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A Lexicon

A.1 Conservative fields

We first collect the necessary definitions to define a conservative set-valued field, introduced in [14],
and by extension conservative Jacobians. Recall from multivariable calculus that the Jacobian of a
differentiable function f : Rn → Rm is given by

Jac f :=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn

 .

Definition 1 (Absolutely continuous curve) A continuous function γ : R → Rn is an absolutely
continuous curve if it has a derivative γ̇(t), for almost all t ∈ R, which furthermore satisfies

γ(t)− γ(0) =

t∫
0

γ̇(τ)dτ

for all t ∈ R.

The graph of a set-valued mapping D : Rn ⇒ Rm is the set graphD := {(x, z) : x ∈ Rn, z ∈
D(x)}.

Definition 2 (Closed graph) A set-valued mapping D : Rn ⇒ Rm has closed graph or is graph
closed if graphD is a closed subset of Rn+m or, equivalently, if, for any convergent sequences
(xk)k∈N and (zk)k∈N with zk ∈ D(xk) for all k ∈ N, it holds

lim
k→∞

zk ∈ D
(

lim
k→∞

xk

)
.

Definition 3 (Locally bounded) A set-valued mapping D : Rn ⇒ Rm is locally bounded if for all
x ∈ Rn, there exists a neighborhood U of x and M > 0 such that, for all u ∈ U , for all y ∈ D(u),
‖y‖ < M .

Definition 4 (Conservative set-valued field) A set-valued mapping D : Rn ⇒ Rm is a conserva-
tive field if the following conditions hold:

1. For all x ∈ Rn, D(x) is nonempty.
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2. D has a closed graph and is locally bounded.

3. For any absolutely continuous curve γ : [0, 1]→ Rn with γ(0) = γ(1),
1∫

0

max
z∈D(γ(t))

〈γ̇(t), z〉dt = 0.

Although conservative fields are not assumed to be locally bounded in [14], we add this restriction
here to ensure they are upper semicontinuous. This will allow us to use a nonsmooth Lyapunov
method [8] to prove convergence of first-order algorithms.

Definition 5 (Monotone operator) A set-valued mapping D : Rn ⇒ Rm is called a monotone
operator if, for all x, y ∈ Rn, u ∈ D(x), and v ∈ D(y),

〈x− y, u− v〉 ≥ 0.

A.2 A simpler and more operational view on definability

We recall basic definitions and results on definable sets and functions used in this work. More details
on this theory can be found in [55, 23].

We make a specific attempt to provide a new simple view on this subject by using dictionaries, in the
hope that machine learning users consider utilizing these wonderful tools.

The archetypal o-minimal structure is the collection of semialgebraic sets. Recall that a set A ⊂ Rn
is semialgebraic if it can be written as

A =

I⋃
i=1

J⋂
j=1

{x ∈ Rn : Pij(x) < 0, Qij(x) = 0}

where, for i ∈ {1, ..., I} and j ∈ {1, ..., J}, Pij and Qij are polynomials. The stability properties of
semialgebraic sets may be axiomatized [51, 55] to give rise to the general notion of an o-minimal
structure:

Definition 6 (o-minimal structure) Let O = (Op)p∈N be a collection of sets such that, for all
p ∈ N, Op is a set of subsets of Rp. O is an o-minimal structure on (R,+, ·) if it satisfies the
following axioms:

1. For all p ∈ N, Op is stable by finite intersection and union, complementation, and contains
Rp.

2. If A ∈ Op then A× R and R×A belong to Op+1.

3. Denoting by π the projection on the p first coordinates, if A ∈ Op+1 then π(A) ∈ Op.

4. For all p ∈ N, Op contains the algebraic subsets of Rp, i.e., sets of the form
{x ∈ Rp : P (x) = 0}, where P : Rp → R is a polynomial function.

5. The elements of O1 are exactly the finite unions of intervals.

A subset A ⊂ Rn is said to be definable in an o-minimal structure O = (Op)p∈N if On contains A.
A function f : Rn → Rm is said to be definable if its graph, a subset of Rn+m, is definable.

Note that the collection of semialgebraic sets verifies 3 in Definition 6 according to the Tarski-
Seidenberg theorem.

There are several major structures which have been explored [57, 55, 27]. But rather than relying on
traditional description of these structures, we provide instead classes of functions that are contained
in an o-minimal structure. The goals achieved are twofold:

• The classes we provide are o-minimal and thus all the results provided in the main text apply
to functions in these classes.
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• It is very easy to verify that a function belongs to one of the classes. Everything boils down
to checking that the problem under consideration can be expressed in one of the dictionaries
we provide.

Note however that we do not aim at providing neither a comprehensive nor a sharp picture of what
could be done with o-minimal structures.

We consider first a collection of functions which will serve to establish dictionaries:

(a) Analytic functions restricted to semialgebraic compact domains (contained in their natural
open domain), examples are cos and sin restricted to compact intervals.

(b) “Globally subanalytic functions”: arctan, tan|]−π/2,π/2[ or any functions in (a) (see [27]
for a precise definition of global subanalyticity).

(c) The log and exp functions.
(d) Functions of the form x 7→ xr with r a real constant and x a positive real number. These

can be represented as x 7→ exp(r log(x)) which is definable in (R, exp).
(e) Implicitly defined semialgebraic functions. That is, functions G : Ω→ Rm, with Ω open,

which are maximal solutions (i.e., the domain Ω cannot be chosen to be bigger) to nonlinear
equations of the type

F (x,G(x)) = 0

where F is a semialgebraic function.

With this collection of functions we may build elementary dictionaries. To demonstrate, we consider
the following dictionaries

Dic(a) = {functions satisfying (a)}
Dic(d, e)={functions satisfying (d) or (e)}
Dic(a, b, c, d, e) = {functions satisfying (a) or (b) or (c) or (d) or (e)}

The last dictionary describes a larger class of functions, we shall come back on this later on.

Consider the dictionary D = Dic(·) based on the properties (a)-(e) described above.

Then, in the spirit of [15], we can extend the idea of piecewise selection functions with the following
three definitions.

Definition 7 (Elementary D-function) An elementary D-function is a C2 function described by a
finite compositional expression involving the basic operations ×,+, /, multiplication by a constant,
and the functions of D inside their domain of definition.

Any elementaryD-function is definable in Ran,exp by stability of definable functions by composition.
We shall denote SD the set of elementary D-functions. For instance, the following functions belong
to SD:

– x 7→ 1
1+exp(−x) .

– x 7→ log(1 + exp(x)).

– (β, λ) 7→ ‖Xβ − Y ‖2 + eλ‖β‖1.

Definition 8 (Elementary D-index) Consider r ∈ N∗, and s : Rn → {1, . . . , r}. Then s is said to
be an elementary D-index if, for i ∈ {1, . . . , r}, each of the pre-images s−1(i) (i.e., the points in Rn
such that s selects the index i) can be written as

I⋃
i=1

J⋂
j=1

{x ∈ Rn : gij(x) < 0, hij(x) = 0}

where, for i ∈ {1, . . . , I} and j ∈ {1, . . . , J}, the gij and hij are elementary D-functions.

Definition 9 (Piecewise D-function) A function f : Rn → Rm is a piecewise D-function if there
exist r ∈ N∗, elementary D-functions f1, . . . , fr, and an elementary D-index s : Rn → {1, . . . , r}
such that for all x ∈ Rn,

f(x) = fs(x)(x).
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We denote PD the set of piecewise D-functions. With the assumptions we have on the dictionary
D, the piecewise selections we consider are all definable (it ’s not always the case in general).
Notice that piecewise log-exp functions [15] are a specific case of D-functions with the dictionary
D = Dic(c) = {log, exp}. It is easy to see that the following functions are in PD and thus definable:

– x 7→ max(0, x) (relu).
– x 7→ max(x1, ..., xn).
– sort function.

– x 7→
{

1
2x

2 for |x| ≤ δ,
δ(|x| − 1

2δ), otherwise,
with δ > 0 (Huber loss).

Moreover, composition of functions from PD are definable. This allows to say that if ρ(w, x) is the
output of a neural network built with usual elementary blocks (for instance Dense, Max Pooling or
Conv layers), or even implicit layers involving functions in PD, with input x and weights w, then the
empirical risk 1

N

∑N
i=1 `(ρ(w, xi), yi) is definable with respect to w provided that ` is also in PD.

Remark 3 (a) (Small and big dictionaries) It may be puzzling for the reader to see that there is a
dictionary that contains all the others. A major comment is in order: bigger is not always better.
The bigger the dictionary is, the weaker some properties are. For instance, any piecewise selection
f : Rn → R built upon Dic(a, b) satisfies ‖f(x)‖ ≤ c‖x‖N for some c > 0, N > 0, which may
have consequences in terms of convergence rates, see e.g., [5]. Thus in practice using the smallest
dictionary possible may lead to sharper results. On top of this, there are no universal dictionaries
[27].
(b) (PAP functions and definability) Recently PAP functions were introduced in order to deal with
automatic differentiation matters [40]. To deal with such types of functions in our framework and have
guarantees in terms of automatic differentiation, implicit differentiation or convergence properties,
we need to view them through the dictionary paradigm. For this we consider the dictionary of analytic
functions defined on Rp for some p. In that case, piecewise functions are not necessarily definable
but their restrictions to any ball (or any compact semialgebraic subset) are definable.

B Results from Section 2

Theorem 1 (The Clarke Jacobian is a minimal conservative Jacobian) Given a nonempty open
subset U of Rn and F : U ⊂ Rn → Rm locally Lipschitz, let JF be a convex-valued conservative
Jacobian for F . Then for almost all x ∈ U , JF (x) = {JacF} and for all x ∈ U , Jac cF (x) ⊂
JF (x).

Proof: Using [14, Lemma 4] for i ∈ {1, . . . ,m}, [JF ]i is a conservative map for Fi on U and it is
equal to ∇Fi on a set of full measure Si ⊂ U . Hence for all x ∈ S :=

⋂m
i=1 Si, which is of full

measure in U , JF (x) = JacF (x). Since S has full measure within U , [56] gives the representation

Jac cF (x) = conv

{
lim

k→+∞
JacF (xk) : xk ∈ S, xk −→

k→+∞
x

}
, for any x ∈ U .

But since JF coincides with JacF throughout S, we have

Jac cF (x) = conv

{
lim

k→+∞
JF (xk) : xk ∈ S, xk −→

k→+∞
x

}
for each x ∈ U . Finally, by graph closedness and convexity of JF we get, for each x ∈ U ,

Jac cF (x) ⊂ conv

{
JF

(
lim

k→+∞
xk

)
: xk ∈ S, xk −→

k→+∞
x

}
= JF (x).

�

Proposition 1 (Decomposition of conservative fields) Let JF be a conservative Jacobian for F ,
then there is a residual R such that

JF ⊂ Jac cF +R.
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Proof: We have obviously the inclusion

JF ⊂ Jac cF + (JF − Jac cF ),

so it suffices to remark that (JF − Jac cF ) is residual due to the conservativity properties of both JF
and Jac cF . �

Theorem 2 (Implicit differentiation) Let F : Rn × Rm → Rm be path differentiable on U × V ⊂
Rn × Rm an open set and G : U → V a locally Lipschitz function such that, for each x ∈ U ,

F (x,G(x)) = 0. (16)

Furthermore, assume that for each x ∈ U , for each [A B] ∈ JF (x,G(x)), the matrix B is invertible
where JF is a conservative Jacobian for F . Then, G : U → V is path differentiable with conservative
Jacobian given, for each x ∈ U , by

JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
.

Proof: Let γ : [0, 1] → U be absolutely continuous, then the composition G ◦ γ is also absolutely
continuous since G is locally Lipschitz. By (16) we have, for all t ∈ [0, 1],

F (γ(t), G(t))) = 0

which we can differentiate almost everywhere; for almost every t ∈ [0, 1], for any [A B] ∈
JF (γ(t), G(γ(t))),

[A B]

[
γ̇(t)

d
dtG(γ(t))

]
= 0 =⇒ −Aγ̇(t) = B

d

dt
G(γ(t)).

Since B is assumed to be invertible, we have, for almost every t ∈ [0, 1],

−B−1Aγ̇(t) =
d

dt
G(γ(t)).

The set-valued mapping JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
is nonempty, locally bounded,

and has a closed graph for each x ∈ U since JF (x,G(x)) is a conservative Jacobian and B is
invertible . We conclude that G is path differentiable on U with conservative Jacobian JG. �

Corollary 1 (Path differentiable implicit function theorem) Let F : Rn × Rm → Rm be path
differentiable with conservative Jacobian JF . Let (x̂, ŷ) ∈ Rn × Rm be such that F (x̂, ŷ) = 0.
Assume that JF (x̂, ŷ) is convex and that, for each [A B] ∈ JF (x̂, ŷ), the matrix B is invertible. Then,
there exists an open neighborhood U × V ⊂ Rn × Rm of (x̂, ŷ) and a path differentiable function
G : U → V such that the conclusion of Theorem 2 holds.

Proof: Since JF (x̂, ŷ) is convex, it follows from Theorem 1 that Jacc F (x̂, ŷ) ⊂ JF (x̂, ŷ) and thus,
for any [A B] ∈ Jacc F (x̂, ŷ), B is invertible, i.e., the conditions to apply [20, 7.1 Corollary] to F
are satisfied. Therefore there exists an open neighborhood U1 × V1 ⊂ Rn × Rm of (x̂, ŷ) and a
locally Lipschitz function G : U1 → V1 such that, for all x ∈ U1,

F (x,G(x)) = 0.

By the continuity of the determinant and the fact that JF has a closed graph, there exists an open
neighborhood U2 × V2 ⊂ Rn × Rm of (x̂, ŷ) such that, for all (x, y) ∈ U2 × V2, for all [A B] ∈
JF (x, y), the matrix B is invertible. Let U × V := (U1 ∩ U2) × (V1 ∩ V2), which is an open
neighborhood of (x̂, ŷ). Then the requirements of Theorem 2 are met for F , JF , and G on U × V
and the desired claims follow. �

Corollary 2 (Path differentiable inverse function theorem) Let U and V be open neighborhoods
of 0 in Rn and Φ : U → V path differentiable with Φ(0) = 0. Assume that Φ has a conservative Jaco-
bian JΦ such that JΦ(0) contains only invertible matrices. Then, locally, Φ has a path differentiable
inverse Ψ with a conservative Jacobian given by

JΨ(y) =
{
A−1 : A ∈ JΦ(Ψ(y))

}
.
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Figure 4: Illustration of the four different sets in the explicit piecewise affine representation of Ψ = Φ−1.

Proof: Consider the function F (x, y) = x − Φ(y) and observe that it satisfies the assumptions of
Corollary 1, so that we obtain a function G which is exactly the desired inverse. �

It is tempting to think that Corollary 2 should come with a formula of the type

Jacc Ψ(z) = [Jacc Φ(Ψ(z))]−1,

for all z in a neighborhood of 0. This happens to be false, making the use of the notion of conservativity
necessary to catpure the artifacts resulting from application of ordinary calculus rules to nonsmooth
inverse functions. Note that since the inverse function theorem is a special case of the implicit
function theorem, this also rules out a Clarke calculus for implicit functions.

Example 1 (Counterexample to a potential “Clarke implicit differential calculus”) We follow
the example given by Clarke [20, Remark 7.1.2]. Consider the mapping Φ : R2 → R2 given
by

Φ(x, y) = (|x|+ y, 2x+ |y|) .
It is locally Lipschitz and semialgebraic and thus path differentiable with its Clarke Jacobian a
conservative Jacobian. We have the following explicit piecewise linear representation

Φ(x, y) =


(x+ y, 2x+ y) if x ≥ 0 and y ≥ 0,

(x+ y, 2x− y) if x ≥ 0 and y ≤ 0,

(−x+ y, 2x− y) if x ≤ 0 and y ≤ 0,

(−x+ y, 2x+ y) if x ≤ 0 and y ≥ 0

from which we deduce that the Clarke Jacobian of Φ has the following structure

Jacc Φ(0) = conv

{[
1 1
2 1

]
,

[
1 1
2 −1

]
,

[
−1 1
2 −1

]
,

[
−1 1
2 1

]}
where the matrices correspond to linear maps in the explicit definition of Φ. Therefore Jacc Φ(0)
is an affine set whose dimension is 2. In addition, it contains only invertible matrices [20, Remark
7.1.2]. We will use the following explicit matrix inverses:[

1 1
2 1

]−1

=

[
−1 1
2 −1

]
,

[
1 1
2 −1

]−1

=
1

3

[
1 1
2 −1

]
,

[
−1 1
2 1

]−1

=
1

3

[
−1 1
2 1

]
.

Using the above, one can verify that Φ is a homeomorphism whose inverse is also piecewise linear.
We set Ψ = Φ−1; it is given by

Ψ(u, v) = (v − u, 2u− v) for (u, v) ∈ A,

Ψ(u, v) =
1

3
(u+ v, 2u− v) for (u, v) ∈ B,

Ψ(u, v) = (u+ v, 2u+ v) for (u, v) ∈ C,

Ψ(u, v) =
1

3
(v − u, 2u+ v) for (u, v) ∈ D,
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where the subsets A,B,C,D form a “partition”2 of R2

A =
{

(u, v) ∈ R2 : v − u ≥ 0, 2u− v ≥ 0
}

(corresponding to x ≥ 0, y ≥ 0),

B =
{

(u, v) ∈ R2 : u+ v ≥ 0, 2u− v ≤ 0
}

(corresponding to x ≥ 0, y ≤ 0),

C =
{

(u, v) ∈ R2 : u+ v ≤ 0, 2u+ v ≤ 0
}

(corresponding to x ≤ 0, y ≤ 0),

D =
{

(u, v) ∈ R2 : v − u ≤ 0, 2u+ v ≥ 0
}

(corresponding to x ≤ 0, y ≥ 0).

A graphical representation of these sets is given in Figure 4.

From this explicit piecewise linear representation of Ψ, we deduce that its Clarke Jacobian at 0 is the
following

Jacc Ψ(0) = conv

{[
1 1
2 1

]
,

[
−1 1
2 −1

]
,

1

3

[
−1 1
2 1

]
,

1

3

[
1 1
2 −1

]}
.

For a given subset of linear space we denote by aff F the affine span of F . It is easy to see
that dim aff[ Jacc Φ(0)] = 2 while dim aff [Jacc Ψ(0)] = 3. More concretely, vectorialize the set

Jacc Ψ(0) at M = 1
3

[
1 1
2 −1

]
by considering the matrices given by[

1 1
2 1

]
−M,

[
−1 1
2 −1

]
−M,

1

3

[
−1 1
2 1

]
−M

that is
1

3

[
2 2
4 4

]
,

1

3

[
−4 2
4 −2

]
,

1

3

[
−2 0
0 2

]
.

These matrices are independent so that Jacc Ψ(0) is an affine set whose dimension is 3.

Matrix inversion is a semialgebraic diffeomorphism (when restricted to invertible matrices) so
it preserves dimension. For this reason the set [Jacc Ψ(0)]−1 = {M−1,M ∈ Jacc Ψ(0)} is a
semialgebraic set of dimension 3, and we have

[Jacc Ψ(0)]−1 6⊂ [Jacc Φ(0)]. (17)

However, we have shown that z 7→ [Jacc Ψ(Φ(z))]−1 is a conservative Jacobian. This example
excludes the possibility of a simple inverse (implicit) function theorem with a “Clarke Jacobian
calculus” and illustrates the requirement for a more flexible notion (conservativity) when using
calculus rules in an implicit function (or inverse function) context.

The Lipschitz definable implicit and inverse function theorems. In the definable (e.g. semial-
gebraic case) our results have a remarkably simple expression that we give below.

Theorem 4 (Lipschitz definable inverse function theorem) Let U and V be two open neighbor-
hoods of 0 in Rn and Φ : U → V a locally Lipschitz definable mapping with Φ(0) = 0. Assume that
Φ has a conservative Jacobian JΦ such that JΦ(0) contains only invertible matrices. Then, locally, Φ
has locally Lipschitz definable inverse Ψ with a conservative Jacobian given by

JΨ(y) =
{
A−1 : A ∈ JΦ(Ψ(y))

}
.

Proof: It suffices to use the fact that definable mappings are path differentiable, see [14], and that the
the graph of Ψ is given by a first-order formula. �

The same type of arguments gives:

Theorem 5 (Lipschitz definable implicit function theorem) Let F : Rn × Rm → Rm be locally
Lipchitz and definable with conservative Jacobian JF . Let (x̂, ŷ) ∈ Rn×Rm be such that F (x̂, ŷ) =
0. Assume that JF (x̂, ŷ) is convex and that, for each [A B] ∈ JF (x̂, ŷ), the matrix B is invertible.
Then, there exists an open neighborhood U×V ⊂ Rn×Rm of (x̂, ŷ) and a locally Lipschitz definable
function G : U → V such that, for all x ∈ U ,

F (x,G(x)) = 0.

Moreover, for each x ∈ U , the mapping JG : x⇒
{
−B−1A : [A B] ∈ JF (x,G(x))

}
is conservative

for G.
2Each piece having two half lines in common with other pieces.

20



C Results from Section 3

C.1 Monotone operator deep equilibrium networks

Proposition 3 (Path differentiation through monotone layers) Assume that Jσ is convex-valued
and that, for all J ∈ Jσ(Wz(W, b) + b), the matrix (Idm − JW ) is invertible. Consider a loss-like
function ` : Rm → R with conservative gradient D` : Rm ⇒ Rm, then g : (W, z) 7→ `(z(W, b)) is
path differentiable and has a conservative gradient Dg defined through

Dg : (W, b) ⇒
{
JT (Idm − JW )−T vzT , JT (Idm − JW )−T v) : J ∈ Jσ(Wz + b), v ∈ D`(z)

}
.

Proof: The quantity z(W, b) is defined implicitly by the relation
z(W, b)− σ(Wz(W, b) + b) = 0. (18)

We set M = m+m+m×m and represent the pair (W, b) ∈ Rm×m × Rm as (w1, . . . , wm, b) ∈
RM−m where wi ∈ Rm is the i-th row of W for i ∈ {1, . . . ,m}. We denote by B : RM → Rm the
bilinear map defined as

B(w1, . . . , wm, b, z) := Wz + b

so that B is infinitely differentiable. Equation (18) is then equivalent to
z − (σ ◦ B)(w1, . . . , wm, b, z) = 0.

We denote by F the mapping
F : (w1, . . . , wm, b, z) 7→ z − (σ ◦ B)(w1, . . . , wm, b, z).

For i ∈ {1 . . .m}, denote by Zi ∈ Rm×m the matrix whose i-th row is z, and remaining rows are
null. The Jacobian of B, JacB : RM → Rm×M is as follows:

JacB(w1, . . . , wm, b, z) = [Z1 . . . Zm Idm W ]

where [AB] is used to denote the columnwise concatenation of matrices A and B. By hypothesis, we
have a conservative Jacobian for σ, Jσ . Conservative Jacobians may be composed as usual Jacobians
[14, Lemma 5]. As B is continuously differentiable, JacB is also a conservative Jacobian for B.
Therefore, we have the following conservative Jacobian for F ,
JF (w1, . . . , wm, b, z) ⇒ {[−JZ1 . . . − JZm − J Idm − JW ] , J ∈ Jσ(Wz + b)} .

Finally, by hypothesis, for any W, b, and z such that F (W, b, z) = 0 and any J ∈ Jσ(Wz + b), the
matrix Idm−JW is invertible. Therefore, Theorem 2 applies and, setting M̃ = m×m+m = M−m,
the set-valued mapping

Jz : RM̃ ⇒ Rm×M̃

(w1, . . . , wm, b) ⇒
{

(Idm − JW )−1J [Z1 . . . Zm Idm] , J ∈ Jσ(Wz + b)
}

is conservative for (W, b) 7→ z(W, b) as defined in (18). We denote by Z ∈ Rm×M̃ the matrix
[Z1 . . . Zm Idm] appearing in the definition of Jz . Given the loss function `, the mapping J` : z 7→
{vT , v ∈ D`(z)} is a conservative Jacobian for ` [14, Lemma 3] and therefore, the set-valued
mapping

Jg : RM̃ ⇒ R1×M̃

(w1, . . . , wm, b) ⇒
{
vT (Idm − JW )−1JZ, J ∈ Jσ(Wz + b), v ∈ D`(z(W, b))

}
is a conservative Jacobian for g : (W, b) 7→ `(z(W, b)). Using [14, Lemma 4], we obtain a conserva-
tive gradient field for g by a simple transposition as follows

Dg : (w1, . . . , wm, b) ⇒
{
ZTJT (Idm − JW )−T v, J ∈ Jσ(Wz + b), v ∈ D`(z(W, b))

}
.

We now identify the terms by block computation; recall that Z = [Z1 . . . Zm Idm] and that Zi ∈
Rm×m is the matrix whose i-th row is z with remaining rows null for each i ∈ {1, . . . ,m}. The term
associated to b corresponds to the lastm×m block in Z, it is indeed of the form JT (Idm−JW )−T v.
Similarly, for each i ∈ {1, . . . ,m}, the term associated to wi is of the form ZTi J

T (Idm − JW )−T v.
For any a ∈ Rm and i ∈ {1, . . . ,m}, we have ZTi a = aiz where ai is the i-th coordinate of a
and z corresponds to the i-th row of ZTi . So the component associated to wi in Dg is of the form
[JT (Idm − JW )−T v]iz, where [·]i denotes the i-th coordinate. Since wi denotes the i-th row of W ,
rearranging this expression in matrix format provides a term of the form JT (Idm − JW )−T vzT for
the W component. This concludes the proof. �
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C.2 Optimization layers: the conic program case

Let us first expand on the link between zeros of the residual map and KKT solutions. We provide
a simplified view of [17, 3], ignoring cases of infeasibility and unboundedness. Note that this
corresponds to enforcing w = 1 as done in [2, 3].

The following is due to Moreau [44]. Recall that the polar of a closed convex cone K ⊂ Rm is
given by K◦ =

{
x ∈ Rm, yTx ≤ 0, ∀y ∈ K

}
, in which case (K◦)◦ = K and the dual cone satisfies

K∗ = −K◦.

Proposition 6 Let s, y, v ∈ Rm; the following are equivalent

• v = s+ y, s ∈ K, y ∈ K◦, sT y = 0.

• s = PK(v), y = PK◦(v).

We may reformulate this equivalence as follows, using changes of signs on y and v, noticing that
−PK◦(−·) = PK∗(·) since K∗ = −K◦,

(i) v = y − s, s ∈ K, y ∈ K∗, sT y = 0.
(ii) s = PK∗(v)− v, y = PK∗(v).

Now the KKT system in (x, y, s) for problem (P) and (D) can be written as follows (see, for example,
[17]),

AT y + c = 0, y ∈ K∗

−Ax+ b = s, s ∈ K
sT y = 0

which is equivalent, by setting v = y − s and u = x, to

ATPK∗(v) + c = 0

−Au+ b = PK∗(v)− v
(19)

The system (19) is equivalent to N (z,A, b, c) = 0 with z = (u, v). We have shown that (x, y, s)
is a KKT solution to the system if and only if (x, y, s) = (u, PK∗(v), PK∗(v) − v) = φ(z) for
z = (x, y − s) such that N (z,A, b, c) = 0.

Proposition 4 (Path differentiation through cone programming layers) Assume that PK∗ , N
are path differentiable, denote respectively by JPK∗ , JN corresponding convex-valued conservative
Jacobians. Assume that for all A, b, c ∈ Rm×n×Rm×Rn, z = ν(A, b, c) ∈ Rn×Rm is the unique
solution toN (z,A, b, c) = 0, and that all matrices formed from the N first columns of JN (z,A, b, c)
are invertible. Then, φ, ν, and sol are path differentiable functions with conservative Jacobians:

Jν(A, b, c) :=
{
−U−1V : [U V ] ∈ JN (ν(A, b, c), A, b, c)

}
,

Jφ(z) :=

[
Idn 0
0 JPK∗ (v)
0 (JPK∗ (v)− Idm)

]
,

Jsol(A, b, c) := Jφ(ν(A, b, c))Jν(A, b, c).

Proof: First, the assumptions clearly ensure that ν and sol are single-valued and can be interpreted as
functions such that sol = φ ◦ ν. By assumption, φ is differentiable. We will first use Corollary 1 to
obtain a conservative Jacobian for ν and then justify the expression for φ. The composition obtained
for Jsol results from Proposition 2.

LetA, b, c ∈ Rm×n×Rm×Rn, z := (u, v) ∈ Rn×Rm such thatN (z,A, b, c) = 0. By assumption,
the submatrices formed from the first N columns of JN (z,A, b, c) are invertible. Then applying
Corollary 1, there exist open neighborhoods U ⊂ Rm×n × Rm × Rn and V ⊂ RN and a locally
Lipschitz function G : U → V satisfying, for all s ∈ U N (G(s), s) = 0 with G is path differentiable.
Since, by assumption, the solution ν(A, b, c) toN (ν(A, b, c), A, b, c) = 0 is unique, ν coincides with
G on U . Thus, ν is path differentiable and a conservative Jacobian for ν is given by:

Jν(A, b, c) =
{
−U−1V : [U V ] ∈ JN (ν(A, b, c), A, b, c)

}
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Let us now turn to φ. Since PK∗ has for conservative Jacobian JPK∗ , we may construct a conservative
Jacobian for the function φ as follows using [14, Lemmas 3, 4, and 5]:

Jφ(z) =

[
Idn 0
0 JPK∗ (v)
0 (JPK∗ (v)− Idm)

]
.

It follows from Proposition 2 that the composition sol = φ ◦ ν is also path differentiable with
conservative Jacobian

Jsol(A, b, c) = Jφ(ν(A, b, c))Jν(A, b, c).

�

C.3 Hyperparameter selection for nonsmooth Lasso-type model

Proposition 5 (Conservative Jacobian for the solution mapping) For all λ ∈ R, assume XT
E XE

is invertible where XE is the submatrix of X formed by taking the columns indexed by E . Then β̂(λ)
is single-valued, path differentiable with conservative Jacobian, Jβ̂ (λ), given for all λ as{[
−eλ

(
Idp − diag (q)

(
Idp −XTX

))−1
diag (q) sign

(
β̂ −XT

(
Xβ̂ − y

))]
: q ∈M(λ)

}

whereM(λ) ⊂ Rp is the set of vectors q such that qi ∈


{1} i ∈ supp β̂

[0, 1] i ∈ E \ supp β̂

{0} i 6∈ E
.

Proof: Our goal is to apply Corollary 1 to the path differentiable “optimality gap” function F :
R× Rp → Rp defined in (3). For each λ ∈ R, the invertibility of XT

E XE guarantees the uniqueness
of β̂ (λ) (see [46], [42, Lemma 1]), i.e., β̂ : R → Rp is a function. Because ‖·‖1 is separable, the
components of the prox can be written, for any (λ, u) ∈ R× Rp, for all i ∈ {1, . . . , p}, as

[proxeλ‖·‖1 (u)]i = proxeλ|·| (ui)

which have Clarke subdifferentials

∂cproxeλ|·| : ui ⇒ 1ui,eλ ×
[

1
−sign(ui)

]
where 1eλ (ui) :=


0 |ui| < eλ

[0, 1] |ui| = eλ

1 |ui| > eλ
.

Thus a conservative Jacobian for F at (λ, β) is given by

JF : (λ, β) ⇒ {[eλdiag(q)sign(β −XT (Xβ − y))︸ ︷︷ ︸
A

Idp − diag(q)
(
Idp −XTX

)︸ ︷︷ ︸
B

] : q ∈ C}

(20)

with C := {q : qi ∈ 1eλ
(
βi −XT

i (Xβ − y)
)
}. Let us estimate the factors qi above in terms of

the equicorrelation set E . Recall the KKT conditions [54] for the Lasso problem; a solution β̂ must
satisfy

XT
(
y −Xβ̂

)
= eλδ where δi ∈

{{
sign

(
β̂i

)}
i ∈ supp β̂

[−1, 1] i 6∈ supp β̂
. (21)

For i ∈ supp β̂, (21) gives

XT
i

(
y −Xβ̂

)
= eλsign

(
β̂i

)
=⇒ sign

(
XT
i

(
y −Xβ̂

))
= sign

(
β̂i

)
=⇒ sign

(
β̂i

)
= sign

(
β̂i −XT

i

(
Xβ̂ − y

))
= sign

(
XT
i

(
y −Xβ̂

))
.
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Noting that
∣∣∣β̂i∣∣∣ > 0 and

∣∣∣XT
i

(
y −Xβ̂

)∣∣∣ = eλ since i ∈ supp β̂ ⊂ E ,∣∣∣β̂i −XT
i

(
Xβ̂ − y

)∣∣∣ = sign
(
β̂i −XT

i

(
Xβ̂ − y

))(
β̂i −XT

i

(
Xβ̂ − y

))
= sign

(
β̂i

)
β̂i + sign

(
XT
i

(
y −Xβ̂

))
XT
i

(
y −Xβ̂

)
=
∣∣∣β̂i∣∣∣︸︷︷︸
>0

+
∣∣∣XT

i

(
y −Xβ̂

)∣∣∣︸ ︷︷ ︸
=eλ

=⇒ qi = 1.

For i 6∈ E , β̂i = 0 since supp β̂ ⊂ E . By (21), we have
∣∣∣XT

i

(
y −Xβ̂

)∣∣∣ ≤ eλ. However, since
i 6∈ E , the inequality is strict ∣∣∣XT

i

(
y −Xβ̂

)∣∣∣ < eλ

and can be used to solve for qi∣∣∣β̂i −XT
i

(
Xβ̂ − y

)∣∣∣ =
∣∣∣XT

i

(
y −Xβ̂

)∣∣∣ < eλ =⇒ qi = 0.

Finally, for i ∈ E \ supp β̂, β̂i = 0 and
∣∣∣XT

i

(
Xβ̂ − y

)∣∣∣ = eλ which gives∣∣∣β̂i −XT
i

(
Xβ̂ − y

)∣∣∣ =
∣∣∣XT

i

(
Xβ̂ − y

)∣∣∣ = eλ

and thus qi ∈ [0, 1]. Putting everything together we get an expression for qi in terms of E and supp β̂

qi ∈


{1} i ∈ supp β̂

[0, 1] i ∈ E \ supp β̂

{0} i 6∈ E
, (22)

i.e., q ∈M. We proceed to show that B is invertible for all λ ∈ R. Denote Q := diag (q) for brevity;
using the same argument of [58, Theorem 2] involving similarity transformations and continuity, the
matrix B is invertible if and only if

B̃ := Idp −Q1/2
(
Idp −XTX

)
Q1/2 = Idp −Q+Q1/2XTXQ1/2

is invertible. Since B̃ � Idp −Q, it follows that ker
(
B̃
)
⊂ ker (Idp −Q), however ker (Idp −Q)

is a subspace of WE := span {ej : j ∈ E} corresponding to qj = 1. Since qj = 1 =⇒ j ∈ E
by (22), the restriction of B̃ to ker (Idp −Q) is a principal submatrix of (possibly equal to) XT

E XE
which is invertible by assumption. Thus B is invertible and applying Corollary 1 then yields the final
result. �

Remark 4 Taking qi = 1 for all i ∈ E gives a selection of the conservative Jacobian for β̂ in
Proposition 5, for all j ∈ {1, . . . , p},

[Jβ̂ (λ)]j = −eλ
[(
XT
E XE

)−1
sign

(
XT
E

(
y −Xβ̂

))]
j

if j ∈ E , and [Jβ̂ (λ)]j = 0 otherwise.

This corresponds to the directional derivative given by LARS algorithm [28], see also [42]. Alterna-
tively, taking qi = 0 for i 6∈ supp β̂ gives, for all j ∈ {1, . . . , p},

[Jβ̂(λ)]j = −eλ
[
(XT

supp β̂
X−1

supp β̂
)sign(XT

supp β̂
(y −Xβ̂))

]
j
, if j ∈ supp β̂

and [Jβ̂(λ)]j = 0 otherwise. This is the weak derivative given by [9]. Both of these expressions are

particular selections in Jβ̂ , which is the underlying conservative field. They agree if E = supp β̂,
which holds under qualification assumptions, see for example [10] and references therein.
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D Results from Section 4

Theorem 3 (Convergence result) Consider minimizing ` given in (8) using algorithm (10) under
Assumption 1. Assume furthermore the following

• Step size:
∑+∞
k=1 αk = +∞ and αk = o(1/ log(k)).

• Boundedness: there exists M > 0, and K ⊂ Rp open and bounded, such that, for all
s ∈ (smin, smax) and w0 ∈ cl K, ‖wk‖ ≤M almost surely.

For almost all w0 ∈ K and s ∈ (smin, smax), the objective value `(wk) converges and all accumula-
tion points w̄ of wk are Clarke-critical in the sense that 0 ∈ ∂c`(w̄).

Proof: We first show that if w0 is taken uniformly at random on K then, almost surely, all iterates
(wk)k∈N are random variables which are absolutely continuous with respect to the Lebesgue measure.
This is essentially a repeating of the arguments developed in [11] for constant step sizes. Assume
from now on that w0 is random, uniformly on K.

For i ∈ {1, . . . , N}, denoting by φ(·, i) : Rp → Rp the output of backpropagation applied to
`i = gi,L ◦ gi,L−1 ◦ . . . ◦ gi,1, we have that x 7→ φ(x, i) is a selection in the conservative Jacobian
(actually conservative gradient) Ji. Therefore, using [11, Proposition 1] the sequence (wk)k∈N is an
SGD sequence in the sense of [11, Definition 2].

Compositions of definable functions and functions implicitly defined based on definable functions
are definable. Therefore by Assumption 1, for each i ∈ {1, . . . , N}, `i is locally Lipschitz and
definable and thus so is `. Definable functions are twice differentiable almost everywhere so that [11,
Proposition 3] applies. Following the recursion argument in [11, Proposition 2], there exists a set
Γ ⊂ (0,∞) of full Lebesgue measure such that, if sαk ∈ Γ for all k ∈ N, each iterate (wk)k∈N is a
random variable which is absolutely continuous with respect to the Lebesgue measure. We have that

{s ∈ (smin, smax) : ∃k ∈ N, sαk ∈ (0,∞)\Γ} =

∞⋃
k=1

{s ∈ (smin, smax) : sαk ∈ (0,∞)\Γ}

is a countable union of null sets and thus a null set, i.e., for almost all s ∈ (smin, smax), for all k ∈ N,
sαk ∈ Γ. As a result, for almost all s, wk has a density with respect to the Lebesgue measure for all
k ∈ N.

Conservative gradients are gradients almost everywhere and so there is a full measure set S such that,
for all w ∈ S and all i ∈ {1, . . . , N}, Ji(w) = {∇`i(w)} [14, Theorem 1]. Combining this with the
fact that each element of the sequence is absolutely continuous with respect to the Lebesgue measure,
the same argument as in [11, Theorem 1] gives, for almost all s ∈ (smin, smax), for every k ∈ N,
almost surely

wk+1 = wk − sαk∇`Ik(wk)

and

E(wk+1|w0, . . . , wk) = wk − sαk∇`(wk) = wk − sαk∂c`(wk).

Therefore, the sequence is actually a Clarke stochastic subgradient sequence almost surely (see, for
example, [25]) and thus can be analyzed using the method developed in [8]. Indeed, conservativity
ensures that ` is a Lyapunov function for the differential inclusion ẇ ∈ −∂c`(w), that is decreasing
along solutions, strictly outside of crit` := {w ∈ Rp, 0 ∈ ∂c`(w)}. Since ` is definable, the set
of its critical values, `(crit`) is finite [13] and thus has empty interior. By [8, Theorem 3.6] and
[8, Proposition 3.27], it is then guaranteed that `(w̄) is constant for all accumulation points w̄ of
(wk)k∈N and that 0 ∈ ∂c`(w̄). This occurs almost surely with respect to the randomness induced by
w0 and (Ik)k∈N and therefore it is true with probability one for almost all w0. �
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E Results from Section 5

E.1 Cyclic gradient descent

E.1.1 Fixed-point formulation

Consider the optimization problem

(s1, s2) ∈ arg max
(a,b)∈[0,3]×[0,5]

(a+ b)(−3x+ y + 2). (23)

The optimality condition for this problem can be expressed using the fixed-point equation of the
projected gradient descent algorithm. Denote for x, y ∈ R2, qx,y : (a, b) 7→ (a+ b)(−3x+ y + 2);
we can verify (s1, s2) is solution to (11) if and only if it satisfies the equality

[
s1

s2

]
= PU

([
s1

s2

]
+∇qx,y(s1, s2)

)
= PU

([
s1

s2

]
+

[
−3x+ y + 2
−3x+ y + 2

])
.

Where PU is the projection on the set U := [0, 3]× [0, 5] which can be implemented as a difference
of relu functions

PU (x, y) = relu(x, y)− relu(x− 3, y − 5).

Let h : R2 × R× R→ R2 be the function

h : (s, x, y) 7→ PU

([
s1

s2

]
+

[
−3x+ y + 2
−3x+ y + 2

])
.

Then the original problem (23) is equivalent to the fixed point equation s = h(x, y, s). Indeed, we
can easily verify the solutions s : R2 → R2 to (23) are

s(x, y) =

{ {(0, 0)} if −3x+ y + 2 < 0
{(3, 5)} if −3x+ y + 2 > 0

[0, 3]× [0, 5] if −3x+ y + 2 = 0

which creates a discontinuity for the function `(·, s(·)), now expressed as

`(x, y, s(x, y)) =

{
x2 + 4y2 if −3x+ y + 2 < 0

(x− 3)2 + 4(y − 5)2 if −3x+ y + 2 > 0
.

E.1.2 Perturbed experiments

Perturbed experiments are done on the following perturbed loss function

`ε(x, y, s) =

(
1

4
+ ε1

)
(x− s1)2 + (1 + ε2)(y − s2)2

s ∈ sε(x, y) := arg max {(a+ b)(−(3 + ε3)x+ y + 2 + ε4) : a ∈ [0, 3− ε5], b ∈ [0, 5− ε6]}
with ε1, . . . , ε6 the perturbations. In Figure 2b, we consider several realizations of independent
Gaussian variables ε1, . . . , ε6 ∼ N (0, σ2) with σ2 = 0.05; despite this added noise, the unwanted
dynamics persist.

E.1.3 Conic canonicalization

Let c ∈ R2 be a parameter vector and consider the problem

max
x∈[0,3]×[0,5]

cTx.

It can be formulated as a cone program (P) and its dual (D):
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(P) inf cTx
subject to Ax+ s = b

s ∈ K
(D) inf bT y

subject to AT y + c = 0
y ∈ K∗,

(24)

where

A =

[
Id2

−Id2

]
and b =

3
5
0
0

 .
Let (x, y, s) be a solution to the cone program (24) where x is the primal variable, y is the dual
variable, and s the primal slack variable. Then it follows from (6) that a solution z to N (z, c) = 0
is obtained by z = (x, y − s). For c = (0, 0), the solutions are x ∈ [0, 3]× [0, 5], s = b−Ax, and
y = (0, 0, 0, 0), hence the uniqueness assumption for Proposition 4 is not satisfied.

E.1.4 A chaotic dynamics in R4

We combine two cycles of the previous example into a gradient dynamics in R4. To perform this, we
consider a block-separable sum of the same function where we add a scaling parameter η > 0:

g : (x, y, z, w) 7→ f(x, y) + ηf(z, w).

This will combine the two cycles but the parameter η will make one cycle “faster” than the other.
Projecting the path of the gradient descent on the variables (y, z) we obtain a chaotic dynamics filling
the space as the number of iterations increases.

(a) (b) (c)

Figure 5: Gradient path after (a) 500, (b) 1000 and (c) 5000 iterations.

E.2 Lorenz-like attractor

E.2.1 Objective function is a quadratic form

Set u = (x, y, z), then

uTF (u) = σx(y − x) + xy(ρ− z)− y2 + xyz − βz2

= −σx2 − y2 − βz2 + (σ + ρ)xy

=
1

2
uTHu

where H =

[−2σ σ + ρ 0
σ + ρ −2 0

0 0 −2β

]
.

For (σ, ρ, β) = (10, 28, 8
3 ), g has for unique critical point (0, 0, 0) which is a strict saddle-point.
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E.3 License of assets used

All assets used: cvxpy, cvxpylayers, and JAX were released under the Apache License, Version 2.0,
January 2004, http://www.apache.org/licenses/.
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