
Supplementary Material

A Proofs

The following section shows the proofs for Proposition (3.1), Proposition (3.2) and Inequalities (3).

A.1 Proof of Proposition 3.1

We recall the definition of the total variation distance when applied to distributions P , Q on a set
X ✓ Rd and the Scheffé’s identity, Lemma 2.1 in [30]:
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with respect to a base measure µ, where Bd denotes the class of all Borel sets on Rd.

Proof. First of all, we prove the equality for � = 1. Let us denote with A? ⌘ A(1) and A?c ⌘ Ac(1)
the optimal decision regions from (9). Let ✏0(A?) and ✏1(A?c) be the Type-I and Type-II errors,
respectively. Then,
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where the last identity follows by applying Scheffé’s identity (19). From the last identity in (20) and
any decision region A ✓ X , we have
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It remains to show the last statement related to the Bayesian error of the test. Assume that PE(1) =
PE(0) = 1/2. By using the last identity in (20), we have
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where the last identity follow by the definition of the decision regions in (9).
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A.2 Proof of Proposition 3.2

Proof. We begin by showing that
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where k · kTV denotes the Total Variation distance, KL(·k·) is the Kullback–Leibler divergence and
the last step is due to Pinsker’s inequality. On the other hand,
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where y? = argmaxy2Y PbY |X(y|x). By replacing expressions (24) and (25) in (23) we obtained the
desired inequalities, which concludes the proof.

A.3 Proof of Inequalities in (3)

Proof. The event can be decomposed as follows:
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which imply
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for all x 2 X , where the last inequalities follows by noticing that Pr(A \ B) � Pr(A)� Pr(Bc) for
arbitrary measurable sets A,B ⇢ X . This concludes the proof of these inequalities.

B Logistic Regression and Gaussian Model

Throughout this section we test DOCTOR in a controlled setting were all the involved distributions
are known. We refer to that setting as logistic regression and Gaussian model since we collect data
points from Gaussians distributions and we test on the logistic regression setup.

B.1 Theoretical analysis

Let X = Rd be the feature space and Y = {�1, 1} be the label space. We focus on a binary
classification task in which X ⇠ N (yµ,�2

I) and Y ⇠ U(Y), where µ 2 Rn is the mean vector,
�
2
> 0 is the variance and I is the identity matrix and U(Y) denotes the uniform distribution over

Y . For a fixed ✓ 2 Rd, consider f✓ : X ! Y s.t. f✓(x) = sign(sigmoid(xT✓)� 1/2). For a given
x 2 X , we adapt to the current setting the definition of E(x) in section 2 as follows:

1 [Y 6= f✓(x)] = 1


Y · sign

✓
sigmoid

�
xT✓

�
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�
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Let us denote by 1 [y 6= f✓(x)] the realization of the random variable E(x). We can compute the
probability of classification error Pe(x) in (1) w.r.t. the true class posterior probabilities:
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Following (10), the decision region corresponding to the most powerful discriminator for the logistic
regression and the Gaussian model are given by

A(�) =

(
x 2 X :

P
y2Y 1 [y 6= f✓(x)] · N (x, yµ,�2

I)
P

y2Y 1 [y = f✓(x)] · N (x, yµ,�2I)
> �

)
. (35)

We are now able to state the optimal discriminator for this setting.
Definition 3 (Optimal discriminator for the logistic regression and the Gaussian model). For any
0 < � < 1 and x 2 X , the optimal discriminator follows as:

D
?(x, �) =� 1

2

4
X

y2Y
1 [y 6= f✓(x)] · N (x, yµ,�2

I) > � ·
X

y2Y
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I)

3

5 .

(36)

Since we cannot analytically evaluate Proposition 3.1, we proceed numerically in the next experiment.
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B.2 Experiments

Table 3: Accuracy on the test set:
f✓i for i = 1, . . . , 8 represents the i-th
model in F , favg is the arithmetic mean of
the accuracy over each f✓i 2 F . The value
f
?
avg represents the accuracy Bayesian clas-

sifier averaged on the test set correspond-
ing to the 8 splits. We show results for
both standard deviations, namely � = 2
and � = 4.

CLASSIFIER ACCURACY%

� = 2 � = 4

f✓1 82 65
f✓2 83 77
f✓3 82 77
f✓4 82 76
f✓5 83 76
f✓6 81 66
f✓7 82 76
f✓8 83 83
favg 82 74
f?
avg 83 78

In this section, we will numerically evaluate Proposi-
tion 3.1 via empirical estimates of Type-I and Type-II
errors in expressions (5). Note that unlike section 4, in
this case all the involved distributions are known and
hence it is also possible to compute the true posterior
distribution PY |X .

We adopt the same notation as in section 3 for DOC-
TOR, i.e., D↵, and D� according to according to expres-
sions (14). D?, as in Definition 3, denotes the optimal
discriminator.

B.2.1 Experimental setup and evaluation metrics

Dataset. We create a synthetic dataset that consists
of 5000 data points drawn from N0 =� N (µ0,�

2
I)

and 5000 data points drawn from N1 =� N (µ1,�
2
I),

where µ0 = [�1 � 1], µ1 = [1 1]. We consider
two values for sigma, namely � = 2 and � = 4.
These values produce two different distributions which
will let us showcase the advantages of DOCTOR. To
each data point x is assigned as class 0 or 1 de-
pending on whether x ⇠ N0 or x ⇠ N1, respec-
tively. The aforementioned dataset is divided into
a training set, i.e. Dn = {(x1, y1), . . . , (xn, yn)} where n = 6700, and a testing set, i.e.
Tm = {(xn+1, yn+1), . . . , (xn+m, yn+m)} where m = 3300.

Training configuration. We use a linear classifier, with one hidden layer, sigmoid activation function
and binary cross entropy loss. The neural network is trained with gradient descent considering
learning rate r = 0.1. Specifically, we train our network for 5 epochs. We randomly split our
dataset 8 times, each time keeping n samples to train, and m to test. We consider the same model
architecture (described above) for each split and we come up with 8 different binary discriminators
F = {f✓1 , . . . , f✓8}. Since in this example all the involved distributions are known, we compute
the optimal predictor, i.e. the Bayes classifier, and we denote it with f

?. The value f
?
avg reported

in table 3, represents its accuracy averaged on the test set corresponding to the 8 splits.

Accuracy of trained networks. In table 3 the accuracy of f? and the models in F on the test set.

Evaluation metric. We consider the same metric as in section 4.2.

B.2.2 Numerical evaluation of Proposition 3.1

To evaluate Proposition 3.1 we proceed in a Monte Carlo fashion by computing Type-I and Type-II
errors for each of the network in F and then averaging over the results. Schematically, consider any
f✓i 2 F and � = 1, we compute:

1. Ai =
� Ai(1) as defined in eq. (35) and its complement Ac

i .

2. For each classifier f✓i 2 F , TE=1;✓i =� {(x, y) 2 Tm | y 6= f✓i(x)} represents the set
of mis-classified test samples, and TE=0;✓i =� {(x, y) 2 Tm | y = f✓i(x)} is the set of
correctly classified test samples.

3. FRi =� {(x, y) 2 TE=0;✓i : x 2 Ai}, T Ri =� {(x, y) 2 TE=1;✓i : x 2 Ai}, FAi =�

{(x, y) 2 TE=1;✓i : x 2 Ac
i} and T Ai =

� {(x, y) 2 TE=0;✓i : x 2 Ac
i}, i.e. the set of false

rejections, true rejections, false acceptances and true acceptance, respectively.

4. ✏0(Ai) =
� |FRi|

|TE=0;✓i
| and ✏1(Ac

i ) =
� |FAi|

|TE=1;✓i
| , i.e. Type-I and Type-II errors.
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At the end of |F| iterations, we empirically estimate Type-I and Type-II errors of Proposition 3.1 as
follows

✏0(A) ⇡ 1

|F|

|F|X

i=1

✏0(Ai) = 0.0607 and ✏1(Ac) ⇡ 1

|F|

|F|X

i=1

✏1(Ac
i ) = 0.7389.

B.2.3 FRR versus TRR

We present the experimental results obtained by running experiments similar to those described
in section 4 considering the experimental setup in B.2.1 in TBB. In addition to the usual discriminators,
we are going to consider the optimal discriminator D?, as in Definition 3.

DOCTOR: comparison between D
?, D↵ and D� . Let us present the result obtained with DOCTOR

showing how D
? (36) works compared to D↵ and D� in (14) when they have to decide whether to

trust or not the decision made by a classifier. We test the discriminators on the dataset constructed
as in B.2.1 by considering � = 2. Let us analyze fig. 3a: we apply each discriminator to all the
classifiers in F . The obtained ROCs are represented by the colored areas. Inside each area the mean
ROC is represented by the thick line. D↵ and D� reach same results as the colored areas and the
thick lines are overlapped. For a given x 2 X , we recall that D? uses Pe(x) (1) whilst D↵ and D�

uses 1 � bg(x) (11) and bPe(x) (2), respectively. D? always outperforms both D↵ and D� since it
relies on the probability of classification error based on PY |X while D↵ and D� use PbY |X .

(a) � = 2 (b) � = 2 (c) � = 4

Figure 3: ROC curves for D?, D↵ and D� , respectively. We denote by SR? the softmax response
method based on PY |X . Since in this case T = 1 and ✏ = 0, SR ⌘ ODIN as well as SR? ⌘ ODIN?.
(a) We apply each discriminator to all the classifiers in F . The obtained ROCs are represented by
the colored areas. Inside each area the mean ROC is represented by the thick line. Orange and red
areas completely overlap as well as the mean ROC. D? always outperforms both D↵ and D� as
expected. In (b) D? and SR? overlap (as also D↵ and SR), instead in (c) where � = 4 and hence the
distribution is smoother, SR discards useful information and indeed both D

? and D↵ outperform SR.

Comparison between D
?, D↵, ODIN and SR. We conclude this section by investigating how our

competitors, namely ODIN and SR, work in this setting.

From now on, we will put ODIN ⌘ SR to mean that the two methods coincide (remember we set
T = 1 and ✏ = 0 for all the simulations). We show the results of the comparison in fig. 3: fig. 3b
considers data points from N (yµ, 22I) whilst fig. 3c consider data points from N (yµ, 42I). If
in fig. 3b we cannot see an advantage in using D↵ in place of SR, the situation is totally different

Table 4: AUROCs: the values for D↵, D� , SR, and ODIN
correspond to the results for the thick lines in fig. 3. D

? and
ODIN? ⌘ SR? are obtained using PY |X .

AUROC %

� D? D↵ D� SR ⌘ ODIN SR? ⌘ ODIN?

2 76 70 70 70 76

4 79 78 78 70 76

in fig. 3c, where D
? and D↵

clearly outperform the competi-
tors. We would like to recall that
DOCTOR uses all the softmax out-
put while SR only uses the maxi-
mum value of the softmax output.
Therefore, when the underlying
distribution pXY is more smooth
like in fig. 3c, SR discards useful
information. As result, not only
D

? outperforms SR? but even
D↵ does the same. This is more
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Table 5: AUROCs and FRR at 95% TRR obtained via D↵, D� , ODIN, SR and MHLNB for
CIFAR10 considering different size for �D↵ or D� , �ODIN or SR and ZMHLNB in both TBB and PBB.
The column INTERVAL SIZE represents the number of equidistant values considered in the sets
defined in (37), (38), (39), (40) and in (41), respectively.

INTERVAL
SIZE METHOD

TBB PBB

AUROC FRR AUROC FRR
(95 % TRR) (95 % TRR)

10

D↵ 69.8 91.6 77.4 88.4
D� 50 69.7 79.8 86.2

ODIN 75.7 89.3 81.4 85.4
SR 75.7 89.3 - -

MHLNB 76.6 88.8 83.2 47.1

100

D↵ 85.1 80.6 92.5 42.6
D� 61.8 63.4 94.1 13.8

ODIN 88 73.5 91.5 49.9
SR 88 73.5 - -

MHLNB 88.3 72.6 84.4 44.6

INTERVAL
SIZE METHOD

TBB PBB

AUROC FRR AUROC FRR
(95 % TRR) (95 % TRR)

1000

D↵ 91.3 53.1 94.7 13.8
D� 66.5 48.3 94.8 13.4

ODIN 92.5 28.9 94 18.3
SR 92.5 28.9 - -

MHLNB 92.2 35.3 84.4 44.5

10000

D↵ 93.7 18.4 95.2 13.9
D� 68.5 18.6 94.8 13.4

ODIN 93.9 18 94.2 18.4
SR 93.9 18 - -

MHLNB 92.1 31 84.4 44.6

evident if we look to table 3, where for � = 4 we notice an improvement in terms of AUROC from
70% to 78% when passing from SR to D↵.

C Supplementary Results of Section 4

C.1 Experimental environment

We run each experiment on a machine equipped with an Intel(R) Xeon(R) CPU E5-2623 v4, 2.60GHz
clock frequency, and a GeForce GTX 1080 Ti GPU. The execution time for the execution the tests
are the following (interval size 10000):

TBB. D↵: 12.5 s. D� : 13.6 s. SR: 15.9 s. MHLNB: 15.9 s.
PBB: D↵: 13 s. D� : 25.7 s. ODIN: 14.7 s. MHLNB: 32.22 s.

C.2 On the input pre-processing in DOCTOR

In the following we further study DOCTOR-specific input pre-processing techniques allowed under
PBB. We focus on D� since for D↵ the reasoning is the same. Formally, let x0 2 X be a testing
sample. We are looking for the minimum way to perturb the input such that the discriminator value at
x0 is increased:

r
⇤ = min

r s.t. krk1✏
� log

 
bPe(x0 + r)

1� bPe(x0 + r)

!
,

or equivalently, we are looking to the sample ex�
0 in the ✏-ball around x0 which maximize the

discriminator value at ex�
0 :

ex�
0 = x0 � ✏⇥ sign

"
�rx0 log

 
bPe(x0)

1� bPe(x0)

!#
.

Note that, because of eq. (1)

� log

 
bPe(x0)

1� bPe(x0)

!
=� log

 
1� PbY |X(fDn(x0)|x0)

PbY |X(fDn(x0)|x0)

!

=� log(1� PbY |X(fDn(x0)|x0)) + log(PbY |X(fDn(x0)|x0))

=� log(1� PbY |X(fDn(x0)|x0))� log SODIN(x0).

C.3 On the effect the intervals considered for �, � and ⇣ have on the AUROC computation

Let us consider the AUROC as a performance measure for the discriminators. The computation of
the AUROC of D↵, as well as those of ODIN and SR, heavily depend on the choice of the range
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values for the decision region thresholds. In the following paragraph, we will discuss how we chose
these ranges, namely � 2 �D↵ or D� ✓ R, � 2 �ODIN or SR ✓ [0, 1] and ⇣ 2 ZMHLNB ✓ R. In the
experiments of section 4, we therefore proceed by fixing the aforementioned ranges as follows:

�D↵ =�


min
(x,y)2Tm

1� bg(x)
bg(x) , max

(x,y)2Tm

1� bg(x)
bg(x)

�
, (37)

�D� =�
"

min
(x,y)2Tm

bPe(x)
1� bPe(x)

, max
(x,y)2Tm

bPe(x)
1� bPe(x)

#
, (38)

�ODIN =�


min
(x,y)2Tm

SODIN(x), max
(x,y)2Tm

SODIN(x)

�
, (39)

�SR =�


min
(x,y)2Tm

SR(x), max
(x,y)2Tm

SR(x)
�
, (40)

ZMHLNB =�


min
(x,y)2Tm

M(x), max
(x,y)2Tm

M(x)

�
. (41)

Secondly, we fix the number of values to consider in �D↵ or D� , �ODIN or SR and ZMHLNB: we test the
AUROCs for CIFAR10 for different values of the size of �D↵ or D� , �ODIN or SR and ZMHLNB in both
TBB and PBB scenarios. The results are collected in table 5. Let us denote by I a generic interval
between the ones of eq. (37), eq. (38), eq. (39), eq. (40) and eq. (41), throughout the experiments we
set the size of I to (max I �min I) ⇤ 10000.

(a) CIFAR10
✏ = 0.0003

(b) CIFAR10
T = 1

(c) CIFAR10
T = 2

(d) CIFAR100
✏ = 0.0003

(e) CIFAR100
T = 1

(f) CIFAR100
T = 1.5

(g) TinyImageNet
✏ = 0.0006

(h) TinyImageNet
T = 1

(i) TinyImageNet
T = 1.1

(j) SVHN
✏ = 0.001

(k) SVHN
T = 1

(l) SVHN
T = 1.2

Figure 4: Comparison of AUROCs obtained via D↵ (in green) and via D� (in orange) for different
values of T and ✏.

C.4 Additional plots and results

In the next sections, we show graphically the set of results obtained from the experi-
ments in section 4.3. We first specify the range of values for the parameters T and
✏ considered throughout the experiments. For temperature scaling, T is selected among
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{1, 1.1, 1.2, 1.3, 1.4, 1.5, 2, 2.5, 3, 100, 1000}, whilst for input pre-processing, ✏ is se-
lected among {0, .0002, .00025, .0003, .00035, .0004, .0006, .0008, .001, .0012, .0014, .0016,
.0018, .002, .0022, .0024, .0026, .0028, .003, .0032, .0034, .0036, .0038, .004}.

C.4.1 Comparison D↵ and D�

We include the plots for DOCTOR: comparison between D↵ and D� (section 4.3). In fig. 4a,
fig. 4d, fig. 4g and fig. 4j, we set ✏ at its best value which is found to coincide in the case of D↵ and
D� . In fig. 4b, fig. 4e, fig. 4h and fig. 4k we do the opposite and we set T to its best value w.r.t. D↵

whilst in fig. 4c, fig. 4f, fig. 4i and fig. 4l, the value of T is chosen w.r.t. the best value for D� .

C.4.2 Comparison D↵, D� , ODIN and MHLNB

We conclude by showing in fig. 5 the test results obtained by varying T and ✏ in PBB for all the
methods. We present 4 groups of plots (one for each image dataset) and in each plot we pick T from
{1, 1.3, 1.5, 1000} (the values selected for D↵, D� , ODIN and MHLNB table 1) and we let ✏ vary.

(a) CIFAR10
T = 1

(b) CIFAR10
T = 1.3

(c) CIFAR10
T = 1.5

(d) CIFAR10
T = 1000

(e) CIFAR100
T = 1

(f) CIFAR100
T = 1.3

(g) CIFAR100
T = 1.5

(h) CIFAR100
T = 1000

(i) TinyImageNet
T = 1

(j) TinyImageNet
T = 1.3

(k) TinyImageNet
T = 1.5

(l) TinyImageNet
T = 1000

(m) SVHN
T = 1

(n) SVHN
T = 1.3

(o) SVHN
T = 1.5

(p) SVHN
T = 1000

Figure 5: Overall results PBB overall datasets (by varying T and ✏)

C.4.3 Misclassification detection in presence of out-of-distribution samples

We include in table 6 the results of all the simulations carried out for detecting misclassification de-
tection in presence of out-of-distribution samples. The experimental setting is reported in section 4.2.
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C.5 DOCTOR for pure OOD detection

It is worth emphasizing that DOCTOR is not targeting OOD detection, which is a rather different
problem from the one investigated in this paper. So we did not optimize an ad-hoc input perturbation
for DOCTOR within the OOD detection setup, i.e. we kept the same input perturbation proposed
for the misclassification detection task. The baseline results reported in table 7 show that DOCTOR
is competitive for OOD detection as well since it can reach similar scores or even outperform the
baseline (e.g., the simulations with LSUN (CROP) show an improvement of the results of 3.3% in
terms of FRR %). We indicate the methods together with their parameter setting. ODINOOD denotes
the same parameter setting as in [23].

C.5.1 DOCTOR in presence of OOD samples that are similar to in-distribution ones

We tested DOCTOR in pure OOD setting, considering CIFAR100 as in-distribution and CIFAR10
as out-distribution. The results below show that DOCTOR optimized as in the following paper
outperforms ODIN (optimized as described in [23]) and ENERGY. This is particularly promising as
it shows that DOCTOR, without performing any training and without been particularly optimized for
OOD detection, can perform well on a wider variety of problems.

C.6 Some observations on the white-box scenario (WB)

It is worth clarifying the results in Table 9 to motivate the performance obtained using the
Mahalanobis-based discriminator (MHLNB - WB) for the misclassification detection problem and
the issues it raises. First of all, we emphasize that given a network and an input sample DOCTOR only
needs to access the logits output of the network in order to perform the detection. On the contrary,
the detector based on Mahalanobis distance consists of 3 steps:

• Estimation of the class mean and covariance matrix;
• Features extraction according to the Mahalanobis score function;
• Aggregation of the scores obtained layer by layer in order to obtain a decision a rule for the

discriminator.

Clearly, the Mahalanobis distance-based method requires additional samples compared to DOCTOR.
Although estimating the mean and the covariance matrix is possible by exploiting samples from the
benchmark training set (e.g. CIFAR10, CIFAR100, ...), this method still needs additional (different
from training) samples for learning the linear regressor intended to distinguish between correctly
(positive) and incorrectly (negative) classified samples. In order to generate the negative samples,
we consider the use of adversarial examples generated through Projected Gradient Descent Attack
(magnitude of the perturbation 0.0031), which does not assume any knowledge about the test set.

22



Table 6: In PBB we set ✏↵ = 0.00035 and T↵ = 1, ✏� = 0.00035 and T� = 1.5, ✏ODIN = 0 and
TODIN = 1.3. By ODINood, we mean ODIN with the parameter setting as in [23]. Since we proceed
in a Monte Carlo fashion, the results are reported in terms of mean / standard deviation. In TBB for
by ODIN we report the results of SR, since both methods coincide when T = 1 and ✏ = 0.

DATASET
(IN)

DATASET
(OUT) SCENARIO

AUROC % FRR % (95 % TRR)
D↵ D� ODIN ODINOOD D↵ D� ODIN ODINOOD

CIFAR10
|

ISUN PBB 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 89.6 / 0 14 / 0.5 13.5 / 0.4 17.2 / 0.3 38.9 / 0
TBB 94.6 / 0 69.3 / 0.1 94.5 / 0.1 - 17.7 / 0.1 17.7 / 0.1 17.7 / 0 -

LSUN
(CROP)

PBB 95.5 / 0.1 95.1 / 0 94.7 / 0 92.6 / 0 13.1 / 0.5 13 / 0.2 17.3 / 0 31.9 / 0.1
TBB 94.4 / 0.1 69.2 / 0.1 94.4 / 0 - 17.6 / 0.2 17.6 / 0.2 17.7 / 0.2 -

LSUN
(RESIZE)

PBB 95.4 / 0.1 95.1 / 0 94.8 / 0 89.6 / 0 13.4 / 0.6 13.2 / 0.3 17 / 0.3 38.9 / 0
TBB 94.6 / 0.1 69.3 / 0.1 94.5 / 0.1 - 17.8 / 0.1 17.8 / 0.1 17.8 / 0.1 -

TINY
(CROP)

PBB 95.4 / 0 95.1 / 0.1 94.7 / 0 89.6 / 0 13.4 / 0.4 13 / 0.2 17.2 / 0.3 38.9 / 0
TBB 94.6 / 0 69.4 / 0.1 94.6 / 0 - 17.8 / 0.1 17.8 / 0.1 17.8 / 0.1 -

TINY (RES) PBB 95.2 / 0.1 94.9 / 0 94.6 / 0.1 89.6 / 0 14 / 0.4 14 / 0.5 17.8 / 0.4 38.9 / 0
TBB 94.4 / 0.1 69.2 / 0 94.4 / 0 - 17.8 / 0.1 17.8 / 0.1 17.8 / 0.1 -

CIFAR100
|

ISUN PBB 86.5 / 0.2 85.8 / 0 85.6 / 0.2 79 / 0.1 45.3 / 1 46.1 / 0.5 46.8 / 1 65.9 / 0.4
TBB 85.6 / 0.1 82.7 / 0.1 85.5 / 0.1 - 46.9 / 0.4 46.8 / 0.4 46.8 / 0.4 -

LSUN
(CROP)

PBB 89.1 / 0 88.5 / 0.1 88 / 0.1 80.6 / 0 35.6 / 0.4 35.7 / 0.2 39.9 / 0.3 65.1 / 0
TBB 87.9 / 0.1 84.9 / 0.1 87.7 / 0.1 - 39.8 / 0.6 39.8 / 0.6 39.8 / 0.6 -

LSUN
(RESIZE)

PBB 86.8 / 0.1 86.2 / 0.1 86 / 0.1 79.1 / 0.1 44.4 / 0.9 44.4 / 0.6 45.3 / 0.3 65.4 / 0.3
TBB 85.8 / 0.1 82.9 / 0.1 85.7 / 0.1 - 45.9 / 0.5 45.8 / 0.5 45.8 / 0.5 -

TINY
(CROP)

PBB 88.4 / 0.1 87.8 / 0.1 87.6 / 0.1 81.8 / 0.1 38.2 / 0.4 37.8 / 0.9 40.6 / 0.5 63.4 / 0.1
TBB 87.2 / 0.1 84.2 / 0.1 87 / 0.1 - 42 / 0.6 42 / 0.6 42 / 0.6 -

TINY (RES) PBB 86.8 / 0.1 86.3 / 0.1 85.9 / 0.1 79.2 / 0.1 44 / 0.1 43.6 / 0.2 45.9 / 1.2 65.8 / 0.3
TBB 85.9 / 0.2 83 / 0.2 85.8 / 0.2 85.8 / 0.2 45.7 / 1.3 45.7 / 1.3 45.7 / 1.3 -

CIFAR10
}

ISUN PBB 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 91.5 / 0 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 34/ 0.1
TBB 95 / 0 69.6 / 0 94.9 / 0.1 - 16.4 / 0.2 16.4 / 0.2 16.4 / 0.2 -

LSUN
(CROP)

PBB 95.8 / 0.1 95.5 / 0.1 95 / 0.1 93.9 / 0.1 12.4 / 0.2 12.6 / 0.1 16.1 / 0.4 24.8 / 0.1
TBB 94.8 / 0.1 69.6 / 0.1 94.8 / 0.1 - 16.7 / 0.4 16.8 / 0.4 16.6 / 0.4 -

LSUN
(RESIZE)

PBB 95.8 / 0 95.6 / 0 95.2 / 0 91.6 / 0 12.9 / 0.5 12.9 / 0.3 15.8 / 0.2 33.9 / 0
TBB 95 / 0 69.7 / 0.1 95 / 0.1 - 16.4 / 0.2 16.4 / 0.3 16.4 / 0.2 -

TINY
(CROP)

PBB 95.8 / 0.1 95.5 / 0.1 95.2 / 0.1 91.5 / 0 12.8 / 0.7 12.9 / 0.5 16 / 0 33.9 / 0
TBB 95 / 0.2 69.8 / 0.1 95 / 0.1 - 16.4 / 0.2 16.5 / 0.2 16.4 / 0.2 -

TINY (RES) PBB 95.4 / 0.1 95 / 0.1 94.8 / 0.1 91.4 / 0 15 / 0.1 14.8 / 0.7 17 / 0.5 34.5 / 0.9
TBB 94.6 / 0.2 69.3 / 0.2 94.6 / 0.2 - 18.1 / 1 18.1 / 1.1 18 / 1 -

CIFAR100
}

ISUN PBB 84.8 / 0.1 84.4 / 0.2 84.6 / 0.1 80.8 / 0.2 53.6 / 1 51.2 / 0.2 51.3 / 0.1 63.5 / 0.3
TBB 84.1 / 0.1 81.2 / 0.1 84 / 0.1 - 52.5 / 0.5 52.5 / 0.5 52.5 / 0.5 -

LSUN
(CROP)

PBB 89.9 / 0.1 89.6 / 0 89 / 0 84.1 / 0 35.2 / 0.7 35.4 / 0.2 39.3 / 0.1 62.2 / 0
TBB 88.7 / 0.1 85.7 / 0 88.5 / 0.1 - 38.8 / 0.5 38.8 / 0.5 38.8 / 0.4 -

LSUN
(RESIZE)

PBB 85.3 / 0.3 85.1 / 0.2 84.9 / 0.1 81.1 / 0 51.6 / 0.9 48.8 / 1 49.2 / 0.7 63.3 / 0.1
TBB 84.6 / 0.2 81.8 / 0.2 84.6 / 0.1 - 50.6 / 0.8 50.7 / 0.8 50.6 / 0.8 -

TINY
(CROP)

PBB 88.2 / 0 88.1 / 0.2 87.7 / 0.1 84.8 / 0.1 41.2 / 0.3 40.2 / 0.6 42.3 / 0.4 59/ 0.2
TBB 87.7 / 0.1 84.7 / 0.1 87.5 / 0.1 - 41.8 / 0.5 41.8 / 0.5 41.8 / 0.5 -

TINY (RES) PBB 85.4 / 0.2 84.8 / 0.2 85.1 / 0.3 81.2 / 0.1 51.8 / 1.6 52 / 0.8 50.4 / 0.9 63.3 / 0.2
TBB 84.8 / 0.1 81.9 / 0.1 84.7 / 0.1 - 51.4 / 0.5 51.4 / 0.5 51.4 / 0.5 -

CIFAR10
�

ISUN PBB 95.6 / 0.1 95.6 / 0 95.4 / 0 93.5 / 0 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 30.6 / 0.4
TBB 95.4 / 0.1 70 / 0.1 95.2 / 0.1 - 16.1 / 0.4 16 / 0.5 16 / 0.4 -

LSUN
(CROP)

PBB 96.1 / 0.1 95.9 / 0.1 95.5 / 0.2 95.2 / 0.1 12.6 / 0.5 12.4 / 0.3 15.3 / 0.7 20.8 / 0.4
TBB 95.2 / 0.1 70 / 0.1 95.2 / 0.1 - 15.8 / 0.7 15.8 / 0.7 15.7 / 0.7 -

LSUN
(RESIZE)

PBB 96 / 0 95.8 / 0 95.7 / 0 93.6 / 0 13.2 / 0.5 13 / 0.2 15.2 / 0.4 30.3 / 0.4
TBB 95.5 / 0.1 70.2 / 0.1 95.5/ 0.1 - 15.2 / 0.5 15.2 / 0.5 15.1 / 0.5 -

TINY
(CROP)

PBB 96 / 0.1 95.9 / 0.1 95.7 / 0 93.6 / 0 13.5 / 0.9 12.7 / 0.4 15.2 / 0.4 30.3 / 0.4
TBB 95.5 / 0.1 70.3 / 0 95.6 / 0 - 15.1 / 0.2 15 / 0.3 15 / 0.2 -

TINY (RES) PBB 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.2 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 31/ 0
TBB 94.9 / 0.1 69.7 / 0.1 94.9 / 0.1 - 16.8 / 0.3 16.9 / 0.2 16.7 / 0.2 -

CIFAR100
�

ISUN PBB 83.3 / 0.1 83.1 / 0.1 83 / 0.2 82.6 / 0.2 57.8 / 0.3 57.1 / 1 56.8 / 0.8 60/ 0.4
TBB 82.6 / 0.2 79.7 / 0.2 82.5 / 0.2 - 58.3 / 1 58.4 / 1.1 58.4 / 1 -

LSUN
(CROP)

PBB 90.6 / 0 90.7 / 0 89.9 / 0.1 87.5 / 0 35.9 / 0.2 34.6 / 0.2 38.5 / 0.4 56.1 / 0.2
TBB 89.4 / 0.1 86.2 / 0 89 / 0 - 39.4 / 0.1 39.4 / 0.1 39.4 / 0.1 -

LSUN
(RESIZE)

PBB 83.6 / 0.2 83.8 / 0.1 83.6 / 0.2 83.2 / 0.1 55.8 / 0.4 54.2 / 0.7 54.1 / 0.6 59.6 / 0.8
TBB 83.2 / 0.1 80.4 / 0.1 83.2 / 0.1 - 55 / 0.6 55 / 0.7 55 / 0.6 -

TINY
(CROP)

PBB 88.3 / 0.1 88.5 / 0.1 88.1 / 0.1 87.7 / 0.1 43.2 / 0.5 41.5 / 0.7 42.9 / 0.4 54.3 / 0.1
TBB 87.8 / 0 84.7 / 0.1 87.5 / 0.1 - 43.7 / 0.2 43.7 / 0.2 43.7 / 0.2 -

TINY (RES) PBB 83.8 / 0.1 83.8 / 0.1 83.9 / 0.2 83/ 0.2 57.9 / 0.5 56.6 / 0.9 55.6 / 1 61/ 0.6
TBB 83.6 / 0.1 80.7 / 0.1 83.5 / 0.1 - 55.5 / 0.8 55.5 / 0.8 55.5 / 0.8 -
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Table 7: DOCTOR for pure OOD detection. We set : ✏↵ = 0 and T↵ = 15, ✏� = 0 and T� = 1000, as
in [23] for ODINOOD. The baseline results reported below show that DOCTOR is competitive for
OOD detection as well since it can reach similar scores or even outperform the baseline.

DATASET-
IN

DATASET-
OUT

AUROC % FRR % (95 % TRR)
D↵ D� ODINOOD D↵ D� ODINOOD

CIFAR10

ISUN 98.1 97.9 98.8 8 9.1 6.3
TINY (RES) 97.6 97.3 98.5 9.9 11.2 7.2

LSUN (CROP) 98.6 98.2 98.2 5.4 6.9 8.7
TINY (CROP) 98.9 98.5 99.1 4.6 6.4 4.3

Table 8: Comparison of D↵ with ENERGY and ODIN (parameter setting as in [23]) when OOD
samples are similar to in-distribution samples.

DATASET-IN DATASET-OUT METHODS AUROC % FRR % (95 % TRR)

CIFAR100 CIFAR10
D↵ (PBB) 76.8 64.2
ENERGY 73.3 76.4

ODIN (OOD) 70.5 79.5

Table 9: Comparison of MHLNB (WB) and D↵ (PBB).

DATASET-IN METHODS AUROC % FRR % (95 % TRR)

CIFAR10
D↵ (PBB) 95.2 13.9

MHLNB (WB) 49.5 97.3

CIFAR100
D↵ (PBB) 88.2 35.7

MHLNB (WB) 51.6 94.9
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