time, following a cosine schedule, as proposed by (Nichol & Dhariwal,
2021). Thus, the non-parametric forward diffusion Markovian process is defined as:

q(xt|xt−1) = N (xt;
√
1− βxt−1, βtI). (10)

In the reverse process, the model progressively learns to denoise the latent representation to recon-
struct the original input. The iterative noise reduction process towards the original input, x0, can
be thought of as training a model θ to approximate “the reverse of the forward process.” Specifi-
cally, the model learns pθ(xt−1|xt) which approximates q(xt−1|xt, x0) for all timesteps t and states
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xt. Implicitly, this approximation paramaterises Gaussian transitions, and therefore allows for the
simplified formulation of the reverse process:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σ
2
θ(xt, t)), (11)

where µθ and σ2
θ denote the mean and variance predicted by θ.

Multichannel Diffusion models: With the forward and reverse diffusion processes defined in the
preliminaries, we extend this framework into a multichannel perspective (Ruan et al., 2023). In the
context of our BYOC pipeline, the simultaneous recovery of both cell and nucleus channels is an
application of diffusion modelling in the latent space, where the high dimensionality of each channel
of the data necessitates operating on compressed representations (Rombach et al., 2022).

Figure 3: Illustration of the 3D diffusion process applied to channel-specific unquantised latent
representations for both cell and nucleus. In the forward process, noise is added independently to
each latent representation across multiple timesteps. During the reverse process, the denoising of the
cell and nucleus latents occurs within a unified framework, where both channels are co-dependent,
ensuring that information from one channel influences the reconstruction of the other.

Specifically, the target reconstruction is performed directly on the unquantised latent representations,
ẑcell and ẑnuc within a unified diffusion process. Considering the unquantised cell channel latent
representation, the forward process can be redefined as:

q(ẑcellt |ẑcellt−1
) = N (ẑcellt ;

√
1− βtẑcellt−1

, βtI), (12)

where t represents the diffusion timestep, ranging from 0 to T . The unquantised nucleus latent
representation follows an identical formulation to Equation 12, and both channels are perturbed
using the same noise scheduler, β. Analogous to the implementation of MM-Diffusion (Ruan et al.,
2023), we enforce a unified approach that approximates a multichannel, joint reverse process. The
joint reverse process can be represented as a unified model enforced on the unquantised latents,
pθẑqcell ẑqnuc

, but for notational simplicity we will refer to to this reverse process as pθcn . Therefore,
considering the unquantised cell channel latent representation, the reverse process is formulated:

pθcn(ẑcellt−1
|(ẑcellt , ẑnuct)) = N (ẑcellt−1

;µθcn(ẑcellt , ẑnuct , t)). (13)

This suggests that, instead of independently modelling each unquantised cell and nucleus latent, the
generation of the denoised channel-specific sample at timestep t− 1 is dependent on both zcellt and
znuct .

DCUNet for Modelling Multichannel Noise: The UNet architecture (Ronneberger et al., 2015) is a
well-established backbone in diffusion models due to its ability to maintain size consistency between
noisy inputs and their corresponding denoised outputs. For our multichannel data, we extend the
traditional 3DUNet (Özgün Çiçek et al., 2016) into a dual-channel 3D architecture, which we refer to
as “DualChannelUNet.” This adapted network is employed during the denoising diffusion process to
jointly process the unquantised latent representations of the cell and nucleus channels. Specifically,
the input to the DualChannelUNet consists of paired tensors representing the unquantised latent
features of both the cell and nucleus channels. To effectively capture the 3D structure inherent to
the data, we replace the original 2D convolutional layers of UNet with 3D convolutions, enhancing
spatial and volumetric feature extraction across both channels simultaneously.
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Additionally, drawing inspiration from Khader et al. (2023), we incorporate spatial- and depth-wise
attention layers within the DualChannelUNet architecture. These attention layers are placed within
the downsampling and upsampling paths, as well as the middle processing block, to capture both
global and local dependencies between channels. By adaptively highlighting critical features, such
as cell boundaries or nucleus structures, these mechanisms enhance the model’s ability to generate
biologically consistent and high-fidelity 3D volumes.

Final assembly to “Build Your Own Cell” (BYOC): In our BYOC pipeline, we propose a novel
approach for multichannel 3D synthesis using independently learned codebooks for the cell and
nucleus channels. These codebooks store channel-specific latent representations, encoding distinct
features within each channel. The dependencies between the cell and nucleus are captured during
the diffusion process. Before decoding, the unquantised latent features for each channel are passed
through a 3D multichannel diffusion model, where the DualChannelUNet architecture processes
the inputs. The DualChannelUNet, a dual-channel 3DUNet variant, ensures efficient spatial and
volumetric feature extraction for both channels. Following the approach of Khader et al. (2023), the
unquantised latents, represented as a paired tensor for the cell and nucleus, are normalised to a range
of −1 to 1 using the minimum and maximum values from their respective codebooks to stabilise the
diffusion process. The reverse diffusion, starting from Gaussian noise, iteratively refines the latents,
allowing the model to learn the interdependencies between channels. Finally, the refined latents are
decoded into detailed 3D volumes, ensuring biologically accurate cell and nucleus reconstructions,
thus completing the BYOC synthesis pipeline.

4 EXPERIMENTS

4.1 MATERIAL & IMPLEMENTATION

Dataset: Our dataset comprises over 7, 083 individual metastatic melanoma cells, imaged using
light-sheet microscopy to capture detailed 3D reconstructions of both the cell body and nucleus.
These single cells are extracted as cropped regions of interest from larger microscopy stacks, en-
suring that the dataset focuses on individual cellular structures. The cropped cells are variable
in size, reflecting the biological diversity and morphological heterogeneity present in the original
stacks. The imaging resolution is 1 µm3, capturing fine cellular details and structures. The cells are
embedded in tissue-like collagen matrices, providing a physiologically relevant environment that
closely mimics natural tissue micro-environments. Each cell was treated with one of three differ-
ent drugs - Nocodazole, Binimetinib, or Blebistatin- which induce distinct morphological changes.
Cells treated with Nocodazole exhibit a round and flat structure, while those exposed to Blebbistatin
develop a more spindly shape. The Binimetinib-treated cells present an intermediate morphology.
This variation in drug response offers a rich dataset for studying the morphological effects of differ-
ent treatments in a multichannel 3D context.

Implementation Details: The input volumes were padded to a size of C × 64 × 64 × 64 for
consistency. For each drug, the implementation of BYOC involved two distinct training phases. In
the first phase, the VQGAN was trained end-to-end for 100, 000 timesteps with a batch size of 2,
a learning rate of 3 × 10−4, and a latent size of 16. After this phase, the weights of the encoder,
codebooks, and decoder were frozen. For the second phase, we used a DualChannelUNet with a
diffusion model (DDPM) configured for 1000 timesteps, trained with an L1 loss, a learning rate of
1× 10−4, and a batch size of 2. The dataset was split into 80% for training and 20% for validation.
All models were training using Pytorch Lightning on 4 nVidia Tesla V100 GPUs, each with 24GB
of RAM.

4.2 QUALITATIVE EVALUATION

Evaluating the synthesis of biological samples lacks a widely accepted standard. To address this, we
use both quantitative and qualitative evaluation methods. The qualitative evaluation compares our
synthesised samples to those produced by the current state-of-the-art (SOTA) method in 3D medical
image generation.

Depicted in Figure 4A, BYOC demonstrates superior performance in synthesising high-quality sam-
ples compared to the current state-of-the-art, MedicalDiffusion (Khader et al., 2023). While Med-
icalDiffusion captures the overall phenotypic structures, it struggles with the clarity of both the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

nucleus and cell boundaries, which appear less distinct. In contrast, BYOC preserves these critical
details more effectively, resulting in higher fidelity and sharper boundaries. The BYOC-generated
samples exhibit strong morphological consistency, closely matching the phenotypic characteristics
of the corresponding drug-treated cells. Although some finer details appear slightly smoother than
in real samples, the generated samples maintain inter-channel consistency, with accurate position-
ing of the cell and nucleus. Additionally, BYOC effectively captures more complex structures,
such as cells with elongated protrusions. Extending the qualitative evaluation, Figure 4B highlights
the superior morphological accuracy, structural quality, and consistency achieved by the BYOC
framework compared to MedicalDiffusion. Across all orthogonal views—axial, coronal, and sagit-
tal—BYOC-generated samples outperform MedicalDiffusion, showcasing clearer structural details
and more biologically realistic features.

Figure 4: A) Qualitative comparison of our synthesised samples to the MedicalDiffusion (Khader
et al., 2023) model, shown alongside ground-truth data. This illustrates the visual fidelity and accu-
racy of the generated samples relative to the actual biological structures of the different drug-treated
melanoma cells. B) Orthogonal slices (axial, coronal, and sagittal) of 3D cell and nucleus volumes
for real samples, BYOC-generated samples, and MedicalDiffusion-generated samples. The yellow,
red, and blue lines represent the intersection of slices along the X, Y, and Z planes, respectively.

4.3 QUANTITATIVE EVALUATION

Baselines: In our quantitative evaluation, we compare the performance of BYOC against several
baseline models, including HA-GAN (Sun et al., 2022), W-GAN (Arjovsky et al., 2017), α-GAN
(Gong et al., 2023), and MedicalDiffusion (Khader et al., 2023). These baselines were selected
for their notable performance in synthesising biological data, as well as their diverse approaches to
generative modelling. HA-GAN is a hierarchical adversarial network known for handling complex,
structured data, while W-GAN and α-GAN are widely adopted for their improvements in training
stability and performance on high-dimensional data. MedicalDiffusion was included as it represents
the most relevant comparison for 3D biological sample generation, specifically in the context of
diffusion modelling. The inclusion of these models ensures a robust evaluation of BYOC across
both adversarial and diffusion-based frameworks, providing a comprehensive benchmark against
established methods.
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Figure 5: Samples of synthetic 3D cell structures generated by the BYOC framework for three dif-
ferent drug treatments: Nocodazole, Blebbistatin, and Binimetinib. The generated samples show
distinct morphological characteristics specific to each drug, as well as sample diversity. The syn-
thetic cells maintain clear nucleus positioning and boundary details, illustrating the effectiveness of
the generative model in capturing 3D inter- and intra-channel biological structures.

Metrics: We test the quantitative realism of the generated samples using the Fréchet Inception
Distance (FID) (Heusel et al., 2018) and Maximum Mean Discrepancy (MMD). FID quantifies
the similarity between real and generated datasets by calculating the distance between their latent
representations, which are extracted using Med3D (Chen et al., 2019), a pre-trained 3D medical
imaging segmentation network trained on 8 different 3D medical segmentation datasets. Similarly,
MMD measures the similarity of datasets by computing the distance between the means of their
feature distributions.

For a consistent comparison, all generated samples were standardised to a size of 643, requiring
adjustments to the HA-GAN architecture to synthesise representations within this dimensional con-
straint. Additionally, both the synthetic and real samples were adjusted by taking a channel-wise
average before calculating the FID and MMD metrics. For each method, 5000 samples were gener-
ated for evaluation.

Table 1: Quantitative comparison of different generative models across Nocodazole, Blebbistatin,
and Binimetinib treatments, evaluated using 5-fold cross-validation. Results are shown in terms of
Fréchet Inception Distance (FID) (Heusel et al., 2018) and Maximum Mean Discrepancy (MMD)
(×10−4). The best-performing scores, calculated as the average across folds, are shown in bold.

Model Nocodazole Blebbistatin Binimetinib
FID↓ MMD ↓ FID↓ MMD ↓ FID↓ MMD ↓

HA-GAN 6.44 0.05 30.54 0.27 3.76 0.05 16.11 0.16 5.19 0.05 23.97 0.21

W-GAN 2.75 0.04 12.74 0.21 1.29 0.03 3.96 0.1 2.1 0.03 9.00 0.15

α-GAN 2.73 0.04 12.62 0.21 1.3 0.03 4.00 0.1 2.1 0.03 9.00 0.15

MedicalDiffusion 2.12 0.03 9.55 0.17 2.26 0.69 9.07 3.5 1.62 0.03 6.63 0.13

BYOC 1.91 0.03 8.34 0.15 0.99 0.03 2.82 0.08 1.43 0.02 6.06 0.1

The quantitative results in Table 1 compare the performance of BYOC, HA-GAN, W-GAN, α-
GAN, and MedicalDiffusion across three drug treatments: Nocodazole, Blebbistatin, and Binime-
tinib, using FID and MMD. BYOC consistently achieves the best scores across both metrics, demon-
strating its capacity to synthesise biologically realistic and diverse samples. This performance is
attributed to the model’s diffusion-based approach and its novel library of codebooks, which in-
dependently process each channel while simultaneously learning inter-channel dependencies. By
comparison, GAN-based methods such as HA-GAN and α-GAN struggle to maintain similar lev-
els of coherence, while MedicalDiffusion, although effective, performs less consistently across all
drug treatments. These results validate BYOC as a robust framework for generating high-quality
multichannel 3D cellular data.
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4.4 ABLATION STUDY

Figure 6: Comparison of performance metrics
(FID and MMD) across different codebook imple-
mentations.

To better understand the influence of the library
of codebooks, we generated samples using dif-
ferent quantised representations. These quan-
tised representations, derived directly from a li-
brary of learned codebooks, play a critical role
in facilitating the latent diffusion denoising pro-
cess during inference. To evaluate the impact
of these codebooks on the quality of the gener-
ated samples, we systematically compared their
performance across different metrics and drug
treatments. “Unimodal” refers to the use of
a single codebook that learns the average rep-
resentations of both channels. “Absolute” in-
volves separate codebooks for the cell and nu-
cleus channels, with the representations nor-
malised using the absolute values of both code-
books. The “Cell” and “Nucleus” implementa-
tions learn separate codebooks for each channel
during training, but only a single codebook (ei-
ther the cell or nucleus codebook) is used dur-
ing inference to normalise both channels. Finally, BYOC combines both cell and nucleus code-
books, capturing interdependencies between the two channels for improved representation and syn-
thesis. Depicted in Figure 6, our investigation revealed that using a library of codebooks consis-
tently outperforms the unimodal setting, where only a single codebook is used. Interestingly, in
cases such as the Binimetinib treatment, the nucleus codebook alone demonstrated the ability to
encode sufficient information to reconstruct the entire cell representation, highlighting the nucleus’s
central role in capturing morphological features under certain drug conditions. This ablation show-
cased that constructing codebooks that are specific to a biological channel enhances reconstruction
over a “globally-represented’ (unimodal) codebook. Furthermore, understanding the influence of
an individual codebook (or combinations thereof) from a wider library of codebooks reveals subtle
phenotypic characteristics that best represent a specific treatment.

5 CONCLUSION

This research introduced a robust generative framework, BYOC, specifically designed for the syn-
thesis of biologically realistic multichannel 3D cell structures. By leveraging a unique combination
of a “library of vector quantised codebooks” and “multichannel diffusion-based modelling,” our
approach significantly improved performance in terms of morphological consistency, structural re-
alism, and fine-grained detail preservation, particularly across varied drug treatments. Compared
to existing state-of-the-art methods, BYOC demonstrated its ability to capture complex phenotypic
diversity, ensuring precise representation of critical features such as nucleus and cell boundary in-
tegrity. The resulting synthetic data holds potential as a valuable tool for downstream biological
analysis, enhancing the ability to study cellular morphology and screen drug responses in silico.

Limitations & Future Directions: This study is presently limited to two channels, focusing on
the cell body and nucleus, which constrains its applicability to more complex multichannel datasets
encompassing additional organelles or cellular compartments. Extending the framework to accom-
modate more channels could enable broader biological insights. Furthermore, the evaluation was
restricted to drug-treated melanoma cells, limiting its applicability to other cell types or treatment
conditions. Future work should aim to evaluate this approach across diverse biological contexts
and incorporate alternative diffusion models to improve scalability and performance. Additionally,
generating samples derived from combinations of codebooks holds promise for exploring novel
phenotypic states or treatment interactions. Another exciting avenue is adapting the framework
for 4D data, enabling dynamic simulations of cellular behaviour over time. These enhancements
could significantly advance applications in pre-clinical research, drug development, and person-
alised medicine.
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A APPENDIX

A.1 TRAINING DETAILS

BYOC Implementation: All models were trained using mixed precision (fp16) with gradient
checkpointing to manage memory usage efficiently. The dataset consisted of 7, 083 single-cell
human melanoma samples (WM266.4), categorised by drug treatment: 2, 314 Nocodazole-treated
cells, 2, 264 Blebbistatin-treated cells, and 2, 504 Binimetinib-treated cells. Identical train/val splits
were employed across all baseline models to ensure consistency in performance evaluation. The
hyperparameters for our model are detailed in Tables 2 and 3

Basline Implementation: Where applicable, baseline models were adjusted to process multichan-
nel inputs. This primarily involved modifying the 3D convolutional layers of each architecture to
accommodate two channels, representing both the cell and nucleus. These models were trained with
the same data, ensuring a fair comparison across methods.

Table 2: VQGAN Hyperparameters
Hyperparameter Value

Learning Rate 3× 10−4

Batch Size 2
Latent Dimension (per channel) 16
Training Steps 100,000
Codebook Size (per codebook) 1024
Reconstruction Loss Mean Squared Error (MSE)
Commitment Loss Weight 0.25
Optimizer Adam
Beta 1 (Adam) 0.9
Beta 2 (Adam) 0.99

Table 3: 3D DualChannelUNet Hyperparameters
Hyperparameter Value

Learning Rate 1× 10−4

Batch Size 2
Number of Timesteps 1000
Loss Function L1 Loss
Number of Channels 2 (Cell, Nucleus)
3D Convolution Kernel Size 3× 3× 3
Dimension Multiplier [1,2,4,8]
Number of Attention Layers 2 (Spatial and Depth-wise)
Optimizer Adam
Beta 1 (Adam) 0.9
Beta 2 (Adam) 0.99
Normalization Instance Normalisation
ema decay 0.995

A.2 EVALUATION DETAILS

The evaluation of our generative model’s ability to synthesise realistic 3D cell structures involves
a rigorous quantitative assessment using established metrics. Specifically, we calculate two key
metrics to evaluate the quality of the synthetic 3D cellular structures:

1. Fréchet Inception Distance (FID): This metric measures the similarity between the distri-
butions of real and generated samples by comparing their feature representations. FID is
widely used in generative modelling, particularly in image synthesis tasks, where lower
FID values indicate a closer resemblance between the generated and real samples.
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2. Maximum Mean Discrepancy (MMD): This kernel-based method compares the similarity
between two distributions—in this case, the real and synthetic data. Lower MMD values
indicate higher similarity between the distributions, providing an additional quantitative
measure of quality.

To compute these metrics, we extract feature representations of the real and synthetic 3D volumes
using the Med3D framework (Chen et al., 2019). Med3D is a pre-trained ResNet50 model specifi-
cally designed for 3D medical imaging tasks and trained on eight diverse 3D segmentation datasets.
It is widely employed for feature extraction in this domain (Tudosiu et al., 2024) due to its ability
to capture high-dimensional representations of 3D structures across multiple layers. For each 3D
volume, the Med3D model processes the input, and its feature maps are spatially averaged across
the height, width, and depth dimensions to generate a compact feature vector that represents the
3D structure. These feature vectors are then concatenated into a single tensor for subsequent met-
ric calculations. This approach ensures that the metrics effectively capture the morphological and
structural nuances of the synthetic 3D cellular structures.

A.3 SYNTHESISED EXAMPLES

Figure 7: A library of synthesised examples produced from BYOC.
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Figure 8: BYOC-generated samples of each drug from different views.

Figure 9: Multichannel visualisation of BYOC-generated 3D cell and nucleus structure across 64
depth planes for Nocodazole.
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Figure 10: Multichannel visualisation of BYOC-generated 3D cell and nucleus structure across 64
depth planes for Binimetinib.
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Figure 11: Multichannel visualisation of BYOC-generated 3D cell and nucleus structure across 64
depth planes for Blebbistatin.
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