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A ENTROPY OF STUDENT’S T-DISTRIBUTION

While the entropy of the Student t-distribution is well known, we derive it for completeness. Student’s
probability distribution defined in terms of location �, scale factor �2

st and ⌫st degrees of freedom is
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where � i a gamma function. Student’s t-distribution can be written in terms of beta function
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If we introduce a new variable t = y��
�st

, Student’s t-distribution converts into the standard form with
probability density
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A.1 PROPOSITION

Proposition: Entropy of the generalized and standard Student’s t-distributions are related via the
formula
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Proof: The transformation t = g(y) = y��
�st

is bijective and invertible with the inverse transformation
y = g�1(t) = �st t + �. The Jacobin of the transformation g�1 is J = �st. According to the change
of variable probability density formula
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Entropy transformation 16 follows directly from the definition of the entropy.

To find the generalized entropy, we just need to calculate the Shannon entropy of the standard
Student’s t-distribution
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To find the second integral we make a substitution x = t2

⌫st
and obtain
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where digamma function is defined as  (x) = �0(x)
�(x) . Putting all the terms together, the entropy of

the Student’s t-distribution becomes
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The Shannon entropy of the random variable t is
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and the Shannon entropy of the labels y is given by our final formula
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