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RSNN: Recurrent Spiking Neural Networks for Dynamic
Spatial-Temporal Information Processing

Anonymous Authors

ABSTRACT
Spiking Neural Networks (SNNs) have great advantages in discrete
event data processing because of their binary digital computation
form. However, due to the limitation of the current structures of
SNNs, the original event data needs to be preprocessed to reduce the
time calculation steps and information redundancy. The traditional
methods of dividing data into frames lead to the loss of a large
amount of time information. In this paper, we proposed an efficient
Recurrent Spiking Neural Network (RSNN) to reduce the time do-
main information loss of original slice samples with the spiking
based neural dynamics for processing the dynamic spatial-temporal
information. By constructing the Recurrent Spiking Neural Net-
work model, the recurrent structure was used to preprocess slices
before it was further input into the spiking structure to enhance
the time correlation between slices. In addition, in order to match
the two-dimensional spatial structure of data sample frames effi-
ciently, this paper adapts a variation of structures of the recurrent
neural network, named Convolution LSTM (CONLSTM). Through
experiments on event based datasets such as DVS128-Gesture and
CIFAR10-DVS, we find that the proposed model could not only
behave better than some other spiking based models but also save
energy and power consumption which paves the way for practical
applications of neuromorphic hardware.

KEYWORDS
Spiking Recurrent Neural Networks, Dynamic Spatial-Temporal
Information, Event-driven, Neural Dynamics

1 INTRODUCTION
INSPIRED by the neural dynamics of biological neurons [3], Spiking
Neural Networks (SNNs) were proposed to bridge the gap between
biological neuroscience and artificial intelligence by using discrete
spikes as communication carrier [8, 19, 23, 37]. This binary and dis-
crete form of computation makes SNNs have lower computational
power consumption and better anti-noise ability [17, 31]. Moreover,
there are various advantages in the practical deployment of neuro-
morphic hardware because of the event-driven nature [1, 4, 18, 20],
which makes SNNs regarded as the next generation of neural net-
works [22, 25]. Neurons of the SNNs use the form of spike signal
integral-fire for data processing. The membrane potential on the
spiking neurons is gradually accumulated under the influence of
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the spike signal transmitted by other neurons. When the membrane
potential value is higher than the firing threshold, the spike will be
fired outward. This mode simulates the dynamics of real biological
neurons, which makes SNNs have powerful memory ability and
are very suitable for processing dynamic spatial-temporal informa-
tion. However, due to the discrete data form of SNNs, the value is
not derivable at the point of spiking transmission when using the
backpropagation (BP) [11] based method to train the parameters in
SNNs.

Unlike static images, dynamic spatiotemporal patterns with neu-
ral spikes could express more information[33]. However, most
current spiking based models could not leverage these strengths,
among which network structure is an important one. Most of the
structures of typical SNNs are shallow and fully connected [26, 28],
which means these kinds of structures could not extract and en-
code external features adequately. Although some works tried to
construct ANN-SNN mixed models [36, 38], they were proposed
for static image recognition, they cannot be applied to dynamic
spatio-temporal information recognition directly.

CSNN [35, 36], they drew inspiration from the visual pathways
in the biological visual system that process static images. They
constructed a network that blends Convolutional Neural Networks
(CNNs) with Spiking Neural Networks . This network structure
employs convolutional layers to capture spatial features from static
images, thus enhancing the feature extraction capabilities of the
Spiking Neural Networks, leading to improved performance. How-
ever, traditional two-dimensional convolutions are generally used
for processing static images, limiting the use of this Convolutional
Spiking Neural Network (CSNN) to static data. To address this lim-
itation, we aimed to develop a feature extraction structure with
spatiotemporal processing capabilities. We achieved this by com-
bining the Convolutional LSTM structure with the Spiking Neural
Network, resulting in the proposed Recurrent Spiking Neural Net-
work (RSNN). RSNN is grounded in principles inspired by biological
visual mechanisms, making it more versatile and no longer confined
to static visual stimuli.

We use neuromorphic datasets to evaluate the performance of
RSNN. As one of time series based spatio-temporal information,
the neuromorphic vision datasets are acquired by Dynamic Vision
Sensor (DVS) [32] in real time to collect the dynamic scene of the
outside environment. So due to the spike based nature of both SNNs
and DVS based datasets, it is a natural association to build a bridge
between them. Some researchers tried to build a deep SNN [5, 6,
14, 15]to recognize images in DVS-CIFAR10 [39]. This work [27]
constructed an SNNmodel to recognize scoring in basketball games
with an address event representation (AER) sequence. Someone [21]
wanted to utilize neural dynamics to extract the spatiotemporal
information that is hidden in time series data. Inspired by human
brain, this work [10] analyzed temporal and spatial characters of
electroencephalographic signals.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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While SNNs exhibit versatility in the tasks mentioned above,
they have limitations in extracting performance from dynamic spa-
tiotemporal information. Dynamic data contains abundant tempo-
ral information as well as intricate spatial details. SNNs effectively
capture temporal information due to their time-based memory ca-
pabilities but often struggle to efficiently extract spatial texture
features from each frame at each time step. This limitation con-
tributes significantly to the restricted performance of Spiking Neu-
ral Networks. In our work with RSNN, the Convolutional LSTM
plays a pivotal role in enhancing performance. It preserves tempo-
ral information while efficiently extracting spatial texture features
through convolution. Additionally, the discrete pulse-triggered data
computation pattern of SNNs grants RSNN a notable advantage in
energy efficiency, which we have validated through experimenta-
tion. We evaluated the proposed method on several event-driven
datasets (DVS-128Gesture [2] and CIFAR10-DVS [16]). The main
contributions are as follows:

• This paper proposed an RNN-SNNhybridmodel that adopted
RNN for feature extraction and SNN for feature recognition.
The proposed hybrid RSNN model can learn more sensory
information by RNN based structure, and SNN part could
classify the event based spatial-temporal information ade-
quately.

• Through the proposed hybrid RSNN model, the feature ex-
traction and encoding were ensembled into one framework.
We design a particular RNN-SNN training method for train-
ing the proposed model by combining the advantages of BP
and surrogate gradient methods respectively.

• We demonstrate the efficiency and effectiveness of the pro-
posed RSNN model after evaluating it on two time series
datasets. Experiments show that we can construct such a
reasonable hybrid structure and it can achieve state-of-the-
art performance on those event-driven datasets with less
computational power with full use of neural dynamics.

2 METHODS
Inspired by the information processing mechanism in biological
neural systems, we propose a hybrid network structure with RNNs
as a feature extractor and Spiking Neural Networks as a decision
maker. The proposed model is called Recurrent Spiking Neural
Network (RSNN) as shown in Fig.1. The RNNs part of this pro-
posed model framework structurally mimics the V1 of the retina
in human brain which provides a strong reference for research on
neural networks in the field of vision. The SNNs part as a classifier
acquires the image features after spike encoding from the feature
extractor and learns network parameters through the SNN training
method. RSNN model is a unified system model that integrates
feature extraction, coding, and learning.

2.1 Overview of the proposed RSNN model
In the processing of visual information by the biological neural
systems, external visual stimuli are extracted by the visual cortex
in a hierarchical structure, and these features are then fed to the
cerebral cortex in the form of bio-spike electrical signals for sub-
sequent decision processing. It is this efficient feature extraction
model that allows the biological neural systems to perform well

on visual tasks. The visual signal is generated by retina acquired
from the external environment and then transmitted through the
Lateral geniculate nucleus (LGNs) to the visual cortex, where the
features of image signals are efficiently extracted by a multi-layered
physiological construct. These layer-by-layer feature extraction op-
erations capture features of original information from spatial and
temporal perspectives. In previous work, the feature extraction
function of the biological visual neural systems in spatial dimen-
sion was mainly simulated, which showed high accuracy and noise
immunity in static image recognition tasks but was not effective
for temporal data recognition due to the lack of feature extraction
modules in the temporal dimension. Our proposed RSNN model
focuses on feature extraction operations in spatiotemporal dimen-
sion of bio-vision systems by analogous and migration with RNN
modules.

In RSNN, the ability of RNN to remember information makes the
image signals in previous moments also affect the feature extraction
at the current moment. Through the ability of temporal memory, the
performance of feature extraction in temporal dimension belonging
to RSNN is promoted to a higher level. For feature extraction in
the spatial dimension, we add a convolution module to the basic
RNN network framework. Before the formal cyclic processing of
the data stream, we obtain feature extraction in spatial dimension
through convolution and pooling operations by convolving the
image frames of the current and past moments and reducing the
image size by a pooling layer at each moment of output. These
operations of the network are also biologically interpretable. The
operation of the convolution layer simulates the extraction of im-
portant external optical information at biological retina, and CCs
layer in the cerebral cortex is also biological basis for layer-by-layer
extraction of image features by the convolution layer. Spatiotem-
poral dynamics mechanism of biological neurons, which enables
the biological visual nervous system to have the ability to remem-
ber information in temporal dimension. The biggest innovation
of our work is referring to this structural property, by introduc-
ing a convolutional RNN module, to exploit the recognition and
classification ability of the RSNN system model for neuromorphic
temporal datasets within the scope of biological interpretability. In
addition, considering the attention mechanism of the human visual
system for complex dynamic images, we also add a self-attention
component to RSNN to further improve overall performance.

2.2 Feature extraction and encoding
The neuromorphic datasets used in our work are collected by DVS
camera. Through the camera’s sensitive unit, it senses changes in
the intensity of the external light, resulting in a spike signal. Be-
cause the imaging mode of DVS camera is to feel the change of
light intensity and only respond to the change of external lighting
conditions to generate spike events[24], it has the ability to image
moving objects. Compared with the conventional camera in the ac-
cumulation of light imaging within the exposure time, DVS camera
can more accurately present high-speed moving objects, which is
not easy to cause motion blur and other problems. And, the output
data form is discrete binary spikes, which is consistent with the
input data form of SNN and is also convenient for further data
processing in the later period. This neuromorphic event data can
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Figure 1: RSNN model

be expressed as 𝐸 (𝑥𝑖 , 𝑦𝑖 , 𝑡𝑖 , 𝑝𝑖 ) (𝑖 = 0, 1...𝑁 − 1)Where (𝑥𝑖 , 𝑦𝑖 ) repre-
sents the coordinate position within the horizon of the camera lens
where the event is located,𝑡𝑖 represents the moment when the event
occurs, and 𝑝𝑖 represents the channel where the event is located.
Neuromorphic event data has two channels, which respectively
represent the spikes generated by the enhancement of light and the
spikes generated by the attenuation of light. For DVS cameras, the
changes in the direction of external illumination enhancement and
attenuation will produce events, and the corresponding 𝑝𝑖 values
are -1 and 1, respectively. The DVS camera generates an event in a
few microseconds on average, and the amount of event data gen-
erated in the sampling period of tens of milliseconds is very large.
Therefore, it is necessary to preprocess the dataset first. We use
slicing as a data preprocessing method, and the specific approach
will be explained in the experimental section.

Considering that the conventional RNN model is prone to prob-
lems such as gradient explosion and gradient disappearance when
processing long time series data, as a result, it is difficult to pro-
cess data samples that are deep in time. In response to it, we use a
variant of RNN, Long Short Term Memory (LSTM) network in this
paper. By adding some gating mechanism, this variant model can
retain the past information, which is able to restrain the long-range
dependence problem to a certain extent effectively. The gating
mechanism of LSTM is realized through a continuously guided
gating function. There are three kinds of gates in this network, they
are input gate, forget gate and output gate. The input gate is used
to control the retention degree of neuron state value at the current
moment, the forget gate is used to control how much neuron state
at the previous moment needs to be forgotten, and the output gate
controls how much neuron state at the current moment outputs
to the hidden layer state of the neuron. In addition, different from
the conventional discrete binary gating function, the gating unit
in the LSTM model has not only 0 and 1, but values between them,
indicating that a certain proportion of information is allowed to
pass through. It is more common for the gating function to adopt a
logistic function. Considering that the form of data to be processed
is a two-dimensional image, in order to better fit the structure of
data and facilitate feature extraction, we add convolution operation
on the basis of LSTM structure to construct Convolutional LSTM

(CONVLSTM).The Convolutional LSTM network was initially in-
troduced in a paper[29], which blends the concepts of CNN and
RNN. This integration enables the network to extract both temporal
and spatial information effectively. Extensive research has shown
that CONVLSTM networks perform well in tasks involving video
frame sequences. The expression of the network is:

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑏𝑖 ) (1)

𝑓𝑡 = 𝜎 (𝑊𝑥 𝑓 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑏 𝑓 ) (2)
𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 ∗ 𝑋𝑡 +𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑏𝑜 ) (3)

𝑐𝑡 = 𝑓𝑡◦𝑐𝑡−1 + 𝑖𝑡◦𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 ∗ 𝑋𝑡 +𝑊ℎ𝑐 ∗ 𝐻𝑡−1) (4)
𝐻𝑡 = 𝑜𝑡◦𝑡𝑎𝑛ℎ(𝑐𝑡 ) (5)

Where, the symbol ∗ represents the convolution operation, and ◦ is
the haddam operator. The variable 𝑐𝑡 stores the information about
the model unit, which is controlled by both the input gate and the
forget gate, and then the variable is controlled by the output gate
after input to the tanh function to obtain the hidden value𝐻𝑡 of the
model hidden layer at the current time. Hidden values preserve the
state information accumulated by the model at the last moment and
guide the output at the next moment with the input. In the equation,
the CONVLSTMmodel is different from the one-dimensional LSTM,
which convolves the input at the current time with the hidden state
at the previous time. Using two-dimensional convolution to carry
out data input at each fixed moment, the convolution of the static
frame image at this moment can better extract the features of the
static image frame. In addition, with the convolution of hidden
layers of the past time, the CONVLSTM model can have a more
accurate grasp of the sample features on both the dynamic time
sequence and the static image by embedding convolution operation
in the LSTM sequential processing system.

In the course of processing external dynamic images, the biolog-
ical visual system will pay more attention to some detailed features
with more information, that is, spend more calculation resources
on these features, which is also called the attention mechanism of
biological vision. In order to achieve a similar function in computer
vision, the attention mechanism is inspired by this. Our work also
uses the self-attention mechanism to verify the ability of the model
to extract dynamic features. We add the attention operation be-
fore each frame of the image is entered into the CONVLSTM. That
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is, more important features are given greater weight through self-
attention, and then further time sequence operations are carried out.
The algorithm belonging to this kind of self-attention is introduced
as follows. For a flattened image tensor 𝑋∈𝑅𝐻𝑊 ×𝐶 , we define a
query:𝑄 = 𝑋𝑊𝑞 ,a key:𝐾 = 𝑋𝑊𝑘 , and a value:𝑉 = 𝑋𝑊𝑣 .where
𝑊𝑞,𝑊𝑘∈𝑅𝐶×𝑑𝑘 and𝑊𝑣∈𝑅𝐶×𝑑𝑣 are learnable matrices.As shown in
equation 6, self-attention is calculated by the dot product of ten-
sor Q and K, and then the weight distribution coefficients of each
feature are obtained by the softmax function. This coefficient is
then multiplied by the eigenvalue correlation tensor V, thus giving
more weight to important information and reducing the allocation
of attention to non-important information. Since the attention co-
efficient is determined by both image X and the trainable weight, it
is a kind of self-attention.

𝐴ℎ (𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇√︃
𝑑ℎ
𝑘

)𝑉 (6)

2.3 Spiking based classification
We use Spiking Neural Network as the decisionmodule of the whole
model. Spike neurons are the basic elements of SNN. Relevant re-
searchers have established a variety of models based on the neuron
dynamics of real biological neurons, such as Hodgkin Huxley model,
which more accurately presents the ion flow process of biological
neurons. Although the model structure of Leaky Integrate and Fired
(LIF) neurons is simple, it also dynamically presents the changes
of cell membrane potential, and the calculation is simple, which is
convenient for the construction of large-scale networks. Our work
uses LIF neurons. The complex intermembrane ion flow is ignored
in the LIF neuron model, and only the process of macro membrane
potential change is modeled mathematically. The expression is as
follows:

𝜏
𝑑𝑉 (𝑡)
𝑑𝑡

= −(𝑉 (𝑡) −𝑉𝑟𝑒𝑠𝑡 ) + 𝑋 (𝑡) (7)

Where 𝑉 (𝑡) represents the membrane potential at the current mo-
ment, 𝑋 (𝑡) represents the stimulus received by the neuron at this
moment, 𝜏 is a time constant, and𝑉𝑟𝑒𝑠𝑡 is the resting potential. The
connotation expressed by the formula is that the change of the
membrane potential at a certain time is determined by the current
state of the membrane potential and the external input. There’s also
the concept of a membrane potential threshold 𝑉𝑡ℎ . When the cell
membrane potential exceeds the threshold, the spike is emitted, and
after that, the membrane potential is reset back to the resting po-
tential 𝑉𝑟𝑒𝑠𝑡 . LIF reduces computational costs with uncomplicated
modeling while retaining a certain amount of biological rationality.
In order to facilitate the realization of this process by a computer
program, the discrete expression form is given here:

𝐻 (𝑡) = 𝑓 (𝑉 (𝑡 − 1), 𝑋 (𝑡)) (8)

𝑆 (𝑡) = 𝑔(𝐻 (𝑡) −𝑉𝑡ℎ) (9)
𝑉 (𝑡) = 𝐻 (𝑡)·(1 − 𝑆 (𝑡)) +𝑉𝑟𝑒𝑠𝑡 ·𝑆 (𝑡) (10)

Where,𝑔: a gated function and represents the spike emission process.𝑓 :
Function that describes the network’s state changes over time.𝐻 (𝑡):
Represents the membrane potential of spiking neurons at the cur-
rent time step. 𝑆 (𝑡): Represents the spikes emitted by the spiking
neural network at the current time step. 𝑉𝑟𝑒𝑠𝑡 : Represents the rest-
ing membrane potential of the spiking neuron.

As the trigger of the spike in SNN is represented by a gate func-
tion that cannot be differentiated, it is also difficult to apply the
conventional BP algorithm to the parameter training of SNN. At
present, the commonly used method is to convert ANN to SNN.
This method is to directly assign the parameters trained by ANN
directly to SNN. However, this method has two defects. First, the
delay is large. In addition, since the weight training is completed
on ANN and the parameters are not continued to be trained in
the spike activity, it also loses a lot of spatio-temporal information.
Another method for training SNN is gradient substitution, that is,
the function with a higher slope replaces the non-differentiable gate
function in the backpropagation of error so that it can be trained
more conveniently by BP algorithm.

Your work should use standard LATEX sectioning commands:
section, subsection, subsubsection, and paragraph. They should
be numbered; do not remove the numbering from the commands.

Simulating a sectioning command by setting the first word or
words of a paragraph in boldface or italicized text is not allowed.

2.4 Experimental settings
The experiments are evaluated on a server equipped with 5 cores
Intel(R) Xeon(R) Gold 5218 CPUwith 2.40GHz and 1NVidia GeForce
RTX 4090 GPU. The operating system is Ubuntu 20.04. Besides, we
use spikingjelly [7] as our basic software simulation platform.

We experiment with the performance of our model on two
datasets, DVS-128Gesture and CIFAR-10DVS. Among them, the
DVS-128Gesture was obtained by sampling the presenter’s action
in real time with the DVS camera, and the CIFAR-10DVS was ob-
tained by dynamically moving the static dataset in front of the DVS
camera. Our RSNN model adopts the method of phased training,
that is, the RNN module is trained first, and then combined into
the RSNN network to train the subsequent SNN parts.

Our experiments are carried out on pytorch framework and
spikingjelly, which is a framework for spiking neural networks de-
veloped on the basis of pytorch. We compared several RNN module
structures to find the difference in their feature extraction capabil-
ities. The differences of various methods will be introduced later.
The network structure of RNN module we adopted is the structure
of convolutional LSTM. The structure of SNN module is quoted in
the paper[9]. This SNN is composed of several convolution layers
and two fully connected layers. For different datasets, the number
of convolution layers is different. For all convolution layers, the
size of convolution kernel is 3, the stride is 1, and the padding is
1. We used LIF neuron as the basic element of SNN, and the time
constant of the neuron was set as 𝜏=2.0. In the pre-processing of
video samples, we adopt the method of average segmentation and
addition, in which the number of frames of segmentation is T=20.

We utilized the data preprocessing approach provided by spik-
ingjelly. The specific method was to select the time step T required
for the experiment, and then each sample was evenly divided into
T parts in the time dimension. We combine all the time information
in a period of time into one frame. In the cut time segment, the
events in the same spatial position are added together, and finally,
the corresponding position of the frame is the addition result. This
preprocessing method reduces the complexity of the original data
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and provides convenience for subsequent data processing.In our
experiments, we used a slice size of 20 frames.

2.5 RNN module pre-training
RNN module is responsible for the intensive extraction of dynamic
time sequence features in the whole RSNN model. The main frame-
work of the network is the CONVLSTM network. On this basis,
some details are optimized and improved. Firstly, in terms of the
module structure of RNN, we generally adopt two different struc-
tures, namely multi-layer CONVLSTM and convolution LSTM with
self-attention mechanism. The purpose of conducting experiments
on RNN of these two structures is to verify the advantages of self-
attention mechanism in feature extraction and energy consumption.
In addition, we found that, although the pooling layer can acceler-
ate the training speed, it also reduces the scale of the picture, which
affects the accuracy of the model. Therefore, the number of pooling
layers and the training speed should be balanced. In addition, for
the output of the CONVLSTM, we employed five different decision
layer structures as follows:

Take the last frame: Take the output of the last time step of the
convolution LSTM and input it into Convolutional Neural Network.

Add all frames: Add the frames output by each time step of
convolution LSTM to one frame, then input to Convolutional Neural
Network.

All frames are averaged:After averaging the values of the
frames added together,then input to Convolutional Neural Network.

Temporal dimension concatenation: Concatenate frames
at each time step along the temporal dimension, then input to
Convolutional Neural Network.

One-dimensional LSTM as the decision layer: The output
of the CONVLSTM, flattened over time steps, and then fed into a
one-dimensional LSTM.

In the first method, since CONVLSTM has the memory ability in
the temporal dimension, the content of the last output frame selec-
tively remembers the content of the previous moment. Therefore,
we believe that the last frame contains all the information of the
moment to some extent, so we choose the information of the last
frame as the subsequent input. In the second method, we add the
values of frame output on all-time steps to obtain a new frame after
summing. The reason for this operation is that the information of
each time step can be well preserved because the selective memory
of convolutional neural network cannot ensure that the useful in-
formation can be completely retained. In the third method, in order
to simplify the data, we choose to average the values obtained by
the second method. In the fourth method, the output vector shape
of CONVLSTM is (𝑤,ℎ, 𝑐, 𝑡), where 𝑤 and ℎ are the length value
of the vector,𝑐 is the channel numbers of output by the convolu-
tion layer, and 𝑡 is all the output steps of CONVLSTM. In order to
retain the temporal and spatial information as comprehensively
as possible, we hope to reduce the loss of information through as
few simple processing operations as possible. So we superpose the
features in the time dimension. In this way, the information in the
time dimension is transferred to the channels, and all information is
preserved comprehensively. Finally, the shape of the ground vector
is (𝑤,ℎ, 𝑐×𝑡). In the fifth method, in order to retain more informa-
tion, we hope to use one-dimensional LSTM layer to replace the

original convolutional layer. We add the output of the LSTM of the
last layer by step size to get the final output, and then judge the
voting layer.

We visualized the output of the final layer of the CONVLSTM
for these five methods, and the visualized results are shown in
Fig.2. We present the feature diagram of each time step for each
method. However, due to the difference in the number of frames
processed by each method, we took out the CONVLSTM output
of the trained RNN model and added all channels together at each
time step. To make the feature representation more obvious, we
enhanced each image. Each group of pictures has two lines, and
each line has a total of 10 pictures, from the first picture to the
20th are the times step of the feature maps. In Fig.2, origin img
is the sample of input, which is the temporal image of the action
left hand in the DVS-128Gesture dataset. AVG is the feature im-
age output by convolution LSTM after the training of the frame
averaging method. It can be seen from the figure that the feature
image obtained by this method can basically obtain the arc track
drawn by the human arm on the left front of the human body, and
as time goes by, the frames of subsequent moments retain part of
the features of the frames at previous moments, that is, give play
to the ability of timing memory. It preserves the characteristics
of the present moment and the moments before it. However, it is
also obvious that the noise of this method is quite serious, so that
the human body is completely submerged in the noise, and the
track of hand movement is not clear. The feature map obtained
by SUM method is relatively clear, without so many chaotic noise
particles as the previous method. However, the defect is that the
contour of the arm rotation in the feature map at different moments
is similar, and the position of the arm at the current moment is
not highlighted, although remembering previous information, the
realization of features is not particularly significant for left hand
clockwise, which is a cyclical movement. The lastframe method
does the same thing, focusing only on the broad outline of the arm
rotation and not on any particular point in time. The 120channels
method, which produces a feature graph that lightens the arm ro-
tation while highlighting the human body, we believe that this
method is advantageous to sample classification because there is a
right-hand clockwise category in DVS-128Gesture, The arm rotates
on the right side of the human body, and the clear outline of the
human body as a reference is more conducive to the differentiation
of these categories. Finally, The FC to LSTM method. The feature
map obtained by this method is the clearest among these methods,
and the rotation outline of the arm and the human body is the most
obvious. At different times, the outline of the arm does not look
like a circle, which can be distinguished by the shades of color.

We analyze the performance comparison of two structures and
five processing methods on two datasets. The two structures are
multi-layer convolutional LSTM(CL) and attention-adding convo-
lutional LSTM(CLA) respectively. The structures of the two models
are shown in Table 1, where nC3 refers to a convolutional layer
with n input channels and a convolution kernel size of 3×3. MPn
refers to the max pooling layer with the pooling kernel size of n×n,
and likewise APn refers to the average pooling layer. CLn refers to
the CONVLSTM whose convolution kernel is n×n and the number
of input channels is m, L and FC are one-dimensional LSTM and



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 2: output feature map comparison

Table 1: RNN module structure

Dataset Model structure

CIFAR10DVS

CL(fc to lstm): Input-2CL3-MP2
-4CL3-MP2-6144L-1536L-384L-100-AP10

CL(others): Input-2CL3-MP2-4CL3
-MP2-6C3-MP2-64C3-64C3-MP2
-32C3-2048FC-512FC-100-AP10

CLA(fc to lstm): Input-AP4-2CLA3
-10240L-2560L-640L-100-AP10

CLA(others): Input-AP4-2CLA3-10C3
-MP2-64C3-64C3-MP2-32C3
-2048FC-512FC-100-AP10

DVS128Gesture

CL(fc to lstm): Input-2CL3-MP2
-4CL3-MP2-6144L-1536L-384L-110-AP10

CL(others): Input-2CL3-MP2-4CL3
-MP2-6C3-MP2-64C3-MP2-64C3-MP2

512FC-128FC-110-AP10

CLA(fc to lstm): Input-AP4-2CLA3
-10240L-2560L-640L-110-AP10

CLA(others): Input-AP4-2CLA3-10C3
-MP2-64C3-MP2-64C3-MP2
-512FC-128FC-110-AP10

fully connected layers respectively. In addition, CLA represents the
CONVLSTM with attention.

The main structure of the model is divided into two parts. The
first part acts as the RNN module of the feature extraction layer.

The multi-layer CONVLSTM consists of two hidden layers, and the
number of channels of the two hidden layers is 4 and 6 respectively.
The CONVLSTM with added attention has a 4×4 average pooling
layer and a convolution attention LSTM with one hidden layer. The
second part for CNN or LSTM tomake decisions through features, in
the use of lastframe, sum, avg, 120 channels as the intermediate data
processing method, with the CNN network as a decision module,
for CIFAR-10DVS dataset, We used a four-layer convolution, and
DVS128Gesture three-layer convolution. With the FC to LSTM
method, we use a three-layer LSTM as the decision module. In
order to facilitate the comparison of various methods, we plot the
changes in the accuracy of several methods of different datasets on
the same line chart which are shown in Fig.3. there are four graphs,
where the first line is the curve of the multilayer convolution model
and the second line is the curve of the model with added attention.
The five methods are plotted in the same diagram. Since the size of
the CIFAR-10DVS dataset is larger, we trained a total of 150 epochs,
and for the smaller DVS128Gesture dataset, we trained a total of 300
epochs. We can get a general rule from the four figures, that is, the
three basic methods, last frame, sum, and mean, their performance
is not different, and the accuracy curve has a similar trend. However,
although the method using LSTM instead of the full connection
layer has the least intermediate information processing steps, it
has the worst performance, because of the low complexity of the
model. In other methods, the output of the previous RNN module
is followed by a structure with multi-layer convolution, while the
fc to lstm method directly uses three-layer LSTM to replace CNN,
and its performance naturally decreases as the complexity of the
model decreases. In Table 2 we show the optimal performance of
each method.

2.6 RSNN model analysis
After the best RNN model is obtained, the combination of RNN and
SNN can be carried out. We first chose the RNN module model with
the best performance to combinewith the SNN network. For the two
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Table 2: RNN module accuracy

model method DVS128Gesture CIFAR10DVS

Convolution LSTM

lastframe 0.944 0.684
sum 0.958 0.695
mean 0.955 0.678

120channels 0.861 0.642
fc to lstm 0.771 0.399

Convolution LSTM with attention

lastframe 0.944 0.649
sum 0.951 0.647
mean 0.965 0.663

200channels 0.958 0.637
fc to lstm 0.823 0.466

Figure 3: Accuracy comparison

Table 3: The performance comparison between the proposed
RSNN and other SNN models

model DVS128Gesture CIFAR10-DVS

Our RSNN(CL) 0.955 0.669
Our RSNN(CLA) 0.951 0.671
SCNN (4layer) —- 0.692
SCNN (3layer) 0.906 —-

CNN-based SNN[12] 0.936 —-
SLAYER[30] 0.934 —-
STBP[12] 0.934 —-
STBP[34] —- 0.605

datasets, we adopt the SNN network in the form of two-dimensional

convolution of different sizes. For CIFAR-10DVS, we adopt four-
layer convolution SNN, and for DVS-128Gesture, we adopt three-
layer convolution SNN. Here we call SNN of this convolution form
SCNN, The structure of the two SCNNs is {128SC3-BN128-MP2-
128SC3-BN128-MP2-128SC3-BN128-MP2-128SC3-BN128-MP2-128SC3-
MP2-(128×m×m)SL-(32×m×m)SL-N×10} and {128SC3-BN128-MP2-
128SC3-BN128-128SC3-BN128-MP2-128SC3-BN128-(128×m×m)SL-
(32×m×m)SL-N×10}. Same as the expression before, SC here repre-
sents the convolutional layer of SCNN and SL represents the fully
connecting layer composed of spiking neurons. In particular, m
here is determined by the size of the image input. N refers to the
number of categories, and its values are 11 and 10, respectively.
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Table 4: Energy Consumption Comparison between CONVLSTM(RNN) and RSNN

RSNN(CLA) RSNN(CL) CONVLSTM(RNN)

synops(1e4) 2.31 1.33 —
floats(1e4) — — 27.67

energy(1e-7J) 0.21 0.12 12.73

accuracy 0.948 0.952 0.958

In order to verify that our RNN module can improve the perfor-
mance of the entire RSNN network through its feature extraction
capability, we conducted experiments on SCNN and RSNN. In the
experiments of RNN modules, the CONVLSTM structure obtained
the best performance on the two datasets when SUM method was
adopted, and the CONVLSTM structure with attention was the
best performance whenMEAN method was adopted. Therefore, we
adopt the RNN modules constructed by these two methods to form
the RSNN network for subsequent experiments. The experimental
results are shown in Table 3.

As shown in Table 3, the performance of the two RSNN networks
is better than the SNN network in the DVS-128Gesture dataset,
which shows that the addition of the RNN module improves the
performance of the original model, because the structure of Convo-
lutional LSTM promotes the further extraction of spatiotemporal
details. In the comparison between the two RSNN networks, the
performance of RSNN(CL) is slightly better. We analyze that there
is a 4×4 average pooling layer in the first layer of the network
model of CLA. This pooling layer is added in consideration of the
limitation of hardware performance because it reduces the original
input feature graph of 128×128 to 32×32. This also causes part of
the spatial information lost, affecting the final performance. There-
fore, RSNN (CLA) can maintain a similar performance to RSNN (CL)
when the size of the input feature map is smaller, which also proves
that the self-attention mechanism can promote the model to ex-
tract spatio-temporal information. However, the accuracy of RSNN
model on CIFAR-10DVS is inferior to SNN model. We believe that
this is because the pooling layer in RNN module reduces the size of
the picture. The input image of SNN decision in RSNN is 32×32 and
SNN is 128×128. So we retrain with the convolution LSTM without
the pooling layers The result obtained is 0.711, which also proves
the validity of RSNN on CIFAR-10DVS.

We compared the performance of our model with other models in
DVS-128Gesture, and listed two models in total, SNN (CNN based)
and SLAYER. The accuracy of our model was about 2% higher in
the DVS-128Gesture, and this was based on the premise that there
were fewer SNN layers, and our model had more advantages in
power consumption and performance.

2.7 Energy consumption analysis
In the previous section, we mentioned that spiking neural networks
have a significant energy consumption advantage over traditional
artificial neural networks (ANNs), whichwe have also demonstrated
in our experiments. For traditional ANNs, energy consumption is
typically calculated based on the number of floating-point oper-
ations (FLOPs). According to the data provided in the paper[13],

using 32-bit floating-point implementation on a 45nm technology,
𝐸𝑀𝐴𝐶 (Energy for Multiply-Accumulate) is 4.6pJ, and 𝐸𝐴𝐶 (En-
ergy for Accumulate) is 0.9pJ. We will perform an analysis and
comparison based on these data. In spiking neural networks, we
calculate the number of spike emissions according to the concept
of total Synaptic Operations which is named Synops. Unlike ANNs,
in spiking neural networks, each spike emission corresponds to
an accumulation operation, which results in lower energy con-
sumption per calculation compared to traditional ANNs. Our RSNN
network, which we used in previous experiments, takes contin-
uous numerical frames as input to the SNN layer directly after
processing by CONVLSTM, effectively serving as an encoder layer.
The calculation in the first layer of this encoder is in the form of
multiplication and accumulation, similar to CNN operations. This
direct encoding of continuous numerical images incurs additional
energy consumption. To highlight the energy advantage of SNN,
we applied a simplified SNN structure to RSNN and conducted ex-
periments on the DVSGesture dataset. The experimental results
also indicate that our RSNN model has a greater energy advantage
over the RNN model, with a relatively minor decrease in accuracy
consumption. For more specific comparisons, refer to Table 4.

Since the structures of CONVLSTM and convolutional LSTM
with attention models are the same as RSNN in the convolutional
LSTM part, the difference lies in the subsequent CNN decision and
SNN network. For simplicity, the energy consumption comparison
is made between CNN and SNN only. In the case of SNN networks,
we calculate the number of spike emissions by running one epoch
on the test set and then computing the average number of spike
emissions for a single image.

3 CONCLUSION
In this paper, a dynamic visual cognitive model RSNN based on
biological brain is proposed. Inspired by the time memory ability
of human visual system neurons for dynamic images, we use the
RNNmodule to simulate the function of this part and take the pulse
neural network with the same data transmission mode as biological
neurons as the decision-making module. Based on this, we con-
struct the dynamic DVS image model. We show that this model
can greatly improve the ability of a single SNN structure network
to identify DVS data and achieve better performance with fewer
SNN layers through efficient spatio-temporal feature extraction,
which can achieve lower energy consumption, and shallower SNNS
are convenient for other training methods. In the future, we will
further study the recognition decision principle from biological
visual systems and apply the relevant structural functions to the
performance improvement of SNN model in the field of vision.
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