
A Experimental setup

A.1 Training details

All models discussed in Section 5.2 were trained with 2000 iterations. If more than one learning
rate was used for a certain dataset (due to problems with the convergence of individual models), all
the spaces were evaluated for all learning rates, and the best result was reported for each space. For
distortion, the learning rate was 0.1 for all datasets except USCA312 (Cities), where we had 0.1 and
0.01. For mAP, the learning rate 0.1 was used for all datasets except USCA312 and CSPhDs, where
we had 0.01 and 0.05 for both datasets.

For the experiments in Section 5.3 , we used 5000 iterations for short embeddings and 1000 for long
ones (long embeddings converged faster). Hard-negative mining was not used for DSSM training.
Instead, large batches of 4096 random training examples (almost 1% of the entire dataset) were used.
During the learning process, only the training queries and documents were used. For evaluation, the
nearest website was searched among all the documents. The training part was 90% of the dataset,
and the quality discrepancy between validation and test sets was quite small. Data samples are given
in the table 11.

For the synthetic experiment in Section 5.4 , for all spaces, the learning rates 0.1, 0.05, 0.01, 0.001
were used, and the best result was selected. We had 2000 and 1000 iterations for distortion and mAP,
respectively.

A.2 WLA6 dataset details

As described in the main text, this dataset is obtained by running the breadth-first search algorithm
on the category graph of the English-language Wikipedia (https://en.wikipedia.org/wiki/
Special:CategoryTree), starting from the vertex (category) “Linear algebra” and limited to the
depth 6 (Wikipedia Linear Algebra 6). We provide this graph along with the texts (names) of the
vertices (categories). The resulting graph is very close to being a tree, although there are some cycles.
Predictably, hyperbolic space gives a significant profit for this graph, while using product spaces
gives almost no additional advantage. The purpose of using this dataset is to check our conclusions
on data other than those used in [9] and to evaluate overlapping spaces on a dataset where product
spaces do not provide quality gains.

B Additional experimental results

B.1 Our implementation of product spaces vs original one

Table 7 compares our implementation with the results reported in [9]. It should be noted that we have
significantly different algorithms with differing numbers of iterations.

The optimal values of distortion obtained with our algorithm (except for the USCA312 dataset) are
comparable and usually better than those reported in [9]. On USCA312, the obtained distortion is
orders of magnitude better, which can be caused by the proper choice of the learning rate (in our
experiments on this dataset, this choice significantly affected the results). These results indicate that
our solution is a good starting point to compare different spaces and similarities.

For mAP, we optimize the proxy-loss, in contrast to the canonical implementation, where both metrics
were specified for models trained with distortion. Clearly, the results are more stable for our approach:
we do not have such a large spread of values for different spaces. We noticed that directly optimizing
ranking losses leads to significant improvements.

B.2 Parametrization of spherical space

In Tables 2 and 3 of the main text, we used hyperspherical parameterization of spherical subspaces in
product spaces since we fixed the number of stored values for each space. Here, in Tables 8 and 9,
we present the extended results, where we fix the mathematical dimension of product spaces and use
d+ 1 parameters and simple mappings from Section 3, equation (4),
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Table 7: Graph reconstruction: original product spaces vs our implementation

USCA312 CS PhDs Power Facebook
Canon. Our Canon. Our Canon. Our Canon. Our

Distortion

E10 0.0735 0.0032 0.0543 0.0475 0.0917 0.0408 0.0653 0.0487
H10 0.0932 0.0111 0.0502 0.0443 0.0388 0.0348 0.0596 0.0483
S10 0.0598 0.0095 0.0569 0.0503 0.0500 0.0450 0.0661 0.0540
H5 ×H5 0.0756 0.0057 0.0382 0.0345 0.0365 0.0255 0.0430 0.0372
S5 × S5 0.0593 0.0079 0.0579 0.0492 0.0471 0.0433 0.0658 0.0511
H5 × S5 0.0622 0.0068 0.0509 0.0337 0.0323 0.0249 0.0402 0.0318
H5

2 0.0687 0.0059 0.0357 0.0344 0.0396 0.0273 0.0525 0.0439
S5
2 0.0638 0.0072 0.0570 0.0460 0.0483 0.0418 0.0631 0.0489

H2
2 × E2 × S2

2 0.0765 0.0044 0.0391 0.0345 0.0380 0.0299 0.0474 0.0406

mAP

E10 0.9290 0.8691 0.9487 0.8860 0.9380 0.5801 0.7876
H10 0.9173 0.9310 0.9399 0.8442 0.9385 0.7824 0.7997
S10, 0.9254 0.8329 0.9578 0.7952 0.9436 0.5562 0.7868
H5 ×H5 0.9247 0.9628 0.9481 0.8605 0.9415 0.7742 0.8084
S5 × S5 0.9231 0.7940 0.9662 0.8059 0.9466 0.5728 0.7891
H5 × S5 0.9316 0.9141 0.9654 0.8850 0.9467 0.7414 0.8087
H5

2 0.9364 0.9694 0.9671 0.8739 0.9508 0.7519 0.7979
S5
2 0.9281 0.8334 0.9714 0.8818 0.9521 0.5808 0.7915

H2
2 × E2 × S2

2 0.9391 0.8672 0.9611 0.8152 0.9486 0.5951 0.7970

as done in [9]. We can see that our implementation gives results comparable to the original ones
in distortion setup and significantly better for mAP, which is associated with using the proxy-loss
instead of distortion.

Table 8: Graph reconstruction with distortion loss, top results are highlighted, metrics only
Signature USCA312 CS PhDs Power Facebook WLA6
E10 0.00318 0.0475 0.0408 0.0487 0.0530
H10 0.01114 0.0443 0.0348 0.0483 0.0279
S10 0.00951 0.0503 0.0450 0.0540 0.0589
H2

5 ≡ H5 ×H5 0.00573 0.0345 0.0255 0.0372 0.0279
S5 × S5 ≡ S2

5 0.00792 0.0492 0.0433 0.0511 0.0585
H5 × S5 0.00681 0.0337 0.0249 0.0318 0.0296
H5

2 0.00592 0.0344 0.0273 0.0439 0.0356
S5
2 0.00720 0.0460 0.0418 0.0489 0.0549

H2
2 × E2 × S2

2 0.00436 0.0345 0.0299 0.0406 0.0405
Ol1, t = 0 0.00356 0.0368 0.0281 0.0458 0.0286
Ol1, t = 1 0.00330 0.0300 0.0231 0.0371 0.0272
Ol2, t = 1 0.00530 0.0328 0.0246 0.0324 0.0278
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Table 10: Comparison of proxy-losses, mAP
USCA312 CS PhD

P ∼ e−d e1/d 1/d e−d e1/d 1/d

E10 0.929 0.911 0.899 0.949 0.956 0.831
H10 0.917 0.807 0.885 0.940 0.749 0.764
S10 0.925 0.797 0.838 0.958 0.572 0.689
H2

5 0.925 0.890 0.883 0.948 0.976 0.723
S2
5 0.923 0.802 0.858 0.966 0.748 0.775

H5 × S5 0.932 0.838 0.865 0.965 0.804 0.721
H5

2 0.936 0.896 0.903 0.967 0.998 0.823
S5
2 0.928 0.856 0.871 0.971 0.876 0.881

H2
2 × E2 × S2

2 0.939 0.872 0.865 0.961 0.884 0.689

Ol1, t = 0 0.952 0.933 0.872 0.988 0.961 0.762
Ol1, t = 1 0.952 0.947 0.877 0.990 0.963 0.815
Ol2, t = 1 0.952 0.939 0.880 0.994 0.979 0.810

c− dot 1 1 0.777 1 0.999 0.917

Table 9: Graph reconstruction with mAP ranking loss, top results are highlighted, metrics only
Signature USCA312 CS PhDs Power Facebook WLA6
E10 0.9290 0.9487 0.9380 0.7876 0.7199
H10 0.9173 0.9399 0.9385 0.7997 0.9617
S10 0.9254 0.9578 0.9436 0.7868 0.7287
H2

5 0.9247 0.9481 0.9415 0.8084 0.9682
S2
5 0.9231 0.9662 0.9466 0.7891 0.7353

H5 × S5 0.9316 0.9654 0.9467 0.8087 0.9779
H5

2 0.9364 0.9671 0.9508 0.7979 0.8597
S5
2 0.9281 0.9714 0.9521 0.7915 0.7346

H2
2 × E2 × S2

2 0.9391 0.9611 0.9486 0.7970 0.6796
Ol1, t = 0 0.9522 0.9879 0.9728 0.8093 0.6759
Ol1, t = 1 0.9522 0.9904 0.9762 0.8185 0.9598
Ol2, t = 1 0.9522 0.9938 0.9907 0.8326 0.9694

B.3 Other ways of converting distances to probabilities

For the proxy-loss, we additionally experimented with other ways of converting distances to probabil-
ities. Let us write Lproxy in the general form:

Lproxy = −
∑

(v,u)∈E

log P((v, u) ∈ E) = −
∑

(v,u)∈E

log
t
(
dU (f(v), f(u)))

)∑
w∈V

t
(
dU (f(v), f(w))

) , (7)

where t(d) is a function that decreases with distance d. We compare the following alternatives for
t(d):

t1(d) = exp(−d), t2(d) = exp

(
1

min(d, d0)

)
, t3(d) =

1

min(d, d0)
,

where d0 is a small constant.

Recall that t1 was used in the main text and it seems to be the most natural choice.10 Table 10
compares the options and shows that the best results are indeed achieved with t1.

10Note that this is the softmax over the inverted distances.
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Table 11: Search query examples
Query Web site
Kris Wallace en.wikipedia.org/wiki/Chris_Wallace
1980: Mitsubishi produces one million cars...// en.wikipedia.org/wiki/Mitsubishi_Motors
code napoleon en.wikipedia.org/wiki/Napoleonic_Code

Table 12: Distortion graph reconstruction for different overlapping spaces
Signature USCA312 CS PhDs Power Facebook WLA6 EuCore

Ol1, t = 0 0.00324 0.0368 0.0281 0.0458 0.0286 0.1141

Ol1, t = 1 0.00325 0.0300 0.0231 0.0371 0.0272 0.1117
Ol1, t = 2 0.00296 0.0335 0.0262 0.0309 0.0273 0.1114
Ol1, t = 3 0.00257 0.0273 0.0209 0.0313 0.0246 0.1098

Ol2, t = 1 0.00530 0.0328 0.0246 0.0324 0.0278 0.1127
Ol2, t = 2 0.00596 0.0303 0.0256 0.0312 0.0278 0.1117
Ol2, t = 3 0.00303 0.0343 0.0240 0.0302 0.0279 0.1119

B.4 Analysis of depth in overlapping spaces

Distortion graph reconstruction results for all possible t ≤ log2(d) = log2(10) ∼ 3.3 are provided in
Table 12 for completeness. The results below confirm our hypothesis that the reconstruction distortion
improves with increasing t.

B.5 Analysis of learned weights

While analyzing the trained weights we have made several observations:

1. We see that OS does not learn a pure product space. In particular, on the CS PhDs dataset
we get

dOl=1,t=0 ∝ 0.37dH + 0.63dS ,

which is significantly better than both dS and dH separately.

2. If for t = 0 there is a space with a noticeably larger weight compared to the other ones, then
the space of same type often makes the largest contribution for t = 1 too. For example, in
USCA312,

dOl1,t=0 ∝ 0.90dE + 0.05dH + 0.05dS ,

and the weights of the Euclidean subdistances for dOl1,t=1 (normalized,
∑

wi = 1) are 0.6,
0.15, 0.1.

3. However, a space that is absent for t = 0 can appear for t = 1. For example, in the Power
dataset,

dOl1,t=0 ∝ 0.37dH + 0.63dS ,

dOl1,t=1 ∝ 0.1dE(l01, r
0
1) + 0.5dR(l

0
1, r

0
1) + 0.4dH(l11, r

1
1),

where l01 = l[0..5], l11 = l[6..10].

4. Finally, we noticed that almost always, more than half of the weights are near-zero, which
allows one to remove unnecessary distances and improve efficiency.

C Proof of Statement 1

To prove that d(x, y) is a metric distance, we need to show that it is symmetric, nonnegative, equals
zero only when x = y, and satisfies the triangle inequality.

Consider an overlapping space:

dO(l, r) = Agg(dD1
(·, ·), . . . , dDk

(·, ·)),
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where Agg is l1 or l2 aggregation and dDi are base distances applied to subsets of coordinates.

Symmetry of dO follows from symmetry of base distances dDi
. Obviously, we have dO(x, y) ≥ 0

and dO(x, x) = 0. The inequality dO(x, y) > 0 for x 6= y follows from the fact hat we use specific
non-trival mappings MDi

and assume that together subsets of coordinates pi cover all coordinates
(i.e., ∪ki=1pi = {1, . . . , d}).
Obviously, l1 aggregation (sum) preserves the triangle inequality. So, it remains to show this for l2.
Assume that d1 and d2 satisfy the triangle inequality, nonnegative and let dl2 =

√
d21 + d22.

Let c1 := d1(x, y), c2 := d2(x, y), a1 = d1(x, z), a2 = d2(x, z), b1 = d1(z, y), b2 = d2(z, y).

We know that c1 ≤ a1 + b1 and c2 ≤ a2 + b2. Therefore,

c21 + c22 ≤ a21 + a22 + b21 + b22 + 2a1b1 + 2a2b2 . (8)

We need to show √
c21 + c22 ≤

√
a21 + a22 +

√
b21 + b22 ,

c21 + c22 ≤ a21 + a22 + b21 + b22 + 2
√
a21 + a22

√
b21 + b22 .

Taking into account Equation 8, it is sufficient to show

2a1b1 + 2a2b2 ≤ 2
√
a21 + a22

√
b21 + b22 ,

a21b
2
1 + a22b

2
2 + 2a1b1a2b2 ≤ (a21 + a22)(b

2
1 + b22) ,

2a1b1a2b2 ≤ a21b
2
2 + a22b

2
1 ,

which is true.

Finally, note that that for three base distances we have dl2 =
√

(
√

d21 + d22)
2 + d23 =

√
d21 + d22 + d23

and so we have proved the statement for an arbitrary number of terms.

D Additional illustrations for overlapping spaces

Figure 3 additionally illustrates the idea behind overlapping spaces. Namely, Figure 3(a) shows
standard Euclidean distance evaluation between two vectors l and r. As shown in Figure 3(b), we add
a differentiable mapping MH : R10 → H10 to calculate the distance in the hyperbolic space (we may
do the same for the spherical space). Applying several mappings to different parts of l and r, we may
get any product space as shown in Figure 3(c). The last step is to allow the subsets of coordinates to
overlap, as shown in Figure 3(d), where the fifth coordinate is used simultaneously in two mappings.
All such spaces with all possible intersections and base distances are called overlapping spaces.

18



(a) Computing Euclidean distance

(b) Computing hyperbolic distance

(c) Computing product space distance

(d) Example of overlapping space distance

Figure 3: Illustrating overlapping space with d = 10 and l1 (sum) aggregation
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