Appendix
A Experiments

A.1 Complete Details of Experiment Setup

In this section, we provide a detailed experiment setup we have used. For completeness purposes, this
section also includes details already mentioned in the main paper.

Pre-trained models. We use 35 PTMs having diverse architectures, pre-training methods and pre-
training datasets. Group 1 consists of models with different architectures. This group consists of 12
different architectures (CNNs and ViTs) trained on ImageNet-1k. The architectures are as follows:
ResNet-50, ResNet-152 [30], ResNeXt-50 [82], DenseNet-169, DenseNet-201 [36], Inception v1 [72],
Inception v3 [73], MobileNet v2 [69], EfficientNet-B2, EfficientNet-B4 [74], Swin-T, Swin-B [50].
Group 2 consists of models pre-trained with different training methods. We use 10 ResNet-50s trained
via following pre-training methods: Adversarial Training [53], BYOL [28], MoCo-v2 [18], InsDis [81],
PIRL [54], DeepCluster-v2 [14], PCL-v2 [46], SeLa-v2 [4, 15], SWAV [15]. Group 3 consists of
models pre-trained on large-scale datasets. We used 13 different models trained on ImageNet-22k [67],
YFCC-100M [75], IG-1B-Targeted [84], WeblmageText [64]. A summary of the PTMs can be found
in Table 3.

Datasets. We use six OoD datasets for our experiments. The details of these datasets are listed
here. PACS [43] consists of 9,991 images from four domains (art, cartoons, photos, sketches) and
seven classes. VLCS [24] consists of 10,729 images from four domains (Caltech101, LabelMe,
SUNO09, VOC2007) and five classes. Office-Home [77] has four domains (art, clipart, product, real)
of common objects in office and home settings. The dataset has a total of 15,588 images belonging
to 65 classes. Terralncognita [10] contains photos of wild animals taken by camera traps installed at
four different locations. It has a total of 24,788 images from 10 classes. DomainNet [63] is one of the
most challenging OoD datasets. It has 586,575 images from six diverse domains (clipart, infographics,
painting, quickdraw, real, sketch) belonging to 345 classes. NICO [31] consists of nearly 25,000
images from two superclasses: NICO-Animals (10 classes) and NICO-Vehicles (9 classes). We split
the images of NICO-Animals and NICO-Vehicles into multiple domains according to [S] and combine
validation and test sets as one domain to form four domains, separately.

Ground-truth performance. To get ground-truth performance, we train linear classifiers on top of
PTMs following DomainBed [29]. The authors of DomainBed [29] argue for the hyper-parameter
selection to be a part of the method selection criteria. Based on this argument, they propose a rigorous
test bench. We follow their training and evaluation protocol, including dataset splits, hyper-parameter
settings, optimizer, etc. We adopt the leave-one-domain-out cross-validation setup in DomainBed with
10 experiments for hyper-parameter selection and run 3 trials. We triple the number of iterations for
DomainNet (5000 to 15000) as it is a larger dataset and requires more training [17] and decrease the
number of experiments for hyper-parameter selection from 10 to 5.

IID ranking methods. We divide existing ranking methods into two groups. The first group consists
of methods that employ PTM’s classification layer for ranking. These methods include NCE [76] and
LEEP [58]. The second group consists of approaches that only use PTM’s extracted features. These
methods include H-Score [8] and LogME [91]. Additionally, we also use kNN with k=200 [81] as a
baseline.

Evaluation metrics. To evaluate PTMs on OoD datasets with ranking methods, we follow leave-one-
domain-out validation protocol [43]. For ZooD and kNN, we further adopt leave-one-domain-out
validation for training domains and take average results as the performance prediction for the held-out
test domain. To compute the correlation between ranking scores and ground-truth performance, we
use two metrics. First, to compare the ranking of a transferability metric with accuracy, we employ
Kendall’s coefficient 7 [38]. Unlike Pearson’s correlation, 7 measures correlation based on the order of
two measures. Consequently, it is a better criterion for ranking. Second, to measure the performance of
transferability metric for top-model selection, we utilize weighted Kendall’s coefficient 7, [78]. The
Tw gives more weight to the ranking of top-performing models compared with the rest of the models.
Therefore, it is a better comparative criterion for top model selection.
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A.2 Extended Ranking Results

In this section, we provide detailed and raw results for all 35 models on all six OoD datasets. Specifically,
we provide raw scores assigned by all the ranking methods to all PTMs. We also provide accuracy of
each model after fine-tuning. A more interpretable and visual analysis of these scores are provided in
section 4.1 of the main paper.

We provide these raw scores here to help aid reproducability and to help other researchers for easier
benchmarking. It is important to note that getting these results, especially accuracy results, is computa-
tionally expensive, which may hinder future progress. For instance, on large DomainNet dataset, it
takes 711 GPU days of training to get all ground-truth performance. Therefore, providing these raw
scores can significantly help future researchers.

The results are provided in the following tables. Table 4 shows results on PACS and VLCS, Table 5
shows results on Office-Home and Terralncognita, Table 6 contains results on NICO-Animals and
NICO-Vehicles, and Table 7 contains results on DomainNet.

Table 3: Details of our model zoo. The first column corresponds to the numbers we have used for
subsequent tables. The rest of the table describes architectures, pre-training datasets, and pre-training
algorithms as well as the group and source of each model.

Number Architecture Dataset Algorithm Group Source

1 ResNet-50 ImageNet-1K ERM Group I  Paszkeetal. [61]

2 ResNet-152 ImageNet-1K ERM Group |  Paszkeetal. [61]

3 ResNeXt-50 ImageNet-1K ERM Group 1 Paszkeetal. [61]

4 DenseNet-169 ImageNet-1K ERM Group 1 Paszkeetal. [61]

5 DenseNet-201 ImageNet-1K ERM Group |  Paszkeetal. [61]

6 Inception v1 ImageNet-1K ERM Group I  Paszkeetal. [61]

7 Inception v3 ImageNet-1K ERM Group I Paszkeetal. [61]
8 MobileNet v2 ImageNet-1K ERM Group |  Paszkeetal. [61]

9 EfficientNet-B2  ImageNet-1K ERM Group 1| Paszkeetal. [61]
10 EfficientNet-B4  ImageNet-1K ERM Group | Paszkeetal. [61]
11 Swin-T ImageNet-1K Swin Group 1 Liuetal. [50]

12 Swin-B ImageNet-1K Swin Group 1 Liuetal. [50]

13 ResNet-50 ImageNet-1K Adyv. U5 (e=0.5) Group2  Salman etal. [68]
14 ResNet-50 ImageNet-1K Adv. £ (e=4) Group?2  Salman et al. [68]
15 ResNet-50 ImageNet-1K BYOL Group2 Ericssonetal. [23]
16 ResNet-50 ImageNet-1K MoCo-v2 Group2  Ericsson et al. [23]
17 ResNet-50 ImageNet-1K InsDis Group2  Ericssonetal. [23]
18 ResNet-50 ImageNet-1K PIRL Group2 Ericssonetal. [23]
19 ResNet-50 ImageNet-1K DeepCluster-v2 Group2  Ericsson et al. [23]
20 ResNet-50 ImageNet-1K PCL-v2 Group2 Ericssonetal. [23]
21 ResNet-50 ImageNet-1K SeLa-v2 Group2  Ericssonetal. [23]
22 ResNet-50 ImageNet-1K SWAV Group2 Ericssonetal. [23]
23 ResNet-18 ImageNet-1K + YFCC-100M Semi-supervised Group3  Yalnizetal. [84]
24 ResNet-50 ImageNet-1K + YFCC-100M Semi-supervised Group3  Yalnizetal. [84]
25 ResNeXt-50 ImageNet-1K + YFCC-100M Semi-supervised Group3  Yalnizetal. [84]
26 ResNeXt-101 ImageNet-1K + YFCC-100M Semi-supervised Group3  Yalnizetal. [84]
27 ResNet-18 ImageNet-1K + IG-1B-Targeted Semi-weakly Supervised Group3 Yalnizetal. [84]
28 ResNet-50 ImageNet-1K +IG-1B-Targeted ~ Semi-weakly Supervised Group3  Yalniz et al. [84]

29 ResNeXt-50 ImageNet-1K + 1G-1B-Targeted ~ Semi-weakly Supervised Group3  Yalnizetal. [84]
30 ResNeXt-101 ImageNet-1K + IG-1B-Targeted ~ Semi-weakly Supervised Group3  Yalnizetal. [84]

31 Swin-B ImageNet-1K +ImageNet-22K  Swin Group3 Liuetal. [50]

32 BEiT-B ImageNet-1K + ImageNet-22K  BEIiT Group3  Wolfetal. [79], Baoetal. [7]
33 ViT-B/16 ImageNet-1K + ImageNet-22K ~ ViT Group3 Wolfetal. [79], Wuetal. [80]
34 ResNet-50 WebImageText CLIP Group3 Radford et al. [64]

35 ViT-B/16 WeblImageText CLIP Group3 Radford etal. [64]
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Table 4: The ranking scores and fine-tuning accuracy on PACS and VLCS datasets. The numbering in
the first column corresponds to a pre-trained model from Table 3. The numbers in each subsequent
column represent the scores assigned by a ranking metric to the PTMs. The last column displays
the accuracy of each model after fine-tuning. Empty cells represent models for which ranking is not
feasible.

Model PACS VLCS
Number | LEEP NCE H-Score kNN LogME ZooD Acc. | LEEP NCE H-Score kNN LogME ZooD Acc.
1 -1.226 -1.077 5.016  49.608 0.226  0.053 66.9 [ -0.566 -0498 3241 58156 0223  0.119 76.7

-1.140  -1.007  5.072 54767 0.274  0.100 744 | -0.538 -0.494 3253 61215 0229 0.127 770
3 -1185  -1.022  5.010  50.737  0.231 0.064 656 | -0.552 -0499 3216 58540 0200 0.083 769
4 -1.156  -0.998  4.636 43284 0.186 -0.012 67.1 | -0.569 -0.514  3.013  56.056  0.181 0.063  76.8
5 -1.172 -1.039 4854 48.861  0.235 0.058 724 | -0.581 -0.517  3.076 57387  0.193 0.076  78.0
6 -1.392 -1.093 4356 48446  0.145  -0.025 653 | -0.745 -0.549 2811 58260  0.136  0.004 74.6
7 -1.082 -0.947 4795  37.655 0.164 -0.022 653 | -0.565 -0.543  3.130  44.151 0.144  0.018 739
8 -1209 -1.059 4614 39574 0.180 -0.002 65.0 | -0.579 -0.512 2922 59465 0.152  0.030 759
9 -1.239  -0.949 4857  46.069 0270  0.067 742 | -0.682 -0.505 3.002 58.049 0.131 -0.027 74.7
10 -0.993 -0.840 5.174 35581  0.353 0.117 753 | -0.556 -0.511 3.142 54788  0.175 0.041 744
11 -1.231 -1.004 4.624 30913 0272 0.076 682 | -0.637 -0.493 2935 34481 0.181 0.035 764
12 -1.154  -0.929 4850  30.591 0.303 0.064 693 | -0.601 -0.500  3.081 38.755 0.184  0.057 756
13 -1230 -1.054 5.124 52974 0284 0.076 702 | -0.584 -0.498 3200 60.767 0.199 0.073 76.6
14 -1226 -0978 5186  53.150  0.301 0.092 722 | -0.667 -0.530 3.083  63.175  0.145 0.005 749

15 5076  46.615 0298  0.110 742 3.208 55076 0200 0.081 756
16 4847 47360 0.198 -0.075 589 3260  60.138  0.247 0.141 698
17 4578  3L131  0.066 -0.319 409 3.109  56.697  0.138 0.012 656
18 4576  28.835 0.071 -0.309 384 3.150  55.033  0.162  0.043 642
19 5.024 36493 0256 -0.680 65.6 3.242 49445  0.223 0.108  76.3
20 4760 36451  0.151 -0.093 584 3.205 54922 0209 0.102 713
21 4.829 35495 0.187 -0.691 64.0 3.258 47359 0230 -0435 754
22 4946  34.103  0.231 0.034 629 3.253 52114 0.231 0.119  77.1
23 -1.169  -0.974 4225 48668 0.190 0.034 694 | -0561 -0.503 2832  57.624 0.214  0.107 77.1
24 -1.014  -0.908  5.181 57.411 0362  0.164 757 | -0.536 -0.503  3.340 58396 0313 0.208  78.6

25 -1.024  -0.881 5.151 55.490 0312 0.099 744 | -0.540 -0.500  3.312  62.857  0.268 0.173 778
26 -0.950  -0.841 5287  61.007 0369  0.156 784 | -0.533 -0.505  3.340  63.100  0.285 0.190 779
27 -1.034  -0.83¢ 4609 63988 0.302 0.159 834 | -0.558 -0.484 2828  58.549  0.211 0.105 770
28 -0.767 -0.630 5499 75592  0.578 0400 91.7 | -0.534 -0.495 3363  61.016  0.341 0238  79.1
29 -0.784 -0.612 5493 78550 0.531 0.358 89.0 | -0.539 -0.493 3347 62604 0302 0203 781
30 -0.671 -0.518  5.625 74917 0.646 0447 915 | -0.536  -0499  3.371 66276 0312 0211 787

31 -1.057 -0.740 5587 41936  0.527 0.263 854 | -0.675 -0499 3.163 39.618 0275 0.176 78.6
32 -1.819  -1.415 3424 26731 -0.106 -0.214 47.1 | -1.142 -0.794  2.048 52277 -0.028 -0.213 68.4
33 -1.271  -0.995  4.621  58.167 0.198  -0.060 66.1 | -0.601 -0.503  3.120  68.578 0.253  0.150 78.3
34 6.188 47724 0.075 -0.106 66.0 3.198 64808 0275 0.184 749
35 5546 84.858 0.869  0.653 96.0 3.143  67.367 0377 0312 795

B Model Ranking in ZooD

In this section, we present more details about the proposed ranking metric and algorithm.

B.1 Preliminaries: setup, problem and strategy
Suppose that:
¢ Model zoo. We have a collection of PTMs as learned feature extractors:

M={¢1(x),p2(x),....08(2),...},

where ¢, () is a d-dimensional feature extractor that maps X to R?.

» Dataset. A multi-domain dateset is collected for solving a domain generalization problem:
D={D1,Ds....;.Dp }, with Dy = { (w;,y:;),1 <j <n; },

where m is the number of observed domains and D; is the set of data points under the i-th
domain. The total sample sizeisn=>y_.n;.

* Problem. The objective is to select a PTM ¢ from M such that the optimal top classifier
f based on the selected feature extractor ¢, i.e. the whole predictor is f o ¢(x), has good
prediction performance on the domain generalization task.
To proceed further, we need more notations as folllows:

* For any domain i, we rewrite D; = {y;,x; } where

T n; _ T n; X
Vi= i1 YizseYin,) ER™, Xi=(Ti1.2iye Tin,) ER™TP.
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Table 5: The ranking scores and fine-tuning accuracy for Office-Home and Teralncognita datasets. The
numbering in the first column corresponds to a pre-trained model from Table 3. The numbers in each
subsequent column represent the scores assigned by a ranking metric to the PTMs. The last column
displays the accuracy of each model after fine-tuning. Empty cells represent models for which ranking
is not feasible.

Model Office-Home Terralncognita
Number | LEEP NCE H-Score kNN LogME ZooD Acc. | LEEP NCE H-Score kNN LogME ZooD Acc.
1 -1.540  -1.311  41.908 50.614 0985 0.075 67.7 [ -1.531 -1.286 5559 23477 0301 -0.722 31.0
-1.355  -1.198 43973 53499  1.029  0.120 70.6 | -1.501 -1.338 5592 29.018 0305 -0.721 35.2

3 -1.465 -1.263 41439 51501 0979  0.076  69.1 | -1.519 -1.290  5.491 23227 0292 -0.735 255
4 -1.457 -1.280 35.695 47.413  0.941 0.025 687 | -1.473 -1266 4.850 22977 0244 -0.815 239
5 -1.460 -1.271  37.727 48.186 0.952  0.036 69.1 | -1.573 -1.321 5119 22116 0251  -0.831 23.0
6 -2.243  -1.701  30.175 44.089 0.887 -0.015 59.0 | -1.636 -1.327 4432 24368 0.238 -0.881 17.7
7 -1.396  -1.327  40.696  53.520  0.977 0.083 662 | -1.440 -1286  5.097 24285 0250 -0.819 238
8 -1.713  -1.439 32911 45934 0902 -0.005 628 | -1.614 -1.373 4782 22793 0.264 -0.811 29.7
9 -1.628 -1.143  40.378 51252 1.022  0.106 722 | -1.610 -1.388  5.124 25737 0299 -0.740 328
10 -1.229 -1.082 45309 45939 1.094 0.176 73.6 | -1.523 -1.383 5517 25909 0319 -0.720 248
11 -1.528 -1.174  36.781 47.708 1.018  0.100 725 | -1.563 -1.393 4474 26624 0.272 -0.746 30.3
12 -1.320 -1.099 42,086 48265 1.070 0.139 759 | -1.545 -1.466 4984 25561 0.289 -0.720 309
13 -1.594 -1311 41423 48.194 0972  0.061 663 | -1.625 -1.315 6.101 25319 0348 -0.803 319
14 -1.825 -1.377  39.631 43415 0937 0.027 624 | -1.704 -1309 6.106 24481 0344 -0910 26.7

15 40498  37.124 0971  -0.022 60.6 5.542 24565 0307 -0.721 237
16 38633  32.130 0941 -0.102 41.6 5.601 26435 0308 -0.742 19.1
17 31.841 18.154  0.825 -0399 22.7 5.675 27931 0308 -1.067 16.0
18 32493 19.447  0.838  -0.366 24.4 5.711 30.123 0313 -0.777 184
19 39.876  30.521  0.956  -0.010 61.0 5.649  26.656 0322 -0.710 287
20 36.612 27949 0912  -0.100 44.1 5.486  23.898 0296 -0.775 16.1
21 38936  29.547 0950 -0.424 527 5.537  23.617 0303 -0.745 23.6
22 39.705 28988 0.954  -0.041 58.8 5.680  26.854 0.323  -0.994 232
23 -1.680 -1.400 26.787 45371 0.895 -0.028 623 | -1.560 -1.311 3.817 23495 0228 -0.846 265
24 -1.339  -1.194  44.073 49205 1.049  0.097 71.2 | -1.487 -1.322 5527 25801 0.309 -0.698 32.5
25 -1.294  -1.156  44.683  56.220  1.055 0.151 727 | -1.505 -1.335 5439 24983 0291 -0.718 27.7
26 -1.168  -1.081 46.671 60.344 1.106  0.199 74.8 | -1.487 -1.360 5510 26461 0302 -0.685 28.8
27 -1.502  -1.266  28.820 49.142  0.924  0.004 66.7 | -1.549 -1.291 3.761 23208 0223 -0.856 293
28 -1.152 -1.024  46.552  56.192 1.119  0.167 76.1 | -1.495 -1.354 5428  25.008 0.298 -0.739 36.0

29 -1L111 -0.979  47.382  61.253  1.133  0.230 78.0 | -1.515 -1.360 5342 26525 0277 -0.730 34.4
30 -0.971 -0.875 50223  67.685 1.226  0.312 81.0 | -1.449 -1.343 5478 28274 0298 -0.681 354

31 -1.252  -0.859 47.500 60.458 1.240  0.306 84.6 | -1.579 -1.392 4934 29336 0303 -0.669 37.3
32 -3.896 -2913 15908 9459  0.755 -0.178 319 | -1.828 -1.400 19.076 24408 0230 -0.939 26.2
33 -1.675  -1295  37.045 58928 1.027  0.107 71.8 | -1.548 -1.268 -0.153  26.017 0.247 -0.827 21.3
34 26.080 22301 0.828 -0.091 424 3.695 28290 0220 -0.868 18.8
35 36712 65.789  1.056  0.148 822 4.147 31467 0259 -0.749 40.0

* Given a feature extractor ¢, the learned feature matrix is denoted by

o, = (¢(l’i1),Qﬁ(l‘iz),...,qﬁ(xml ))T cR™ %,

* Forany i € [m], we denote ®_; andy _; as

T —n.
(YIV‘HY;F_MYLL“'»}’;) ER(n nl)?
(q;lT’...’q)Z_T_hq)iTH’...’q);)T cR(m—ni)xd

Y—i
d_,;

‘We can break the model selection problem down into two questions. 1). When generalizing to unknown
domains, are the learned features stable enough to avoid extrapolating predictions? 2). Are the learned
features informative enough to ensure that the correlation between features and labels is stable across
different domains? To answer these two questions, we compute the following two quantities:

e p(®;|®_;), which measures covariate shift between ®; and ® _;, indicating whether the
validation input is a rare sample compared with the training input;

o p(yi|®i,y—i,P_;), which measures the discriminability and correlation shift between ®; and
y; given the training data ®_, and y _;.

We thus propose a metric by assembling the above quantities for PTMs ranking:
log p(yi|®i,y—i:®—i) +Alog p(Ps[ ), (6)

where ) is a tuning parameter that unifies the scale of the correlation shift and the covariate shift. In our
implementation, the tuning parameter is taken to be the ratio of two standard deviations:

_ Std(log p(yi; | i,y —i,P—4))
Std(log p(¢(xi;)|®—i))

which is also used in Ye et al. [87].
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Table 6: The ranking scores and fine-tuning accuracy for NICO dataset. The numbering in the first
column corresponds to a pre-trained model from Table 3. The numbers in each subsequent column
represent the scores assigned by a ranking metric to the PTMs. The last column displays the accuracy
of each model after fine-tuning. Empty cells represent models for which ranking is not feasible.

Model NICO-Animal NICO-Vehicle

Number | LEEP  NCE  H-Score kNN  LogME ZooD Acc. | LEEP NCE H-Score kNN LogME ZooD Acc.
1 -0.501 -0.397 77767 86348 0.512 0510 91.0 | -0.699 -0.651 6.758  81.043 0.398  0.363 86.1
2 -0.419 -0.340 7975 88823 0.599 0.602 928 | -0.624 -0.598 6928 84266 0.467 0433 88.1
3 -0.455 -0.379 7789  87.400 0.527  0.525 92.0 | -0.670 -0.637  6.773 82466 0405 0376 86.7
4 -0.450 -0.376 7358  86.748 0466 0455 91.8 | -0.692 -0.661 6387  80.092 0370 0.329 86.4
5 -0479 -0375 7472 85773 0483 0471 92.0 | -0.720 -0.679  6.469  79.118  0.381 0340 86.6
6 -0.983 -0.629 6721 78237 0.343  0.326 83.7 | -1.109 -0.834 5718  72.119 0242 0206 79.2
7 -0.460 -0.450  7.748 84286 0.519  0.502 88.7 | -0.647 -0.660  6.659  77.803  0.371 0.336  83.6
8 -0.616 -0.508  6.810  81.108 0.326  0.318 86.6 | -0.792 -0.743 5959  76.653 0268 0233 825
9 -0.646  -0.345  7.814  79.292  0.600  0.583 92.1 | -0.823 -0.600 6.739  80.821  0.474 0427 88.0
10 -0.393 -0.318  8.089  82.033 0.693 0.664 924 | -0.578 -0.560 7.016  77.957 0.547 0493 88.0
11 -0.598 -0.309  7.797  80.542  0.681 0.656  93.5 | -0.742 -0.569  6.655 80318 0.526  0.477 89.1
12 -0.460 -0.277  8.201 80.414  0.811 0.798 95.1 | -0.644 -0.545 6963  78.615 0.593  0.545 90.3
13 -0.602  -0.468  7.551 82.090 0433 0428 88.0 [ -0.743 -0.65  6.685 78180 0374 0340 849
14 -0.921  -0.634  7.030  69.756  0.288  0.275 812 | -0.941 -0.731 6.407  71.239  0.283  0.247 80.7
15 7.546 71552 0438 0427 869 6.644 71200 0362 0326 829
16 7.679 73400  0.491 0.485  80.0 6.701 67.634 0376 0331 740
17 6.562  46.842 0.188  0.166 53.2 6.050  49.714  0.184  0.143 53.6
18 6.756 48977 0225 0207 554 6.184  52.048  0.221 0.176  56.0
19 7.652  68.655 0470 0462 893 6.743  69.965 0395 0354 83.8
20 7491 68446 0429 0419 8l.1 6.532  65.629 0323 0276 75.6
21 7.649  60.005 0458 -0970 84.2 6.681 62967 0370 -0.704 783
22 7.580  65.025 0445 0436 877 6.710  66.776 0385 0343 82.4
23 -0.482 -0391 6.713 84406 0404 0391 90.6 | -0.688 -0.633 5748 77967 0324 0284 859
24 -0.346  -0.278  8.081 89.122  0.666  0.656 943 | -0.593 -0.573  7.001 83.783  0.524 0479 89.9
25 -0.333  -0255 8266  88.655 0.754  0.757 95.1 | -0.563 -0.538  7.122  86.015 0.559 0519 90.1
26 -0.305 -0245 8383 89.750 0.832  0.831 959 | -0.524 -0.514 7.250 87.605 0.627  0.582 9I.1
27 -0.444  -0347 6793 81971 0425 0410 913 | -0.649 -0.602 5873 78.824 0350 0312 86.4
28 -0.283 -0211 8253 89394 0.772  0.762 95.8 | -0.527 -0.520  7.131 85509 0.594 0549 911
29 -0.287 -0.192 8424 93.119 0.872 0.871 96.7 | -0.515 -0490 7.250 88.538 0.632  0.590 91.6
30 -0.255  -0.164 8594  90.335  1.038 1.037 974 | -0478 -0.450  7.430 89.605 0.752  0.710 92.8
31 -0.521 -0.167 8407 84414 1.086 1.063 975 | -0.641 -0.439 7254 90010 0.824 0.774 945
32 -1.864  -1317 4772 35264  0.057  0.031 622 | -1.801 -1.282  4.525  41.243  0.044  0.007 64.4
33 -0.393  -0.224  8.673 93392  0.819  0.798 94.6 | -0.616 -0.511 6.808 89.564 0.589  0.534 90.4
34 7429  84.647 0472 0465 894 6.929  83.589 0.567 0539 923
35 8.240  95.664 0936 0932 975 7206 89.449 0832 0805 97.3

B.2 Model Assumption

Since the correlation between ¢(x) and response variables y may be non-linear, we need to make
further assumptions and approximations. Let each y be independently generated from a unknown
distribution: p(y|®, f). Assume this distribution is unimodal and the mode is denoted by y, we can
take Taylor expansion of log-likelihood at the mode

log p(ylé(x).f) ~log p(u|é(x).f) - 1(y—u)TA(:t/—u)

2
where A=—V,V logp(y|o(z),f) | _ . The above transformation is the Laplace approximation [51]

and the quadratic term implies the rationality of the Gaussian approximation. Similar to You et al. [91],
the top model over a learned feature extractor ¢ is approximated with a linear model:
y=w'o(x)+e, yeRweR ecR,

where € is Gaussian noise with variance 3~!. We assume the prior distribution of the weights w is a
zero-mean isotropic Gaussian distribution governed by a hyperparameter a:

w~N(0,a7'T;) or p(w;a)z(%)gexp<—%w—rw)

and the conditional distribution of the target variable y given ¢(z) is a Gaussian distribution:

Vo)~ 0,57 or plulote)wis) = (1) oxw( =5 (w7 o(0)?).

Recall the notations y;, ®;, y_; and ®_; in Appendix B.1. Then we have
Yi|(1)¢7WNN(‘I)iWHB_1]Ini) and y—i|(I)—i7WNN(<D—iW76_1]In—ni)-

In the next section, we present the details of estimating the two hyperparameters « and 5. Appendix B.4
shows how to compute the conditional density p(y;|®;,y—;,®_;) and p(P,;|®P_;) in the proposed
metric (6).
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Table 7: The ranking scores and fine-tuning accuracy for DomainNet dataset. The numbering in the
first column corresponds to a pre-trained model from Table 3. The numbers in each subsequent column
represent the scores assigned by a ranking metric to the PTMs. The last column displays the accuracy
of each model after fine-tuning. Empty cells represent models for which ranking is not feasible.

Model DomainNet
Number | LEEP  NCE H-Score kNN  LogME ZooD Acc.
1 -4.083 -3972 51.822 24387 1.590 1.229 31.1

-3.946 -3.808 58350 26.811  1.601 1.237 326
3 -4.033 -3.963 50.728 24933 1588  1.228 31.3
4 -3.984 -3943 45158 23998 1.566  1.204 322
5 -3.989 -3931 48.664 25178 1.569 1207 335
6 -4.646  -4287 31525 19208  1.560  1.211 242
7 -3.999 -3981 49943  23.852 1.588  1.238 30.3
8 -4.172  -4.059  32.807 21.075  1.561 1.208 279

9 -4.177 -3.833  47.122 25990 1.584 1.225 342
10 -3.768 -3.694 58.857 25956 1.603  1.250 34.7
11 -4.063 -3.829 46.212 24848 1586 1.231 353

12 -3.914 -3769 56918 26283 1.602 1.240 374
13 -4.127  -3.965  50.865 24.040  1.588 1.225 318
14 -4.252  -4.037 48.624 21554 1584 1.224 30.8

15 52.079 20.940 1.591 1.211  27.1
16 54303 17.481 1597  1.179 127
17 30.438  8.729 1556 1.113 4.1

18 33.129  9.266 1.560  1.117 45

19 47.827 17.507 1.584 1200 254
20 48.762  16.188  1.587 1.174 15.1
21 51.271  15.744  1.591 1.191 185
22 47734 16392 1583 1.203 23.1

23 -4.078 -3.992 28905 22296  1.558  1.198 29.7
24 -3.787 -3.7793  64.463 27.011 1.613 1233 383
25 -3.788 -3.743  64.207 28979 1.614 1250 35.7
26 -3.661 -3.685 70961 30.872 1.626  1.260 38.1
27 -3.841 -3.748 35255 27955 1.569  1.215 359
28 -3.426 -3.430 82151 35589  1.648  1.282 46.3
29 -3.413 -3.380 83.818 38.643  1.654  1.300 44.7
30 -3.229 -3.224 98.610 42285 1.687 1328 48.2
31 -3.646  -3.376  73.872 35363  1.635 1.277 4838
32 -5.639  -5.096 14.577  5.968 1536 1.178 10.6
33 -4.226  -3.908 50.099 27.670 1.593 1.232 34.1
34 43703 16.713  1.565 1.201 159
35 54259 49.147  1.601 1.259 56.2

B.3 Parameter Estimation

If we introduce a uniform prior distribution over « and 3, the posterior distribution for o and 3 is

p(a7ﬂ7yfi7q)7i)

p(a7B|Y*i7®7i): p(y—Lv(I)—L)

Ocp(a7ﬂ7y7i7q)7i) :p(yfi,q),ﬂ(l,ﬁ)p((l,ﬁ),
where the prior distribution p(«,3) is assumed to be a uniform distribution over v and 8. Then the
values of & and /3 are obtained by maximizing the density function p(y_;,®_;|«,), which is also

the model evidence over {y_;,® _; }. The density function p(y_;,®_;|a,() is obtained by integrating
over w:

p(y—i>@—i|aﬁ) = /p(Y—i,‘I)—i|W,;3)p(W|a)dw
= /P(Y—z‘"I’fi,w,ﬁ)p(qhi|W,ﬁ)p(w|u)dw
p(y—i|®—i.w,8)p(W|a)dw x p(P_;)

X

T

p(y—i|®—i,w,3)p(w|a)dw.

According to the model assumptions in Appendix B.2:

y_il® s wA~N(@_;w,87M,_,.) and w~N(0,a '),
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then the likelihood function of « and 3 is

L(a,8) = /p(y,i|¢,i,w,5)p(w|a)dw

S e

_ (%) (%)7 /w exp(— B (w))dw,

where E(w) is the energy function of w, i.e.

)=y w) (v 0 w) v

Given y_; and ®_;, then the posterior distribution of w is

P(W|Y—z‘7q)—i70lv%3) NN(W|m—17A:L1) 5

where
m_;=pAZl0 y ;. A_;=al;+50 0 ;.
Notice that
E(w) = gw—r(l)l—i(l)_iw-l—%WTW—ﬁy——ri@—iw"'gyjiy—i
1
= EwT(ﬁ@fid)_i—kalld)w—/ﬁyl(l)_iv&’—#gyIiY—i
1
= EWTA_,-W—ByL@_iA:}A—iW+gyti—i
= A wem A w Dy Ty
= oW A_w m_iA_Zw+2y_¢.V—z~

Then we have E(m_;)=—sm',A_;m_;+ gyfiy_i. We rewrite w =w—m_;+m_; and obtain
that

(N

1 1 1
§WTA_iW = i(w—m_i)TA_i(w—m_i)—§mjiA_im_i+mLA_iw.
Therefore,
1 T 1 4 Bt
Ew) = §(W—m—z‘) A—i(w_m—i)_im—iA—im—i'i_2Y—iy—i
1
= E(m_,-)+§(W—m_i)TA_i(W—m_i).
Then we have
) —n; d ) —n; 1
logL(e,8) = n2mlogﬁ+§loga—n2777’10g(27r)—E(m_,;)—510g|A_i|
n—n; d n—n; Jo] 2 @ 5 1
= 5 logﬁ—l—iloga— 5 10g(2ﬂ')—§Hy_Z-—<I>_im_iH —§||m_i|| —510g|A_i|.

and obtain & and B by maximizing logL(«, ), i.e.,
é&.,B=argmax logL(a,B).

We can find that the objective function here is the same as Eq.(2) in You et al. [91]. Then we use the
fix-point iteration algorithm [91, 90]. The detailed inference procedure is presented as follows.

Let A; and v; be the i-th eigenvalue and eigenvector of the matrix ﬁq)L@_i. That is ( [3<I>IZ-<I>_¢)VZ~ =
\;v;. Then we have

d
A _i|=]alg+ 80 0| = [(a+M).
i=1
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The stationary points of log L («,3) with respect to « satisfy

1d d
w3 og@(am) 0
d @]
& d— = 2
Dt
d
94 . Ai
= — th = B
@ aSp Vit =2

Notice that the eigenvalues A; are proportional to 8. Hence d\; /d 8= A; /3. Then the stationary points
of logL(«,3) with respect to 3 satisfy

i 1 s 1 Ai
25 —§”y7i—q’fim*i” _ﬁ;oﬁ/\z’_
1

1
g=m||y—i—‘1’—im—i”2-

=

B.4 Computing Metric

In this section, we present the details of computing the covariate shift p(®;|®_;) and the correlation
shift p(y;|®;,y—:,P_;). Then we can plug these two quantities into (6) to compute the proposed metric.

Covariate shift. Leaving the i-th domain out, we compute the density p ((IJi | d _,-) to check whether the
learned feature ¢() is stable such that the distribution shift between ®; and ® _; is not significant. We
approximate the distribution of ¢(z) with a Gaussian distribution N (14,4 ) and empirically estimate
the parameters (14 and Y from the training inputs ®_; € R(?=n:)xd Thatjs,

1 ) )
(@ i— N i) (i =Ny, i),

Ly = BT 1, . Ss=
He n—m, —¢ M ¢ n—n;
where 1,,_,, is a (n — n;)-length one vector. Then we compute the density of ®; according to
N (fig,20):

plD ) = Dl So) H G (500 )57 ) )

n;d d ~ n

1 Ty X
= (2m)7 % |%4|” 2exp<—2trace{(<I>i—]lniul;)Eqbl((I)i—]lmu;)T}).

Correlation shift. Given & and B we have

(wa 'L|q)'uq) uu ﬁ) p(Ynyz|(I)7,7(I)7'L»CV73)
( 71|(Du@727 7ﬂ) P(}’—z@—u@w@)

We write m_; =BA:}<I>Ly_i and A_; =d]1d+B<I>L<I>_i. According to (7),

(YZ|<I)27Y P00 76) (8

A~ Hh n—n; ~ d R n—mn,;
log p(y—i|®-d.f) = —5 Llogﬁ+§loga— 5 log(2m) 9)

/3’ . 2 &, . 1 -
—§||Y—z'—q’—z‘m—i|| —§||m—7:||2—§10g|A—q:|-
To proceed further, we denote
y=(. y ) eR" o=@ 0") cR™ m=pA"d"y, A=al;+30 P
Similar to (7), we have

log p(y|®;é,5) logp(yi,y—i|®:,®_;:0,5)

1 ~
— 510g|A|. (10)

n . d n
—logB+ —logiv— —1
5 08+ loga— S log(27)
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Plugging (9) and (10) into (6), we obtain the value of the proposed metric.

Remark. Giveny_;, ®_;, & and 5’ , the posterior distribution of w is
p(Wly—5:®3,6.8) ~N (Wi, AT} ).
Further,

p(yi|q)i»Y—i7q>—i§d»B):/p(Yz’|(I)i7W§B)p(W|Y—i7(I)—i;d:B)dW-

wW

By calculating the integral, we can deduce
Yi|(1)z'7Y—i,‘p—z'NN((I)iﬁl—z',B_l]Ini+‘I)iAj‘I>;r)-

Therefore we can also use this distribution to calculate p(y;|®;,y —;,®_;) directly. Throughout this
paper, we use the formula (8) to calculate the correlation shift.

B.5 Cross-Domain Validation Selects Invariant Features

To justify our proposed selection method, and provide more intuition, we conduct explicit analysis in a
linear regression setting. Despite the over-simplification, it does reflect the essence of our approach.
From this base case, adaptions to more complicated and realistic assumptions can be made.

Data Assumption Suppose we have data in different domains with domain invariant and domain-
specific features, with respect to the response variable y. Denote the set of invariant features to be v,
which are assumed to be unit-norm and orthogonal to each other. Without loss of generality, let data in
domain D be x = (x;,,,xp) Where x;, € R?" denotes the domain invariant features and xp € R4—d"
denotes domain specific ones. Let x;, be fixed. The domain-specific features can have non-zero
correlation with x;, such that

Tp==Ti,-Ap+ep,
where Ap € R4 *(4=4") "and ep ~ N(0,52I,_4-). For different domains, assume the correlation
to be independently random, i.e., Ap’s are i.i.d. matrices with independent entries with mean 0 and
variance 1. Given the features &, assume the response y only depends on x;, such that

y:miv'ﬁiv+€:w'ﬂ+€7
where 3= (8;,,,87) with 7 =0 and € follows N (0,02).

Model Assumption Let the model candidates be linear models fitted to different subsets of the

features and there are in total 2¢ different combinations. Denote the fitted parameters to be B eR% with
only the selected dimensions being non-zero. Let the selection be ¢, which is a subset of {1,...,d}. We
want to show that our proposed statistics, in the cross-validated fashion, will prefer the optimal one
with ¢ =4v. The optimality is in the sense that it achieves the best goodness-of-fit, measured by the
square loss.

More Notations Let (X ,y),(X,y) be independent datasets in two domains to be cross validated.
For any vector (matrix), we use subscript to denote part of it with selected rows (columns). For instance,

amodel candidates with feature dimensions ¢ will only fit 4 ~ X4 and the resulting B will only be
nonzero on (4. For a set ¢, denote |§| be to its cardinality and ¢ to be its complement.

In our proposed test statistics, there are two terms to be assessed. The first term is essentially the

goodness-of-fit of g and X - B4, which is of critical importance for selecting the invariance and
consistent features across different domains. The second term can be seen as some regularization. In
this section, we will focus on the first term, and to make things really simple, we consider expected o
loss as the measure for goodness-of-fit.

The estimated B can be explicitly written as

Bo=(XJ X)X ] yeRl.

25



Given y= X +¢€, we can write
X5:X¢ﬁ¢+.Xq§5¢‘).
Thus,
By =PBy+(X] X)Xy X50;+(XJ Xg) ' X €
:/3¢+(X;—X¢)_1X;—€. an

The expected [5 loss can be expressed as

Eceea A(”y X B4l )
ae (1K 5= X f52) +n0®
e ( XiungBivns+Xiv\eBirs = Xoniv Bonie = Xovio Bovio )+n02
P, (” oo (Bivng = Biong) + XinoBivrs — X priu Bovivll )—i—naQ
(| zm¢ X;—XqS) 1X¢ )wm¢+Xw\¢5w\¢ qu\w ﬁqb\w” )—Hw
EeAeA(||Il+12+13|| )+no>.

I, accounts for the variance in estimating the selected invariance features. I» is non-random and
accounts for the error from unselected invariance features. I3 accounts the error from wrongly selected

features. Easy to verify that E(I;) = E(I3) = 0 and E(I13) = 0, since J3 is independent with A,é,
which are both mean zero.

E,aca(I002) =0 atr(X] X003k, )
For I3, we can further write
B oo dUBIR =B ac i (B X o Koo Bovi )
~Eecoa (1B Be gt (XX
Ecieoa (I1Bovioll®) (Eatr (A1, Asio) +nld\iv]s?)

—n(1+5%)|0\iv] B, (IBo )

Therefore,

]Ee,ae,A,é,A (||Q—X¢B||2)

=B 1t ((X] Xo)iohg ) 1B o |2+ (145 0\iv] Eeeoa (1Bovioll) +n0®.

77777

If ¢ =1v, the above quantity is minimized withE_., 4, 5 (||Q—X'¢ f;HZ) = (n+d*)o?
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C Feature Selection in ZooD

In this section, we present more details about the PTMs ensemble and feature selection in Section 3.2.
The top-ranked PTMs in Section 3.1 are preferred for solving the OoD generalization task. To further
aggregate different PTMs, we consider assembling the features by using PTMs as feature extractors

o=[oW . oM,

where ®(") is the i-th ranked feature extractor and [-] denotes the row concatenation operation. As
we show in experiments, in most cases, using aggregated models can significantly outperform any
single model. However, the rough ensemble will inevitably introduce more noise. According to the
definition of OoD learnability proposed by Ye et al. [§7], non-informative but invariant features from
training domains may only bring some noise, and the accumulation of noise hurts learnability of the
OoD generalization task. Therefore, we propose a Bayesian feature selection method based on the
Gaussian linear framework in Section 3.1.

C.1 Bayesian Variable Selection

In the Bayesian literature, the variable selection problem can be efficiently solved by introducing, for
each variable w;, a binary mask z; € {0,1} [48, 16, 83, 86], which are given by Bernoulli distributions

governed by probability coefficient 7. Let z={z; },‘le and

d

d
p(ZﬂT) = Hp(zl) = Hﬂ-zzl (1—7T¢)1_Zi,

=1

From a generative perspective, these masks determine whether the weight w; is generated from a slab
or a spike prior [37]. If z; =1, then w; will follow a slab prior with diffusing probability density; if
z; =0, w; will have a spike prior with probability mass concentrated around 0, and thus should be
discarded. Specifically, we assume

N(0,a;)) ifz;=1;
PWilze0s1:02) =\ Nr0.00)  ifz=0.

Denote w = (wl,...,wd)T and o 1 and ¢y 2 control the shape of the w; distribution and should be
reasonably large for ov; . Conditioned on w;, each data point y,, is assumed to be independently drawn

from a linear model with mean w ' ¢(z) and additional Gaussian noise with inverse variance /3:

(o) wiB) = () %xp(—g (yn—wT¢(xn>)2) -

The model specification is completed by introducing conjugate Gamma priors over the inverse variance
Band {a; 1,062 ¢

a;1~Gamma(v;1,V;2), «;2~Gamma(v;3,v;4), B~Gamma(vy1,v0,2).
Denote the set of Gamma prior parameters as v = {v; ; } and all latent variables as
d
5 = {ﬁ?{wiazivai,l 70[2',2}1':1 } .

Then the variable selection problem can be solved by estimating 7w = {71 ,m2,...,mq } withm; =p(z; =1).
We can find the maximum likelihood estimator of the probability coefficient 7 of Bernoulli masks and
then screen the variables if 7; is smaller than the pre-defined threshold 7.

C.2 Variational EM Algorithm

Given the dataset {y,®}, the maximum marginal likelihood estimator of (7r,v) is given by

0

argmax log p(y|®;m.v)
v

= argmax log/p(y,é‘l@;ww)d&- (12)
¢

™,V
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However, direct maximization of (12) is intractable due to the integration over £. EM algorithm [66]
might be a solution here. In the E-step, we compute the conditional expectation

L(mwymd o) = Eellogp(y &|®im.v)|y,0;med vl

/logp(y,i|‘I’;mV)p(ﬁIy,‘I);vr"ld,V"ld)dE,

which involves inferring posterior p(&|y,®;m,v). However, this is not straightforward to obtain due to
the complexity of our model setup. MCMC [57] is a common tool for this problem, but suffers from
intensive computation, thus hard to extend to large-scale data. We instead use approximate Bayesian
inference in Section C.3.

In the M-step, we update 7 and v by maximizing the expectation

7 Y —argmax L(w, v

™,V

old old).

By repeating the E and M steps, the estimator (7w ;™" converges to an optimal solution. We show
this method has satisfying performance for the underlying variable selection problems in synthetic data
and the prevailing OoD dataset.

C.3 Variational Inference

In the E-Step, computation of E¢ [logp(y,&|®;m,v)|y, ®; w4 v°4] involves inferring posterior
p(&ly, ®;m,v). However, due to the complexity of our model setup, no analytical form of the
posterior distribution can be found. We instead approximate true posterior distribution by variational
inference [12]. The main idea involves the introduction of a set of distributions (), which should ideally
be easy to compute and provide a good approximation to the true posterior distribution. We consider
the following transformation of the marginal likelihood

Inp(y| @) = In / Dy £|imv)de

p(y ,€|<1’,7T,V)
> / Qe o
~£(Q),

where £(Q) denotes the variational lower bound. The key point is that, through proper choice of Q)
distribution, £(Q) can be readily evaluated, and thus by maximizing the lower bound, we generally
find the () distribution, which is the best approximation within the considered family. Here we factorize
(Q over each latent variable, such that

d
Q(&?ﬂvu):Q(B;DOJ»IZOQ)H[Q(Ziéﬁ'i)Q(Wi;miv)‘i_l)Q(ai,l;Iji,l71;2',2)@(041',2;771',37171',4)}»
i=1
which holds for classic mean-field family [11]. By denoting {m A\, 7 } = {m;,\;,m; ¢, and 0= {7 ;},
an optimization-free form over all possible () has been established, which can lead to minimization of
KL divergence between variational distribution Q) (&) and true posterior p(€|y,®;m,v)

eXp]Eﬁ_kNQ* (ﬁ_k)lnp(Y7€|(I)7777V)
feXp]Eﬁ_)gNQ* (g_k)lnp(y§|<1>,7r,u)d£k ’
where denote &}, as the k-th variable in the set £ and £_, is the subset of all other variables except &
For models in conjugate families, the optimal Q* (&) has the same form as its prior distribution. We

then establish the optimization step for arbitrary variational parameters set {m,\,»,7 } to approach
the true posterior:

Q" (&)=

-1 N d—1
m;= fm 7Tum V (Z'an +T(’L [aifl]—’—(l_ﬁ—i)E[ai,Q]) : E[ﬂ]zin,z Z"nj'wn,j_yn
n=1 £
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exp{Eln|a; 1|— 3 Tr (E[ev 1]- [E[w?]]) +1Inm; }

i = fri (MAP) = eXp{]Eln|ozZ- 1|+Eln|a;, 2|—l’I‘r[(]E[ai 1) +E[a 2]) .[]E[wz]]]—l—lnm—i-ln(l—m)} ’

N d?
(’7 ) _fl/o 2(m )‘ Zyn_QZ (Zmz T, z) %z"'Zan i xru '])+VO_,%>

n=1 n=1 n=1 14,j
(Di,Q)_lszi,z(m7>"7T):(E[W?]_l)'ﬂi+7/'i_,217 (Vi,4) flh 4(m)‘77)_( [ ] )(1 7TZ)_I_V147
N
Ni=fH0)= a2 BB+ K] +(1—7)Elas 2],
n=1

1= fu,(n)=vo1+n, Dii=fo (F)=vi1+7, Uiz=fo,,(F)=viz+1-m,
where the variational expectations are given by

EWw?=m?+A ", ElBl=i01-02, Elaii]=i1-a, Elais]=i3 4, (13)

i1 _ i3 _
Eln|oy 1|=19 <V2) +In2+1In|v"?|, Eln|a; | =1 <V2> +In2+1In|r4|. (14)

Since the optimization steps for each variational parameter are mutually dependent, we can use coordi-
nate gradient descent [ 12] starting by current Q(£)*~! from the last iteration. After one-step optimiza-
tion, variational parameters of Q(&)" are used in computation of Eg (¢, ot yota )t [logp(y|<I>,§ ;n,u)] ,
thus finishing E-step. During this procedure, the lower bound £(Q) will continuously increase until
reaching its maximum value. Therefore, the value of £(Q) can be used as a useful indicator for
convergence of algorithm [19].

C.4 Algorithm Details

The proposed model contains a set of prior hyper-parameters 7r,v/, which is exactly what we want to
estimate for feature screening. In Bayesian literature, hyper-parameter selection can be automated from
data through a procedure named “ARD” [52]. The original “ARD” procedure proposes a selection based
on the value of model evidence. However, in many cases including ours, this evidence is intractable.
Fortunately, it’s also feasible to use variational lower bound £(Q) as a substitute. Learning prior
hyper-parameters 7r,r leads to the minimization of KL divergence. This can be rationalized by the
decomposition of £(Q):

£(Q)

]E€~Q(€) [lOg p(y|<I>,£,7r,l/)]
= E¢oqee) [log p(y[€,2)] ~KL(Q(€)|[p(&:m.v)).

Thus by setting derivatives of each hyper-parameters with respect to £(@) to 0, it’s easy to see L(Q) is
maximized when all hyper-parameters are set to posterior parameters:
ﬂ,new — 7‘.}7 Vnew — ';

However, the proposed algorithm still suffers from heavy computational cost: Each iteration costs
O(nd?). Thus to relieve computation burden and memory usage, we leverage our method with
stochastic approximation leading to the EM algorithm with stochastic variational inference [35]. In
each iteration, we sample a random subset of entire data with size n°. Fitting our algorithm over this
subset for the current iteration, we obtain a local optimal estimator denoted by QQ*(£). In M-step these
intermediate variational distributions by factorizing Q° (&) will be used to learn hyper-parameters
7 and v and simultaneously as the starting point for subsequent estimator in the next iteration. In
the end, we successfully reduce the computation cost to O(n®d?) with n® < n, while maintaining
the guarantee of convergence to the global optimum [65]. In our experiments, we collect variational
probabilities of {7; }¢_, from the last three runs and early-stop the algorithm if its difference with the
current probability is smaller than the pre-defined threshold € or reaches the maximum iteration times.
Variational EM algorithm for Bayesian feature selection is summarized in Algorithm 2. Note that we
initialize m by linear regression and the initialization of ¥ is set to v.

In our experiments, we often deal with the multivariate case. If the underlying task involves multivariate
regression or classification, i.e., ¥ € R"* % we can run the proposed EM algorithm on each dimension
and take the union of all selected features. Therefore, our feature selection procedure can be used in
almost all prevailing models and tasks.
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Algorithm 2 Variational EM Algorithm for Bayesian Feature Selection

Input: The observed data ¥ € R", X € R™*; Prior parameters 7 = {n{}{_, and v = {10, };
Maximum iteration step 7’; Batch size n®; Stopping threshold e.
Output: Converged ! and v/,
1: Initialization of variational moment: {m A, E[a; 1],E[cv; 2], Eln|c; 1|,Eln|e; of };izlz
« Initialize m° by linear regression between Y and X, and let A = (m"©m°)~1;
* Set oY =1 and compute E[a; 1],E[a; 2], Eln|a; 1],Eln|a; 2| by Equation (13) and (14);
2: for1<t<T do
:  Random Sampling a data subset with size n*;
Update 7  and 7§ 5 by f,:~1(n®) and Fi (mt=t XL,
for1<i<ddo 7 ,
Update each 7/ by f i1 (m! =" A= o1y
Update each 7\, 5, 7} 3, f, by foro (), fog (m!~h AL R, fort (),
f,,le (mt—l)\t—l?ﬁ_t); ,
8: Update m! and X! by f,,, (7f,m! =1 0') and [, (DY),
9: endfor
10 Update nl=7tvi=0
11:  ift>3then

NN AW

t.
s

12: 7Tmean:(ﬂ.t—2+7.rt—1 +7Tt)/3
13: Early Stop if |7f —7r¢" | <¢;
14:  endif
15: end for

C.5 Theoretical Result

It has been shown that our method, as well as others in Bayesian variable selection, has potentially
strong selection consistency [48, 16, 83, 86]. Consider the following model with inverse Gamma prior:

n| ((’b(l‘")’w’az) NN(W¢(x7z)vUQI)>
wil (0% 2=0) ~ N (0% ).
wil (0%,2i=1) ~N(0,0°7] y), (15)
p(zi=1)=1—p(z; =0) =qn,
0 ~1G(0on,02),
where i runs from 1 to d, ¢n .70, n,71, v are constants that depend on sample size N, and IG (a1,a2)

is the Inverse Gamma distribution with shape parameter iy and scale parameter ao. Under regular
conditions (See conditions 4.1-4.5 in [56]), selection consistency is established:

Theorem 1. Assume regular conditions hold, under the model with inverse Gamma prior, we have

p(Z:t | Y,cr2) 251 asn— oo, that is, the posterior probability of the true model goes to 1 as the
sample size increases to <.

More related works on Bayesian feature selection can be found in [26, 55].

C.6 Simulation Study

In this section, we will conduct a series of simulations to verify selection performance on an ¢.:.d.
dataset with varying sizes and dimensions. Here, we consider cases in the standard multivariate
regression. We first generate each input predictor from a standard normal distribution: z,,; ~ N (0,1)
fori=1,...,d, and thus we generate response variables by subsequently sampling 3; ~ Uniform(1,3)

forj=1,....k<dandy, ~ N(Eleﬁimm ,1). We then vary the values of d and & to find the potential
influence in terms of True Positive Rate (TPR) and False Positive Rate (FPR). The results are shown in
Table 9.

We repeat each case 50 times and present the mean and variance of TPR and FPR. The hyper-parameter
setting is listed in Table 8. We vary n® to study the influence of batch size. Overall, our method
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illustrates the experimental selection consistency. When n > d, our method almost always selects the
correct k variables with TPR close to 100% and successfully screens all unnecessary variables with
FPR equal to 0%. Even under the less informative circumstance when 7 has an equal or less amount
than d, our method can still achieve great selection results with TPR above 90%. As n goes up, there is
a uniform improvement in all cases in terms of TPR and FPR.

Table 8: Hyper-parameters setting in feature selection.

Uy Yo,1 Vo2 Vig1 Vi2 Vi3 V4 T n’ €
0.5 1 1 1 1 5 1 1000 256 0.5
Table 9: Feature selection in terms of TPR/FPR.

d=100 k n n® TPR FPR

Case 1 50 200 64 99.92%40.39% 0.00%+0.00%
Case 2 50 200 128 99.92% + 0.39% 0.00%+0.00%
Case 3 50 400 64 100.00% =+ 0.00% 0.00%+0.00%
Case 4 50 400 128 100.00% = 0.00% 0.00%+0.00%
Case 5 90 200 64 99.86%40.42% 0.00%+0.00%
Case 6 90 200 128 99.93% + 0.26% 0.00% =+ 0.00%
Case 7 90 400 64 100.00% =+ 0.00% 0.00% =+ 0.00%
Case 8 90 400 128 100.00% =+ 0.00% 0.00% =+ 0.00%
d=300 k n n® TPR FPR

Case 1 100 300 64 95.21%42.22% 2.16%+1.52%
Case 2 100 300 256 96.46% +2.12% 2.31% £2.10%
Case 3 100 500 64 99.92% + 0.27% 0.00% =+ 0.00%
Case 4 100 500 256 100.00% =+ 0.00% 0.00% =+ 0.00%
Case 5 250 300 64 91.34%4+2.92% 11.92%+6.79%
Case 6 250 300 256 91.95% + 2.40% 14.56% + 8.35%
Case 7 250 500 64 99.92% + 0.17% 0.00% =+ 0.00%
Case 8 250 500 256 99.92% + 0.05% 0.00% + 0.00%
d=500 k n n® TPR FPR

Case 1 100 450 64 92.70%42.56% 4.41%+1.67%
Case 2 100 450 256 92.89% + 2.69% 4.90% £+ 1.82%
Case 3 100 800 64 99.94% + 0.23% 0.00% =+ 0.00%
Case 4 100 800 512 100.00% =+ 0.00% 0.00% =+ 0.00%
Case 5 450 500 64 90.21%42.56% 12.68%46.38%
Case 6 450 500 256 92.06% + 1.84% 16.04% + 6.69%
Case 7 450 800 64 99.92% + 0.13% 0.00% =+ 0.00%
Case 8 450 800 512 100.00% =+ 0.00% 0.00% =+ 0.00%
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