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A Experimental Setup

A.1 Experimental Domain Details

Below we provide full details about the experimental domain we used in our experiments:

• Square Assembly: The goal is to pick up and place a square nut into the square peg. Dtarget
consists of 10 demonstrations. Dprior consists of two different types of data: 200 episodes of useful

demonstrations placing the nut into the goal peg, and 200 episodes of adversarial demonstrations
that place the nut into the wrong peg. Note that the initial phase of the adversarial data also
consists of useful motion for learning to pick up the nut. In our setup, the target task is in the
same environment as the adversarial data while the useful data has a different background. We
generated optimal demonstrations using scripted policies.

• LIBERO-Can: The goal is to pick up a can and place it into a basket. Corresponding task
description is "pick up the alphabet soup and place it in the basket" and the environment is LIV-
ING_ROOM_SCENE1 (from the LIBERO-90 suite). Dtarget consists of 10 human demonstrations
from the LIBERO benchmark, and Dprior consists of 18 selected tasks from LIBERO-90 and each
with 50 trajectories, resulting in a total of 900 trajectories. The list of task IDs in LIBERO-90 that
was selected to form the prior dataset is:
"LIVING_ROOM_SCENE1_pick_up_the_ketchup_and_put_it_in_the_basket"
"LIVING_ROOM_SCENE2_pick_up_the_butter_and_put_it_in_the_basket"
"LIVING_ROOM_SCENE2_pick_up_the_orange_juice_and_put_it_in_the_basket"
"LIVING_ROOM_SCENE2_pick_up_the_tomato_sauce_and_put_it_in_the_basket"
"LIVING_ROOM_SCENE2_pick_up_the_milk_and_put_it_in_the_basket"
"LIVING_ROOM_SCENE2_pick_up_the_alphabet_soup_and_put_it_in_the_basket"
"LIVING_ROOM_SCENE3_pick_up_the_alphabet_soup_and_put_it_in_the_tray"
"LIVING_ROOM_SCENE3_pick_up_the_butter_and_put_it_in_the_tray"
"LIVING_ROOM_SCENE4_stack_the_left_bowl_on_the_right_bowl_and_place_them_in_the_tray"
"LIVING_ROOM_SCENE6_put_the_chocolate_pudding_to_the_left_of_the_plate"
"KITCHEN_SCENE1_open_the_bottom_drawer_of_the_cabinet"
"KITCHEN_SCENE2_put_the_middle_black_bowl_on_the_plate"
"KITCHEN_SCENE3_turn_on_the_stove_and_put_the_frying_pan_on_it"
"KITCHEN_SCENE8_turn_off_the_stove"
"KITCHEN_SCENE10_close_the_top_drawer_of_the_cabinet"
"STUDY_SCENE1_pick_up_the_book_and_place_it_in_the_front_compartment_of_the_caddy"
"STUDY_SCENE2_pick_up_the_book_and_place_it_in_the_back_compartment_of_the_caddy"
"STUDY_SCENE3_pick_up_the_white_mug_and_place_it_to_the_right_of_the_caddy"

12



• Bridge-Pot and Bridge-Microwave: In Bridge-Pot the robot picks up a pot on the burner and
places into the sink. In Bridge-Microwave, the robot grasps the handle of the microwave door and
pulls it open. We leverage Bridge-V2 [7] as Dprior and collected Dtarget in our own setup with a
ViperX arm [36], which is similar to some environments in Bridge-V2 but does not exist in the
prior dataset. We use a ViperX arm [36] instead of the WidowX [37] as in Bridge-V2 dataset,
which introduces additional domain difference for transferring useful pattern in prior data. We
collected 10 demonstration for each of the target tasks using VR teleoperation and use a subset of
Bridge-V2 as prior data. The full list of environments in the prior dataset is:

datacol1_toykitchen1
datacol1_toykitchen6
datacol2_folding_table
datacol2_robot_desk
datacol2_toykitchen1
datacol2_toykitchen5
datacol2_toykitchen7
datacol2_toysink2
deepthought_robot_desk
deepthought_toykitchen1
deepthought_toykitchen2
minsky_folding_table_white_tray

• Franka-Pen-in-Cup: The goal is to pick up a marker and put it into a cup. Dtarget consists of 10
human demonstrations. We tested two instances of Dprior: 1) PnP: 105 trajectories of pick-and-
place tasks from the same robot that we collected ourselves through VR teleoperation, and 2)
Wild: 400 randomly sampled trajectories from the DROID [8] dataset (filtered to roughly match
the viewpoint in target task). Pen-in-Cup is a task that exists in DROID but the demonstrations
were collected in very different environments.

A.2 Implementation Details of Baseline Methods and Ablations

We have two sets of implementations of FLOWRETRIEVAL and baselines for our experiments: 1) for
experiments in simulation as well as the Franka-Pen-in-Cup task, we adapted the diffusion policy
implementation of Chi et al. [33]; we use the U-Net variant of diffusion policy and load pretrained
ImageNet weights for initializing the encoder network; 2) for Bridge-* tasks, we use the diffusion
model implementation provided by Walke et al. [7]3; we also load pretrained ImageNet weights for
the encoder of the policy.

For BR, we re-implemented the pretraining logic for the VAE and reused the hyperparameters as
documented in Du et al. [2]. For SR results in the paper, we re-implemented the pretraining logic
for the latent skill space with the provided hyperparameters in Nasiriany et al. [1]. We also ran our
simulation experiments using the full implementation of SAILOR provided by Nasiriany et al. [1],
but fail to obtain non-zero success rates. One potential reason is that the tasks we consider in our
experimental setup is relatively short, while SAILOR was designed for tackling long-horizon tasks
(4-6 steps per task), such that our experimental domains may require a completely different set of
hyperparameters than those used in the original work.

ProprioRetrieval is a method where we use proprioceptive data for computing similarity at the
retrieval stage. We also apply flow loss during policy learning, and therefore it can be considered
as an ablation of the retrieval space of FLOWRETRIEVAL. Specifically, we leverage end-effector
Cartesian position difference between st and st+k to represent motion. While it is desirable to match
the rotational motion as well, we find using the full end-effector Cartesian pose to compute similarity
requires tuning scaling factors for balancing positional state versus rotational state (orientation) and
not only does that require manual evaluations, but also existing datasets often use different conventions
for orientation and therefore introduces additional challenges for comparing proprioceptive states
across datasets directly. Hence in our implementation of ProprioRetrieval, we use only delta of the
position of the end effector to retrieve from prior data. The feature et for datapoint st is computed as:

et = (st, st+k[: 3]� st[: 3]) (7)

The similarity score is then computed as the negative `2 distance between feature vectors.

3https://github.com/rail-berkeley/bridge_data_v2
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Method SquareAssembly LIBERO-Can Bridge-Micro Bridge-Pot Pen-in-Cup
BC 7% 64% 56% 20% 23%

BC-Co 3% 16% 56% 32% 12%
FlowBC 7% 71% 48% 8% 40%

ProrioRetrieval- 44% 73% 24% 40% -
ProrioRetrieval 54% 81% 16% 12% 44%

FLOWRETRIEVAL 55% 90% 68% 64% 56%

Table 1: Success rates of baselines and ablations of FLOWRETRIEVAL.

A.3 Retrieval Threshold Selection

In FLOWRETRIEVAL, we retrieve the top �% from the prior data. However, the optimal threshold
can be different for different target task and prior dataset. Intuitively, if the similarity metric truly
ranks the prior datapoints by usefulness to target task, we want to retrieve just the right amount of
data that supports the learning of target task. Du et al. [2] observed a bell-shaped curve between
the relationship of retrieval threshold and policy performance. Due to constraints on computing
resources, we only sparsely searched over a small range of threshold values for 3 tasks (2 in sim, 1 in
real): Square Assembly, LIBERO-Can, and Bridge-Pot. In our experiments, we retrieve 35% from
prior data in Square Assebmly, 10% in LIBERO-Can, and 1% in Bridge tasks. We then reuse the
same threshold from bridge-Pot for the Bridge-Microwave task. For Franka Pen-in-Cup, we reuse the
threshold of found in the Square Assembly task.

B Additional Baselines and Ablation Results

B.1 Additional Baselines

We present the full evaluations of BC-Co and FlowBC in Table 1. BC-Co directly cotrains with
the entire prior dataset. FlowBC applies auxiliary flow loss to BC. We see that while each could
improve the performance from vanilla BC in certain domains, they can also hurt performance in
others, depending on the composition of prior dataset.

B.2 Using Proprioception for Retrieval

Low level motion features from proprioception are simple to compute and can be effective for
extracting similar actions from past experience. Therefore we ablate our retrieval method with using
propriceptive information, and denote this method as ProprioRetrieval. However, as proprioceptive
features are entirely agnostic to the visual observation and therefore may retrieve irrelevant data such
as those from very different viewpoints if the prior dataset has different viewpoints, e.g. OXE [13]
and DROID [8].

ProprioRetrieval still applies the auxiliary flow loss during policy learning. We additionally evaluate
a baseline version that does not use the flow loss as a comparison point, and use ProprioRetrieval- to
denote this baseline. The success rates of both proprioception-based methods are reported in Table 1.
We see that ProprioRetrieval can lead to high success rates when camera viewpoints are consistent
(e.g. in Square Assembly and LIBERO-Can), but does not retrieve enough useful data from Wild to
match the performance of FLOWRETRIEVAL in the Franka Pen-in-Cup task, and performs poorly in
the Bridge tasks that have a large variety of prior tasks. Note that the downstream policy learning
does not use the low-level action data to update the policy branck in the Franka Pen-in-Cup task
when retrieving from the Wild dataset, due to the large variation in camera viewpoints. However, we
still use the low level actions from the retrieved prior data of Bridge since the viewpoints are better
aligned, but may introduce additional multimodality in policy learning.
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C Retrieval Visualization

Figure 7: Visualization of paired retrieved data and query target datapoint by different methods in Square
Assembly and LIBERO-Can.

Fig. 7 shows additional queries and retrieved data by different retrieval method in the two simulated
tasks. BR and SR both encodes visual observations and low level actions in the latent space used for
retrieval. We see that BR often overly focuses on visual scene similarity, and motion similarity is
likely a second order feature (only effective if the visual scene is similar in the first place). Therefore
in all cases, it cannot ignore the effect of the environment (background) and end up retrieving
potentially adversarial data. SR can latch on either of the similarities, sometimes focusing on visual
scene (Sqaure Assembly), and sometimes retrieving based on action similarity (LIBERO-Can). In
contrast, FLOWRETRIEVAL consistently focuses on visual motion similarity.

Figure 8: Visualization of example data points retrieved by FLOWRETRIEVAL and ProprioRetrieval in Franka
Pen-in-Cup task.

Fig. 8 shows the example data points retrieved by FLOWRETRIEVAL and ProprioRetrieval in Franka
Pen-in-Cup task. When retrieving from the PnP dataset, FLOWRETRIEVAL focuses on the pick-
up and transfer stage of the target task, and does not retrieve the placing motions from the prior
dataset, effectively filtering adversarial prior data. When retrieving from the Wild dataset, we
see that FLOWRETRIEVAL retrieves viewpoints better aligned with that in the target task, while
ProprioRetrieval retrieves very different viewpoints (sometimes the robot is not even in the view –
see example in rightmost column, second from bottom). These data points are less informative for
the downstream learning of the target task but may still provide additional regularization on learning
a diverse set of visual features.

15



Figure 9: Illustration of two retrieval strategies. Depending on the distribution of target and prior data points,
top-% may retrieve data only close to certain part of the target trajectory while KNN would retrieve uniformly.

Figure 10: Visualization of the retrieved datapoints in Bridge tasks using two different strategies.

D Ablating Retrieval Strategies

D.1 KNN-based Retrieval Strategy

In our implementation of FLOWRETRIEVAL, we follow the practice of prior works and retrieve base
on a threshold of the similarity score, taking the top �% closest datapoints from prior dataset to
any point in target data. However, this does not augment the target task trajectory uniformly. As a
result, when there are pauses in the dataset (which is true in most human-demonstrated datasets if
not post-processed), we observe that the retrieved data contain a large portion of small motion data
where the robot arm barely moves (Fig. 10 left).

One intuitive way to solve this issue is to retrieve top-k data points for each state in the target task
data. See an illustration of the two different retrieval strategies in Fig. 9. We visualize samples
of the data retrieved by 10-NN in Bridge tasks in Fig. 10 (right) and see that it is able to retrieve
meaningfully similar data to target task. However, we find that, when retrieving similar amount of
total data as top 1%, this approach surprisingly does not lead to as performant policies as the existing
approach, achieving 40% in Square Assembly (-15%), 80% in LIBERO-Can (-10%), and 60% (-8%)
in Bridge-Microwave. One potential reason is that when we force each datapoint to have at least some
datapoints retrieved from prior data, we might end up retrieving dissimilar and potentially adversarial
data if the k is not carefully selected for each datapoint.

D.2 Retrieving with Pre-trained Representations

We evaluated retrieval in the Square Assembly task with pretrained visual representations to see if
off-the-shelf models could be leveraged to retrieve motion-similar data. Specifically we take the delta
between the features of st and st+k and use that to represent motion as proposed in prior work [38].
Fig. 11 shows the detailed analysis of data retrieved by Voltron [21], R3M [39], CLIP [40], and
Dino-v2 [41]. We see that in general these models focus on visual features more than the motion

Figure 11: Retrieval Analysis for pretrained visual representations.
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itself and retrieving with such embeddings cannot bypass adversarial data in this task, with motion
language-aligned models (Voltron and R3M) suffering the most.
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