Gen3DSR: Generalizable 3D Scene Reconstruction via Divide and Conquer
from a Single View

Supplementary Material

Overview

This supplementary material includes additional details and
results which provide insights into our novel approach for
generalizable 3D scene reconstruction. In section 6, we
present supporting information for the reproducibility of
our method and the evaluation setup. Section 7 extends the
ablation study in the main paper and shows the effect of
replacing different modules in the pipeline (7.2), presents a
qualitative comparison for the ablations (7.3), and discusses
the application on outdoor scenes (7.4). Then, in section
8, we elaborate and illustrate the limitations of our method.
Additional results and our code base can be found on the
project page .

6. Implementation details
6.1. Amodal completion

Amodal completion differs from inpainting by ensuring that
the model does not hallucinate new objects when recovering
the missing parts, as shown in Figure 9.

The amodal completion step in our framework is ful-
filled by an image-to-image Stable Diffusion [64] model
fine-tuned on a custom dataset. We create this dataset starting
from OmniObject3D [77] which contains 6000 high-quality
real-scanned 3D objects. Though the model only needs 2D
images for training, we found it beneficial to render 3D ob-
jects instead of using real images. This allows us to obtain
well-segmented singular objects. The Blender-rendered im-
ages of the objects are used as the target images. To obtain
the conditioning view, we mask-out parts of the object by
randomly overlaying the silhouette of an arbitrary object
sampled from the Objaverse dataset [13]. All the channels of
the background and the occluded pixels are set to the same
value of 127.5 (equivalent to zero after image normalization).
The category labels provided in OmniObject3D are used as
prompts to guide the diffusion process. Training samples
from the dataset are provided in Figure 8. We train the model
at a resolution of 512 x 512 for 25000 iterations with a batch
size of 16.

As our amodal completion model does not explicitly infer
the amodal mask of the completed object, we obtain it by
using a foreground segmentation model [61].

lhttps://andreeadoqaru.qithub.io/Gen3DSR

6.2. Reprojection and view-space alignment

Utilizing the estimated depth map D alongside the camera
calibration K;,,,, we perform pixel unprojection from the
input image, resulting a point cloud P?*** within the view
space. We refer to PV as our layout guide; this serves as a
pivotal reference, ensuring the alignment of all individually
reconstructed components within the view space, thus form-
ing the complete scene. While the background modeling
step directly fits a SDF to the corresponding background
points Pg’;ew, the instance processing step uses PY*¢" for
two purposes: reprojection and alignment.

The straightforward approach of simply cropping the
instances out of the original image and feeding them to
the single-shot object reconstruction method R leads to de-
formed reconstructions. This happens because the view-
conditioned diffusion model Z, which is used for generating
novel views of the object, assumes images are captured un-
der a predefined setup [48]. Specifically, the object should
be in the center of the image, captured by a camera with field
of view of 49.1°, positioned at a distance between [1.0, 1.7]
from the object which is normalized to fit into the unit cube.
As these conditions are not satisfied by arbitrary crops within
the image, we project P?%“* into a crop C; with similar prop-
erties. The virtual camera employed for projection uses the
Z-compatible camera setup; i.e., a camera positioned at a dis-
tance of 1.5 from the normalized P?*** and oriented towards
its center, with intrinsics K..,p. The reconstructed object
might have a different scale compared to PY%". Therefore
we estimate the scale factor s; that aligns the reconstructed
object with P?** using a RANSAC-based approach [18],
accounting for the possible mismatches.

6.3. Background modeling

The MLP used to reconstruct the background has 4 hidden
layers with 128 neurons each and Softplus activations. The
network is trained from scratch for each scene using points
sampled along background camera rays. The SDF of the
points is computed as the distance to the unprojected esti-
mated depth. As we do not sample points in the regions
originally occluded, the network implicitly interpolates the
missing areas based on the visible surrounding regions.

6.4. Integrated models

Our method ensembles several models, each tackling a dif-

ferent sub-tasks as follows:

» Camera calibration (estimation of field of view and princi-
pal point): Perspective Fields [33] trained on 360cities [1]


https://andreeadogaru.github.io/Gen3DSR

Conditioning image
(occluded)

Target image
(unoccluded)

Prompt pineapple

teapot

toy truck

stool

Figure 8. Training samples from the amodal completion synthetic dataset with objects from OmniObject3D [77].
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Figure 9. In comparison to our amodal completion, inpainting
models tend to hallucinate new objects when filling in the holes.
Both models use desk as prompt.

and EDINA [15] datasets.

Entity segmentation: CropFormer [60] with Hornet-L

backbone trained on EntitySeg dataset [60].

stuff-thing segmentation: OneFormer [31] with DiNAT-L

backbone trained on ADE20K [86]. The model predicts

150 classes which are grouped in stuff and thing. We make

some modifications to the original grouping; thing — stuff:

window, door, curtain, mirror, fence, rail, column, stairs,

screen door, balustrade, step; stuff — thing: plant, tent, crt

screen, cradle, blanket.

Monocular depth estimation: Depth Anything [80] fine-

tuned on NYUV2 [54] (metric depth) and Marigold [34]

with Stable Diffusion v2 backbone trained on two synthetic

datasets (affine-invariant depth).

Object recognition: OVSAM [82] which combines

SAM [38] with CLIP[32] and is trained on COCO [44] and

LVIS [23] datasets. For each object we sample 5 points

inside the eroded instance mask to prompt the model.

* Amodal completion: our model based on Stable Diffusion
v1.5 and trained on the synthethic dataset described in

section 6.1 of this supplementary material.

 Singe-image object reconstruction: DreamGaussian [69]
which reconstructs the object using 3D Gaussians [35] and
employs Zero-1-to-3 XL [48] trained on ObjaverseXL [14]
as the 2D diffusion prior.

We show variants of our pipeline with different modules
for some of the processing steps (depth estimation, stuff-
thing segmentation, and object reconstruction) in section
7.2.

6.5. Inference time

Using the default pipeline configuration on an NVIDIA RTX
AS5000, for an image with resolution 1500 x 1500, the scene
analysis stage takes ~ 80 sec and for each instance spe-
cific processing additional =~ 90 sec are required. Similar
to other compositional methods (e.g., InstPIFu [45]), the
inference time increases linearly with the complexity of the
scene (number of objects). This limitation can be mitigated
by paralellizing the reconstruction of the objects, provided
the available hardware resources allow it. Still, the time
per instance is quite high, mostly due to the inference time
of DreamGaussian [69]. This particular method optimizes
3D Gaussians to views of the object and has an additional
step for texture refinement, adding to the overall runtime.
However, as we designed a modular pipeline, we can replace
DreamGaussian [69] with new, improved methods for single-
view 3D object reconstruction, such as LaRa [8]. This very
recent method enables us to reduce the processing time per
instance to ~ 50 sec. Finally, the processing time could be
further improved by streamlining the pipeline for a specific
configuration of modules.



6.6. Evaluation details

For 3D-FRONT [ 19, 20] we report the metrics at the original
scale of the geometry in the dataset using 1000000 points
sampled from both the reconstructed meshes and the ground
truth geometry. The F-Score is computed at a threshold
of 0.1. As most of the modules in our pipeline operate
at a high-resolution, the original resolution of the images
(648 x 484) is insufficient. Therefore, we first increase their
size to 1296 x 968 using a super-resolution method [76].

For HOPE-Image [73], we compose the ground truth
geometry using the provided pose annotations. Additionally,
we found that a scale of 0.1 must first be applied to the
original object meshes to match with the images. The metrics
are reported at this scale based on 500000 sampled points
and the threshold used for F-Score is 1.0. On this dataset, we
only evaluate the reconstruction of the foreground instances,
as there is no ground truth background geometry.

7. Additional experiments
7.1. HOPE-Image

We include in Figure 10 the qualitative results of the ex-
periments on HOPE-Image dataset [73]. We compare our
compositional approach with DreamGaussian [69], which
reconstructs all the objects in the image at once. Our method
can better handle complex scenes with many objects, as each
instance is individually reconstructed. In contrast, both the
appearance and the geometry of DreamGaussian’s recon-
structions degrades when applied on scenes with multiple
objects. This is mainly due to limitations of the Zero-1-
to-3 XL method, which fails to generate realistic, multi-
view-consistent views. The pitfall is expected, as the do-
main required to be modeled by the prior increases expo-
nentially with the number of objects. We do not include
InstPIFu [45] in the comparison on HOPE-Image dataset
because the method fails to detect any of the considered
objects in the scenes.

7.2. Alternative models

The proposed method is designed as a modular framework,
allowing the straightforward replacement of the integrated
models summarized in 6.4. We showcase this property of our
method by exchanging the Marigold [34] depth estimation
with Depth Anything [80], the stuff-thing detection based
on OneFormer [31] with one based on CLIPSeg [50], and
the single-view object reconstruction model, DreamGaus-
sian [69], with One-2-3-45 [46]. We evaluate in Table 5
the performance of these modifications on full scene recon-
struction (background and foreground objects) using the 3D-
FRONT [19] dataset. For CLIPSeg, we define empirically a
set of prompts for foreground (object, furniture) and back-
ground (background, floor, wall, curtain, window, ceiling),
and consider foreground pixels the ones that have a lower

than 0.5 score for all the background prompts or higher than
0.1 for any of the foreground ones. The performance of
our method decreases in this case because DreamGaussian
poorly reconstructs the background regions that are misclas-
sified as things. We observe this happens more frequently on
indoor rooms when using CLIPSeg, and on tabletop scenes,
such as the one in our method figure from the main paper,
when using OneFormer.

The results show that our default configuration (as re-
ported in the main paper) yields the best metrics on this
dataset. Still, the alternative configurations are competitive,
which proves that our pipeline is flexible and robust to dif-
ferent implementations of the modules.

7.3. Ablations

We provide in Figure 11 qualitative results corresponding to
the two ablations considered in the main paper (see section
4.3). When ablating the amodal completion step, the recon-
structed objects have holes or incorrect textures, correspond-
ing to the regions that were occluded by other objects in the
scenes. When skipping the reprojection step of the pipeline
and directly using crops from the input image, the objects
are reconstructed with deformed shapes to match the input
view. By including both components, our full method recon-
structs complete objects with a physically-correct geometry.
We also consider these ablations together with LaRa [8], a
very recent method for single view object reconstruction that
operates in a feed-forward fashion. Compared to Dream-
Gaussian which relies on Zero-1-to-3 XL to generate novel
views conditioned on the input crop, LaRa uses a newer
model, Zero123++, that can generate six fixed views that
are more 3D consistent. As can be seen in Figure 12, the
proposed amodal completion and reprojection are also ben-
eficial for LaRa, boosting the reconstruction performance.

7.4. Outdoor scenes

Our method can reconstruct well a wide range of scenes,
from tabletop setups to large rooms with many objects of
varying sizes. Though we exemplify the performance of
the proposed pipeline on indoor environments, by design
the method is also applicable to outdoor scene reconstruc-
tion. In Figure 13, we provide qualitative results for such
scenes. In these experiments, we use Marigold [34] as a
depth estimator and compute the scale and shift based on
Depth Anything [80] prediction of the model fine-tuned on
KITTI [21] (suited for outdoor scenes).

We choose to focus more on indoor scene reconstruction
because most outdoor scenes are predominantly composed
of entities categorized as stuff, which we represent simply
with a mesh approximating the estimated depth map. We
believe a dedicated approach for outdoor background re-
construction would be better suited for this type of scenes.
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Figure 10. Qualitative results on HOPE-Image [73]. We show each reconstruction from two camera views, including the input one.

Depth estimation  stuff vs thing Object reconstruction Chamfer | F-Score 1

Marigold OneFormer DreamGaussian 0.099 75.33

" Depth Anything ~ OneFormer ~ DreamGaussian ~ 0.135 6843
Marigold CLIPSeg DreamGaussian 0.166 65.56
Marigold OneFormer One-2-3-45 0.110 69.40

Table 5. Quantitative evaluation of our method using alternative models on 3D-FRONT [19] dataset.

Nonetheless, outdoor scenes with several objects are recon-
structed reasonably well by our method, as can be observed
in the qualitative results.

8. Limitations

We describe in this section some of the limitations our
method inherits from the integrated modules.

As we rely on the unprojected depth for the layout of
the scene, when the camera calibration or the scale and
offset estimation fail to match the correct units, the recon-
structed scene will have an erroneous structure. We provide
an example of incorrect camera calibration in Figure 15.
Furthermore, since entities are reconstructed independently,
without relative constraints between the objects, the method
does not address potential physical impossibilities such as
intersecting objects.

In our experiments, we notice that DreamGaussian some-

times overestimates the size of the object along the z-
dimension, when it cannot be observed in the input view.
Such cases are prominent in Figure 10, e.g., orange juice box
in the last example. Additionally, DreamGaussian requires
the estimation of the perceived camera elevation of the input
crop with respect to the normalized object pose. Since this
cannot be robustly inferred, it significantly affects the recon-
struction performance of the model, as can be analysed in
Figure 14.

Though our approach for modeling the background is
superior to previous works, using a small MLP to model the
‘stuff’ of the scene (entities that are not objects) may sacrifice
details in the texture. Also, the implicit interpolation for
the occluded areas is sometimes insufficient to cover large
missing regions, resulting in holes in the background surface.

As the proposed method follows a modular approach, we
can improve on this limitations by upgrading the particular
modules. For example, conditioning the depth estimation
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Figure 11. Ablations visual comparison. In Ourspg we use DreamGaussian [69] for reconstructing individual objects with the proposed
reprojection of the input pixels and amodal completion of the missing parts.
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Figure 12. Ablations visual comparison. In Ours;.r, We use LaRa [8] for reconstructing individual objects with the proposed reprojection of
the input pixels and amodal completion of the missing parts.



Input image Ours

Figure 13. Qualitative results of our method on real-world outdoor scene reconstruction.

on the inferred camera calibration can help disambiguate
depth scale [26, 66]. Also, the 3D object reconstruction
module can benefit from having the estimated instance depth
as an additional input [29, 74]. Lastly, relying more on the
overall scene context during the amodal completion stage
can improve the recovery of missing object parts due to
occlusion, as it has been recently shown in [56, 78].
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Figure 14. DreamGaussian [69] object reconstructions of the input view under different camera elevation angles. We illustrate the 3D
reconstructions using a camera view from the side to highlight their differences. The elevation angle estimated by the method proposed in
[46] is —35°. However, the best reconstruction is achieved using an elevation angle of around —25°.
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Figure 15. Comparison of unprojected depth under two camera settings. The field of view prediction of PerspectiveFields [33] is incorrect
for this image, resulting in a flattened scene. The unprojected depth using a camera with a manually adjusted the field of view has more
realistic proportions.
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