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1 SOCIAL IMPACT

This work develops a federated learning treatment to enable the collaboration of the CASSI systems
with different hardware configurations. The proposed method will practically encourage the cross-
institution collaborations with emerging optical system designs engaged. By improving the robustness
of the pre-trained reconstruction software backend toward optical encoders, this work will help
expedite the efficient and widespread deployment of the deep models on sensors or platforms.

2 PERFORMANCE ON MORE CLIENTS

Table 1: Performance of FedAvg and FedHP under different number of clients.

#Clients FedAvg (McMahan et al., 2017) FedHP
PSNR SSIM PSNR SSIM

3 31.21±0.10 0.8959±0.0017 31.35±0.10 0.9033±0.0014

4 31.06±0.10 0.8955±0.0018 31.33±0.13 0.9023±0.0018

5 31.05±0.10 0.9025±0.0014 31.32±0.19 0.9029±0.0019

In this section, we discuss the effectiveness of the proposed FedHP on more clients (i.e., C = 4, 5).
Specifically, we adopt the same training dataset for different settings and evenly split it according
to the number of clients. As shown in Table 1, FedHP consistently outperforms the FedAvg, which
indicates that the proposed collaborative learning solution is more robuts to the number of clients.
Besides, we observe that FedHP remains a relative stable performance on different number of clients.
By comparison, FedAvg suffers from an obvious performance descent when C = 4, 5. Intuitively,
FedHP collaboratively learns a global prompter for a client-specific input data space adaptation,
which can effectively solve the distribution gap induced by different hardware instances. However,
FedAvg learns a shared backbone for different data distributions, which inevitably suffers from the
client drift. This issue will be strengthened when more clients participate in the learning. We leave
the exploitation of very large number of clients (e.g., C = 100) into the future works.

3 ALGORITHM

The learning procedure of proposed FedHP is provided in Algorithm 1. Let us take one global round
for example, the learning can be divided into four stages. (1) Initializing the global prompt network
from scratch and then distributing it to local clients. Then instantiating the client backbones with
the pre-trained models upon the local training dataset. The adaptors are also randomly initialized for
a better adaptation of the pre-trained backbones to the aligned input data representation. (2) Local
updating of the prompt network, during which all the other learnable parameters in the system are
kept fixed. (3) Local updating of the adaptors. Notably, the parameters of the adaptors is only updated
and maintained in local. (4) Global aggregation of the local prompt networks.
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Algorithm 1 FedHP Training Algorithm

Input: Number of global rounds T ; Number of clients C; Number of client subset C ′; Pre-trained
models θpc , c = 1, ..., C; Number of local update iterations Sp, Sb; Random initialized parameter
of prompt network ϕG; Random initialized parameter of adaptors of c-th client ϵc; Learning rate
αp of prompt network; Learning rate αb of adaptors;

Output: ϕG, ϵc, c = 1, ..., C;
1: Server Executes;
2: Randomly choose a set of clients of number C ′;
3: for t = 1, ..., T do
4: for c ∈ C ′ in parallel do
5: Send global prompt network ϕG to ϕc;
6: ϕc ← LocalTraining(θpc , ϵc, ϕc);
7: end for
8: ϕG ←

∑c=C′

c=1
|Dc|
|D| ϕc;

9: end for
10: return ϕG;
11: LocalTraining(θpc , ϵc, ϕc);
12: for s = 1, ..., Sp do
13: ϕc ← ϕc − αp∇ℓ(θpc , ϵc, ϕc) using ℓc =

1
N

∑N
i=1 ||f(θpc , ϵc;YMc

i +Φ(Mc))−Xi||22;
14: end for
15: for s = 1, ..., Sb do
16: ϵc ← ϵc − αb∇ℓ(θpc , ϵc, ϕc) using ℓc =

1
N

∑N
i=1 ||f(θpc , ϵc;YMc

i +Φ(Mc))−Xi||22;
17: end for
18: return ϕc to server;

4 VISUALIZATION RESULTS

In this section, we provide more visualization results of different methods. In Figs. 1∼2, we present
the reconstruction results of different methods under the scenario of hardware shaking, i.e.,
the data heterogeneity is naively induced from the different CASSI instances across clients. FedHP
enables more fine-grained details retrieval. Besides, we compare the spectral density curves on
selected representative spatial regions. The higher correlation to the reference, the better spetrum
consistency with the ground truth. In Figs. 3∼4, we show additional real reconstruction results of
FedAvg and FedHP on selected wavelengths. By comparison, FedAvg fails to reconstruct some
content, while the proposed FedHP allows a more granular result.

5 CODED APERTURE DISTRIBUTIONS

In Figs. 5∼7, we visualize the different distributions of coded apertures in distinct clients under
the scenario of the distribution shift of coded apertures among different clients leads to the data
heterogeneity among different local input dataset. This mimics a very challenging scenario where in
different clients (e.g., research institutions), the corresponding CASSI systems source from different
manufacturers. The proposed FedHP allows a potential collaboration among different institutions for
the hyperspectral data acquisition for the first time despite the large distribution gap. By comparison,
classic methods of FedProx (Li et al., 2020) or SCAFFOLD (Karimireddy et al., 2020) fail to provide
reasonable retrieval results.
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Figure 1: Reconstruction results on simulation data. The density curves compares the spectral
consistency of different methods to the ground truth. We use the same coded aperture for all methods.
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Figure 2: Reconstruction results on simulation data. The density curves compares the spectral
consistency of different methods to the ground truth. We use the same coded aperture for all methods.
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Figure 3: Visualization of reconstruction results on real data. Seven (out of 28) representative
wavelengths are selected. We use the same unseen coded aperture for both FedAvg and FedHP.
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Figure 4: Visualization of reconstruction results on real data. Seven (out of 28) representative
wavelengths are selected. We use the same unseen coded aperture for both FedAvg and FedHP.
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Figure 5: Distribution of Coded apertures in Client 1 (C = 3) under the scenario of
manufacturing discrepancy. The symmetrical logarithm scale is employed for a better
visualization.
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Figure 6: Distribution of Coded apertures in Client 2 (C = 3) under the scenario of
manufacturing discrepancy. The symmetrical logarithm scale is employed for a better
visualization.
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Figure 7: Distribution of Coded apertures in Client 3 (C = 3) under the scenario of
manufacturing discrepancy. The symmetrical logarithm scale is employed for a better
visualization.
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