
Under review as submission to TMLR

Image Enhancement: A Necessity for Effective Underwater
Object Detection?

Anonymous authors
Paper under double-blind review Abstract

Underwater vision is essential for applications such as marine engineering, aquatic robotics,
and environmental monitoring. However, severe image degradation caused by light absorp-
tion and scattering often compromises object detection performance. Although underwater
image enhancement (UIE) intuitively seems beneficial for restoring visual information and
improving detection accuracy, its actual impact remains unclear. This work systemati-
cally evaluates state-of-the-art enhancement models and investigates their effects on un-
derwater object detection to answer the key question: "Is UIE necessary for accurate
object detection?" We conducted a systematic evaluation of 20 representative UIE algo-
rithms—spanning traditional methods, convolutional neural networks (CNNs), generative
adversarial networks (GANs), Transformers, and Diffusion models. These methods are ap-
plied to two benchmark datasets, RUOD and URPC2020, producing 21 domain variants
per dataset (raw + 20 enhanced). To rigorously assess the effect of enhancement on de-
tection, we trained five object detectors on each domain, resulting in 210 unique model
configurations (5 detectors × 21 domains × 2 datasets). Our findings reveal that, con-
trary to intuitive expectations, most enhancement techniques actually degrade detection
accuracy. Only well-designed methods, such as diffusion-based approaches that preserve
key low-level features without introducing artificial distortions, can minimize this negative
impact. These results provide critical insights into the role of enhancement in underwater
vision and highlight important considerations for future research.

1 Introduction
In recent years, underwater vision has emerged as a crucial area of research due to its wide-ranging applica-
tions in marine engineering, aquatic robotics, environmental monitoring, and the maintenance of underwater
infrastructure (Anwar & Li, 2020; Cui et al., 2020). A fundamental challenge in these applications is object
detection (OD), which enables the accurate identification and localization of underwater objects. However,
detection performance is often compromised due to the severe degradation of underwater images. Factors
such as light absorption, scattering, and backscattering lead to low contrast, color distortion, and blurring,
making it difficult for deep learning models to reliably detect objects in underwater environments.

A natural solution to this problem is underwater image enhancement, which aims to restore lost visual
information and improve image quality. Intuitively, enhanced images should improve OD accuracy. However,
the actual impact of enhancement on detection performance remains unclear. While some studies suggest that
enhancement aids detection, others indicate that it may introduce artifacts or distortions that negatively
affect model performance (Awad et al., 2024; Chen et al., 2020b). Existing research lacks a systematic
evaluation of enhancement techniques in the context of OD, leaving a critical gap in understanding their
real-world effectiveness.

This paper addresses the key question: "Does underwater image enhancement improve object de-
tection performance?" To investigate this, we conducted a large-scale empirical study analyzing the
correlation between enhancement and detection performance. We selected 20 representative underwater
image enhancement algorithms, encompassing traditional methods (Hsu & Cheng, 2021a; Fu et al., 2014a;
Hummel, 1977; Jr et al., 2013) and SOTA deep learning approaches including CNNs (Li et al., 2020a;b; Wang
et al., 2021; Huo et al., 2021) , GANs (Li et al., 2017a; Fabbri et al., 2018a; Wang et al., 2019; Desai et al.,
2022; Wang et al., 2023; Jiang et al., 2022) , Transformers (Tang et al., 2022; Khan et al., 2024; Wang et al.,
2024) , and Diffusion models (Zhao et al., 2024a; Du et al., 2025; Tang et al., 2023) . These algorithms were
individually applied to two benchmark underwater datasets, RUOD (FU2, 2023) and URPC2020 (Liu et al.,
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2021), followed by comprehensive qualitative and quantitative analyses of the enhanced images. Following
this, we independently trained and tested five widely used OD models on both raw and enhanced image
sets—a total of 210 models, including 200 trained on enhanced images and 10 on raw underwater images.
This extensive study provides a thorough evaluation of how enhancement techniques influence underwater
object detetcion performance.
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Figure 1: Qualitative comparison of UIE methods and their effects on OD. The raw image and its detection result
serve as a baseline. Each enhanced version—Traditional WB (Hsu & Cheng, 2021a), CNN-based PRWNet (Huo et al.,
2021), GAN-based WaterGAN (Li et al., 2017a), Transformer-based AutoEnhancer (Tang et al., 2022), and Diffusion-
based UIEDP (Du et al., 2025)—introduces distinct visual changes, illustrating how UIE alters image statistics and
influences detection performance.

Our empirical observations revealed several key findings. Contrary to intuitive expectations, most enhance-
ment techniques actually reduced OD performance. Although enhanced images may appear visually improved
to human observers, they often introduce artifacts and domain shifts, as illustrated in Figure 1, which nega-
tively affect detectors. Preserving edge details is critical for maintaining detection accuracy, while unintended
color shifts and additional noise degrade performance. Although contrast changes have little effect, color
richness and saturation play an important role in supporting accurate detection. Effective enhancement
methods must preserve structural integrity, maintain color consistency, and minimize noise and artifacts.
Among all evaluated approaches, diffusion-based methods, such as WF-Diff (Zhao et al., 2024a) and UIEDP
(Du et al., 2025), demonstrate clear superiority in balancing color correction and detail preservation, consis-
tently achieving higher detection accuracy across multiple detectors. Building on these findings, the main
contributions of this paper are as follows:

• We present a comprehensive study assessing the impact of UIE on OD performance, providing the
first large-scale empirical evaluation of enhancement techniques.

• Through extensive experiments and analysis, we identify critical limitations in existing UIE algo-
rithms, particularly their lack of robustness and adaptability to complex underwater environments.

• We reveal that current underwater image quality assessment metrics do not correlate well with OD
performance, highlighting the urgent need for task-aware UIE evaluation criteria that better reflect
downstream task utility.

This study does not propose new image enhancement techniques but instead evaluates whether preprocess-
ing with enhancement methods improves object detection in underwater environments. We aim to inspire
further research into integrated approaches that effectively combine image enhancement with OD, ultimately
enhancing both visual quality and detection accuracy in underwater vision systems.
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2 Related Work
2.1 Underwater Image Degradation and Enhancement

Underwater images often appear degraded due to light absorption and scattering during propagation
through water. This process can be described by the underwater image formation model, which ac-
counts for both direct attenuation and backscattering. The observed image I(x, y) can be expressed as
I(x, y) = J(x, y)e−βd(x,y) + B(1 − e−βd(x,y)), where J(x, y) is the true scene radiance, β is the attenua-
tion coefficient determined by water properties and wavelength, d(x, y) is the distance between the object
and camera, and B is the background light caused by scattering. As the distance increases, backscatter
dominates, producing color distortion, reduced contrast, and overall haziness.

Understanding this degradation process enables the development of UIE techniques, which aim to recover
J(x, y) from I(x, y), improving visual quality and supporting downstream tasks such as object detection
(OD). Enhancement methods are broadly categorized into traditional and deep learning-based approaches.

Traditional methods focus on adjusting intensity distributions or pixel values to improve contrast and color
balance. Color correction (Buchsbaum, 1980; Hussain & Akbari, 2016; Hsu & Cheng, 2021b; Finlayson
& Trezzi, 2004) and Retinex-based approaches (Fu et al., 2014b) adjust illumination and local contrast,
while prior-based methods such as DCP (He et al., 2009) exploit scene priors to remove haze. Contrast
enhancement techniques (Agaian et al., 2007; Voronin et al., 2018; Ma et al., 2018; Bai et al., 2020) further
improve visibility and detail sharpness.

With deep learning, CNN-based (Zhai et al., 2023; Li et al., 2020a;b) and GAN-based (Li et al., 2017b; Fabbri
et al., 2018b; Zhai et al., 2022) methods became dominant, leveraging encoder–decoder and adversarial
frameworks to enhance visual realism. Transformer-based models (Chen et al., 2021; Wang et al., 2022;
Dosovitskiy et al., 2020) extend these capabilities through self-attention, while diffusion models (Ho et al.,
2020; Song et al., 2021) offer stable optimization and strong restoration performance compared to GANs
(Goodfellow et al., 2014; Karras et al., 2019) and VAEs (Higgins et al., 2016; Kingma & Welling, 2013; Van
Den Oord et al., 2017). Recent works also integrate UIE with OD, and frequency-domain studies (e.g., WF-
Diff (Zhao et al., 2024b)) use wavelet–Fourier interactions to refine both high- and low-frequency features,
achieving state-of-the-art results.

2.2 Object Detection
Object detection (OD) identifies and localizes objects by predicting category labels and bounding boxes.
Modern OD methods are generally categorized as two-stage or one-stage approaches.

Two-stage detectors (e.g., R-CNN, Fast R-CNN, and Faster R-CNN (Girshick et al., 2014; Girshick, 2015;
Ren et al., 2015)) use a proposal–refinement pipeline for high accuracy but slower inference. One-stage
detectors, such as SSD (Liu et al., 2016), RetinaNet (Lin et al., 2020), and YOLO-NAS (AI, 2023), perform
detection in a single pass for real-time efficiency. RetinaNet introduces Focal Loss to address class imbalance,
while YOLO-NAS employs Neural Architecture Search (NAS) to optimize the trade-off between speed and
accuracy. Both paradigms continue to evolve with transformer-based and anchor-free designs that further
push OD performance. In this work, we employ representative detectors to evaluate how UIE affects detection
accuracy.

2.3 Joint Image Enhancement and Object Detection
Several studies have explored the impact of image enhancement on high-level vision tasks, including OD. (Pei
et al., 2018; 2021) found that image enhancement provides limited improvements in detection performance
and, in some cases, may even degrade it. Similarly, (Hahner et al., 2019) reported that dehazing does
not improve semantic segmentation performance, while (Li et al., 2019) observed that existing de-raining
algorithms can negatively affect OD compared to directly using unprocessed rainy images. In underwater
environments, (Zhuang et al., 2022) demonstrated that image enhancement can improve segmentation and
saliency detection, though these benefits were observed only in specific cases. Conversely, (Chen et al.,
2020a) found that most UIE methods hinder rather than enhance OD, a conclusion further supported by
experiments in (Liu et al., 2022b;a). These findings suggest that enhancement techniques often fail to
consistently benefit high-level vision tasks, yet the underlying causes remain insufficiently analyzed. Recent

3



Under review as submission to TMLR

studies (Liu et al., 2022a; Jiang et al., 2021) have attempted to develop end-to-end approaches that jointly
optimize UIE and OD. However, the effectiveness of such methods remains uncertain, underscoring the
need for further investigation into the interaction between enhancement and detection in underwater vision.
In this paper, we address this gap by conducting a comprehensive evaluation of UIE’s effect on OD. We
assess a diverse set of enhancement algorithms and object detectors, providing a systematic analysis of their
interactions and performance impact.

3 Investigating the Effects of UIE on Visual Quality and Structural Fidelity

Before investigating whether and how UIE contributes to OD performance, we first investigate its direct
effects on image quality itself. Specifically, we examine how UIE influences key visual and structural aspects
such as color consistency, edge and texture preservation, and artifact introduction.

We begin by outlining the experimental setup, including the selected datasets and enhancement methods.
We then present an analysis of the enhancement results using both qualitative (visual inspection) and
quantitative (reference-free image quality metrics) evaluations. First, we describe the experimental setup on
UIE. Next, we analyze the pre-processing results from various UIE algorithms using both qualitative and
quantitative methods.

Selected Underwater Image Dataset. We conducted our experiments on two underwater datasets:
(1) RUOD (FU2, 2023), the Real-World Underwater OD dataset, is the largest underwater image dataset
with object bounding boxes. It contains 14,000 high-resolution underwater images, with 9,800 images used
for training and approximately 75,000 annotations spanning 10 categories of aquatic objects such as divers,
plants, and various marine animals; and (2) URPC2020 (Liu et al., 2021), the Underwater Robot Professional
Contest dataset, consists of 5,543 underwater images categorized into four classes: holothurian, echinus,
scallop, and starfish. For our study, we randomly split the dataset into 4,100 training images and 1,443
testing images. The use of both datasets helps us to draw more generalized conclusions. RUOD (FU2, 2023)
is a large and diverse dataset from multiple sources, featuring various underwater conditions such as murky
waters, low visibility, and strong noise. In contrast, URPC2020 (Liu et al., 2021) includes images from both
real and artificial underwater environments, with some offering better lighting and clearer water.

Selected UIE Algorithm. To comprehensively investigate the impact of UIE on underwater OD, we
explore both traditional and deep learning-based UIE methods. Traditional UIE techniques enhance ob-
scured details by adjusting intensity distribution or applying pixel-level transformations to improve contrast.
We select representative approaches, including color constancy methods (White Balance-based WB(Hsu &
Cheng, 2021a), Retinex (Fu et al., 2014a)), contrast enhancement techniques (Histogram Equalization (HE)
(Hummel, 1977)), prior knowledge-based methods (UDCP (Jr et al., 2013)), and transform-domain-based
approaches (wavelet transform-based PRWNet (Huo et al., 2021)). We also studied top-performing deep
learning-based UIE methods leveraging architecture: CNN-based (UWCNN (Li et al., 2020a), Water-Net
(Li et al., 2020b), and UIEC2-Net (Wang et al., 2021)), GAN-based (WaterGAN (Li et al., 2017a), UGAN
(Fabbri et al., 2018a), UWGAN (Wang et al., 2019), AquaGAN (Desai et al., 2022), TUDA (Wang et al.,
2023), and TOPAL (Jiang et al., 2022)), Transformer-based (AutoEnhancer (Tang et al., 2022), Spectro-
former (Khan et al., 2024), and UIE-Convformer (Wang et al., 2024)), and Diffusion-based (WF-Diff (Zhao
et al., 2024a), UIEDP (Du et al., 2025), and DM_Underwater (Tang et al., 2023)). To ensure a fair and
unbiased comparison of UIE models, we re-trained these models on the UIEB dataset (Li et al., 2020b) and
the EUVP dataset (Islam et al., 2020) to generate the corresponding enhanced results.

3.1 Qualitative Analysis of Enhanced Results
Qualitative Evaluation. The results of UIE using different algorithms are shown in Fig. 2. Due to
light absorption in water, red light disappears first, followed by green and blue, leading to color distortions,
reduced contrast, and poor visibility. This selective attenuation of light wavelengths results in greenish or
bluish underwater images, as observed in the raw images in Fig. 2(a). Color deviation significantly impacts
the visual quality of underwater images, making it difficult to discern objects and fine details accurately.

(1) Traditional Methods. White Balance (WB) (Hsu & Cheng, 2021a) and Retinex-based approaches
(Fu et al., 2014a) partially correct global color shifts but often introduce overcompensation in certain areas,
leading to unnatural yellowish or purplish tones. In particular, WB amplifies local illumination inconsistency,
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Figure 2: Visual comparison of UIE results. Raw images are shown for reference. Methods are color-coded:
Traditional ; CNNs ; GANs ; Transformers ; and Diffusions .

while Retinex enhances global brightness at the expense of suppressing local contrast. CLAHE (Hummel,
1977) improves local contrast but generates visible artifacts in homogeneous regions, resulting in artificial
texture patterns. UDCP (Jr et al., 2013), while effective in haze removal, introduces a reddish color bias
that disrupts the scene’s original color composition.

(2) CNN-Based Deep Learning Methods. PRWNet (Huo et al., 2021) shows notable improvement in
preserving fine-grained textures and structural edges through frequency-domain processing, although slight
oversharpening is observed under heavy scattering conditions. UWCNN (Li et al., 2020a), Water-Net (Li
et al., 2020b), and UIEC2-Net (Wang et al., 2021) enhance color vibrancy and contrast, yet they occasionally
over-saturate highlights, causing loss of fine detail in brightly lit regions. Some subtle halo effects are also
visible around object boundaries.

(3) GAN-Based Methods. GAN-based models such as UGAN (Fabbri et al., 2018a) and AquaGAN
(Desai et al., 2022) exhibit strong color correction capabilities but often introduce blurred artifacts and
inconsistent texture reconstruction, especially at object contours and in highly degraded regions. These
artifacts manifest as "smearing" effects, weakening object distinction.

(4) Transformer-Based Methods. AutoEnhancer (Tang et al., 2022), Spectroformer (Khan et al., 2024),
and UIE-Convformer (Wang et al., 2024) produce smoother contrast gradients and more globally coherent
color restoration compared to CNN and GAN models. They effectively suppress halo artifacts and better
preserve structural boundaries, although occasional mild over-smoothing can reduce textural richness in de-
tailed regions. (5) Diffusion-Based Methods. Diffusion models, notably WF-Diff (Zhao et al., 2024a)
and UIEDP (Du et al., 2025), deliver the most balanced performance: restoring natural color tones, enhanc-
ing perceptual contrast without exaggeration, and maintaining edge sharpness. Notably, WF-Diff reduces
noise amplification and minimizes color bleeding, leading to visually more stable and naturalistic results.
DM_Water (Tang et al., 2023), a lightweight diffusion model, offers moderate enhancement but exhibits
slight under-correction in highly turbid scenarios.
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Key Visual Insights: (1) Color Consistency: Diffusion-based (Tang et al., 2023; Du et al., 2025; Zhao
et al., 2024a) and Transformer-based (Khan et al., 2024; Wang et al., 2024) methods provide the most
consistent color correction without introducing severe domain shifts. GAN-based methods (Fabbri et al.,
2018a; Desai et al., 2022) often generate unnatural hues and inconsistent color patches.

(2) Edge and Texture Preservation: Frequency-domain models (e.g., PRWNet, WF-Diff (Zhao et al.,
2024a) ) and Transformer-based models (Tang et al., 2022; Khan et al., 2024; Wang et al., 2024)outperform
others in preserving object edges and fine textures critical for visual perception and downstream OD tasks.

(3) Artifact Introduction: Traditional methods (e.g., CLAHE (Hummel, 1977) and Retinex (Fu et al.,
2014a)) and GAN-based methods (Fabbri et al., 2018a; Li et al., 2017b) often cause visible artifacts, including
texture noise, color bleeding, and blurring, which reduce image realism.

(4) Over-Saturation: CNN-based methods (e.g., UWCNN (Li et al., 2020a) and Water-Net (Li et al.,
2020b)) tend to over-saturate bright regions, leading to color overshooting and highlight clipping. Over-
all Observations: Diffusion models, especially WF-Diff (Zhao et al., 2024a) and UIEDP (Du et al.,
2025), achieve the best qualitative results, effectively balancing enhancement strength and naturalness.
Transformer-based models closely follow, offering strong perceptual improvements with minimal artifact in-
troduction. Traditional and GAN-based methods, while enhancing certain aspects, frequently compromise
structural integrity and color fidelity.

3.2 Quantitative Analysis of Enhanced Results

To solidify the visual insights described above, we conducted a comprehensive numerical evaluation of the
enhancement results using reference-free image quality assessment metrics. These objective metrics provide
a complementary perspective to human judgment, enabling quantitative comparisons across UIE algorithms.

Evaluation Metric. For UIE, since no ground truth (clear) images are available for raw inputs, we adopt
five widely used reference-free image quality assessment metrics: Average Gradient (AG) (Zhang et al.,
2019b), Edge Intensity (EI) (Azmi et al., 2019), Information Entropy (IE) (Zhang et al., 2019a), Underwater
Image Quality Measure (UIQM) (Yang & Sowmya, 2015), and Underwater Image Contrast Measure (Yang
& Sowmya, 2015). AG measures sharpness and texture by calculating intensity gradients. EI quantifies
edge strength, with higher values indicating more texture detail. IE reflects the amount of information
in an image. UIQM is a composite score based on colorfulness (UICM), sharpness (UISM), and contrast
(UIConM). Higher UIQM scores indicate better overall visual quality. All metrics are used as originally
defined, without altering weights or hyperparameters.

Quantitative Comparisons. The images from the selected datasets were enhanced using selected en-
hancement models and evaluated using the selected enhancement metrics. The results for the RUOD (FU2,
2023) and URPC2020 (Liu et al., 2021) datasets are presented in Table 1, demonstrating the superior per-
formance of WF-Diff (Zhao et al., 2024a) across all metrics, particularly in UIQM (Yang & Sowmya, 2015)
and UIConM (Yang & Sowmya, 2015) on both datasets. This indicates its capability to enhance color vi-
brancy, improve contrast, refine soft edges, and effectively reduce fog effects. AquaGAN (Desai et al., 2022)
also performs notably well, especially in terms of UIQM, reflecting its strong ability to enhance colorful-
ness, sharpness, and contrast. Meanwhile, PRWNet (Huo et al., 2021) achieved the highest AG (Zhang
et al., 2019b) score on both datasets, indicating its effectiveness in preserving sharpness and texture details.
Similarly, UDCP (Jiang et al., 2022) excels in UCIQE, highlighting its effectiveness in color distribution
correction and underwater image clarity enhancement. Additionally, AutoEnhancer demonstrates a notable
enhancement capability, further improving underwater image visibility. TUDA (Wang et al., 2023) and
TOPAL (Jiang et al., 2022) achieved the highest EI (Azmi et al., 2019) scores on URPC2020 (Liu et al.,
2021) dataset, suggesting their effectiveness in global contrast enhancement and edge preservation. Over-
all, deep learning-based methods significantly outperform traditional approaches, including White Balance
(WB) (Hsu & Cheng, 2021a), CLAHE (Hummel, 1977), and Retinex (Fu et al., 2014a), across multiple
evaluation metrics. Interestingly, in line with findings from (Liu et al., 2020), our quantitative results reveal
that the numerical scores do not always align with human perception of image quality. This suggests a
gap between current underwater image quality assessment metrics and actual visual quality
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Table 1: UIE scores in AG (Zhang et al., 2019b), EI (Azmi et al., 2019), IE (Zhang et al., 2019a), UIQM (Yang
& Sowmya, 2015), and UIConM (Yang & Sowmya, 2015) on RUOD (FU2, 2023) and URPC2020 (Liu
et al., 2021). Best in bold, second-best underlined. Methods are color-coded: Traditional , CNNs , GANs ,
Transformers , and Diffusions . Trad. – Traditional, Trans. – Transformer, Diff. – Diffusion.

Methods RUOD (FU2, 2023) Dataset URPC2020 (Liu et al., 2021) Dataset

Name Type AG ↑ EI ↑ IE ↑ UIQM ↑ UIConM ↑ AG ↑ EI ↑ IE ↑ UIQM ↑ UIConM ↑

RAW - 1.31 12.79 6.53 1.59 0.41 2.97 15.46 6.32 1.87 0.47
WB (Hsu & Cheng, 2021a) Trad. 1.29 13.63 6.18 1.70 0.43 1.15 10.14 7.08 1.53 0.35
CLAHE (Hummel, 1977) Trad. 4.01 48.95 5.97 2.49 0.38 3.33 35.10 6.44 3.04 0.33
Retinex (Fu et al., 2014a) Trad. 3.56 37.73 7.09 3.14 0.49 2.58 26.44 6.40 2.51 0.39
UDCP (Jr et al., 2013) Trad. 2.69 28.62 7.31 2.65 0.54 3.48 24.47 6.69 2.30 0.70
PRWNet (Huo et al., 2021) CNN 4.98 50.18 7.06 3.15 0.57 6.41 36.88 6.07 3.60 0.48
UWCNN (Li et al., 2020a) CNN 3.81 31.59 7.13 3.34 0.78 3.21 36.38 6.69 2.78 0.55
Water-Net (Li et al., 2020b) CNN 1.79 16.52 7.65 1.95 0.42 5.35 12.52 7.81 3.29 0.37
UIEC2-Net (Wang et al., 2021) CNN 2.19 27.03 7.36 1.86 0.49 4.60 32.53 6.52 2.08 0.36
WaterGAN (Li et al., 2017a) GAN 1.70 18.96 7.62 2.75 0.47 5.44 16.93 6.96 2.02 0.36
UGAN (Fabbri et al., 2018a) GAN 2.09 48.65 7.04 3.47 0.54 2.49 39.42 6.02 3.73 0.66
UWGAN (Wang et al., 2019) GAN 1.91 27.96 7.40 1.94 0.59 3.55 33.23 6.48 2.30 0.75
AquaGAN (Desai et al., 2022) GAN 2.72 32.41 7.85 3.69 0.47 3.50 37.01 6.36 4.60 0.38
TUDA (Wang et al., 2023) GAN 4.05 43.56 7.53 3.04 0.46 3.63 37.94 7.54 4.07 0.40
TOPAL (Jiang et al., 2022) GAN 1.69 29.76 6.95 2.11 0.42 3.35 48.35 6.03 2.49 0.50
AutoEnhancer (Tang et al., 2022) Trans. 1.73 38.96 6.98 1.63 0.54 5.37 56.85 7.49 3.89 0.64
Spectroformer (Khan et al., 2024) Trans. 4.62 18.96 7.02 2.29 0.59 3.36 14.63 6.24 2.68 0.55
UIE-Convformer (Wang et al., 2024) Trans. 2.08 42.18 7.39 3.35 0.41 2.51 34.09 6.14 2.80 0.31
WF-Diff (Zhao et al., 2024a) Diff. 3.17 53.38 7.79 3.80 0.79 5.50 38.28 6.57 4.04 0.77
UIEDP (Du et al., 2025) Diff. 3.22 32.64 6.90 3.13 0.56 3.65 25.70 6.33 3.53 0.40
DM_Water (Tang et al., 2023) Diff. 4.19 48.96 7.02 3.48 0.53 4.14 42.28 6.11 4.29 0.44

as perceived by the human eye, emphasizing the need for improved evaluation methods that
incorporate perceptual quality considerations.

Table 2: mAP50:95) of Faster R-CNN (Ren et al., 2017), Cascade R-CNN (Cai & Vasconcelos, 2021),
RetinaNet (Lin et al., 2020), SSD (Liu et al., 2016), and YOLO-NAS (AI, 2023). Best in bold, second-
best underlined. Trad. – Traditional, Trans. – Transformer, Diff. – Diffusion, C-RCNN – Cascade R-CNN.

Methods RUOD (FU2, 2023) Dataset URPC2020 (Liu et al., 2021) Dataset

Name Type Faster R-CNNC-RCNNRetinaNet SSD YOLO-NASFaster R-CNNC-RCNNRetinaNet SSD YOLO-NAS

RAW - 57.91 59.44 50.71 45.96 63.46 43.49 44.32 40.72 35.20 49.62
WB (Hsu & Cheng, 2021a) Trad. 55.33 57.77 48.69 42.72 60.49 41.12 41.93 38.24 32.60 46.86
CLAHE (Hummel, 1977) Trad. 56.37 57.94 49.14 42.93 62.17 42.79 43.73 39.45 35.03 49.43
Retinex (Fu et al., 2014a) Trad. 56.02 57.80 48.46 41.15 60.84 40.43 42.31 38.49 33.91 47.65
UDCP (Jr et al., 2013) Trad. 56.64 58.02 49.31 41.53 61.67 42.60 43.22 39.01 34.54 48.76
PRWNet (Huo et al., 2021) CNN 54.17 55.63 47.85 39.91 58.53 41.23 42.14 38.52 32.65 47.63
UWCNN (Li et al., 2020a) CNN 54.01 55.16 47.10 39.52 58.18 41.03 41.95 37.90 32.52 47.14
Water-Net (Li et al., 2020b) CNN 55.79 57.56 48.88 40.94 58.94 41.89 42.01 38.74 33.65 48.37
UIEC2-Net (Wang et al., 2021) CNN 56.04 58.21 49.42 41.82 61.73 42.85 43.47 39.58 34.76 49.09
WaterGAN (Li et al., 2017a) GAN 54.74 54.01 46.75 39.82 57.32 41.02 41.83 37.42 31.53 45.98
UGAN (Fabbri et al., 2018a) GAN 52.62 53.68 45.60 38.73 57.08 39.02 39.83 36.32 31.51 44.69
UWGAN (Wang et al., 2019) GAN 53.15 57.24 48.39 40.68 58.42 40.16 41.72 37.93 33.13 45.47
AquaGAN (Desai et al., 2022) GAN 53.91 57.68 48.57 40.15 59.03 41.13 42.08 38.06 33.64 46.12
TUDA (Wang et al., 2023) GAN 53.31 55.98 47.63 39.34 57.79 39.82 40.65 36.72 32.04 45.73
TOPAL (Jiang et al., 2022) GAN 54.17 57.45 48.86 44.03 59.92 43.05 43.66 40.42 34.52 49.19
AutoEnhancer (Tang et al., 2022) Trans. 54.39 57.23 48.01 43.65 62.06 40.92 41.72 38.16 33.04 48.93
Spectroformer (Khan et al., 2024) Trans. 56.72 58.13 49.30 44.15 61.41 41.95 43.47 39.86 34.85 49.13
UIE-Convformer (Wang et al., 2024) Trans. 57.61 56.94 48.23 44.20 61.52 42.65 43.46 39.68 34.78 49.24
WF-Diff (Zhao et al., 2024a) Diff. 57.74 59.52 49.92 45.37 62.30 43.13 44.09 40.53 35.10 49.57
UIEDP (Du et al., 2025) Diff. 57.48 58.82 48.03 44.76 60.96 42.42 43.47 39.52 35.12 48.97
DM_Water (Tang et al., 2023) Diff. 57.85 59.07 48.72 45.16 61.98 42.75 43.63 40.15 35.08 49.69
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Figure 3: mAP50:95 of five detectors on RUOD (FU2, 2023) and URPC2020 (Liu et al., 2021) using RAW
and enhanced images. Enhancements cover five UIE types: Trad., CNN, GAN, Trans., and Diff. Overall,
detection accuracy generally drops after enhancement.

4 Effect of Underwater Image Enhancement on Object Detection
Image Domains. To evaluate the impact of UIE on OD performance, we applied 20 UIE algorithms to
two benchmark datasets, RUOD (FU2, 2023) and URPC2020 (Liu et al., 2021). This resulted in 21 domains
per dataset (raw + 20 enhanced). For each domain, we trained five object detectors, yielding a total of 210
model configurations (5 detectors × 21 domains × 2 datasets).

Object Detectors. We selected five popular deep learning-based object detectors: three one-stage detectors
(SSD (Liu et al., 2016), RetinaNet (Lin et al., 2020), YOLO-NAS (AI, 2023)) and two two-stage detectors
(Faster R-CNN (Ren et al., 2017), Cascade R-CNN (Cai & Vasconcelos, 2021)). Each detector was retrained
separately on each domain-specific dataset using the same training and testing splits. We used the SGD
optimizer with a momentum of 0.95, learning rate of 0.01, and weight decay of 10−5. Input image resolution
was set to 400×300 for both datasets. All experiments were conducted on a Linux server with four Nvidia
A100 GPUs. Each detector was trained and evaluated within its corresponding domain to ensure consistent
performance comparisons. The OD performance is measured using mean Average Precision (mAP), which
averages the AP across all object classes. The results are summarized in Table 2. Visual samples are shown
in Fig. 4.
4.1 Key Observations and Analysis

We made several key observations and conducted analysis:

(1) Raw images yield the highest detection performance: Detectors trained on raw images consis-
tently achieve higher mAP values than those trained on enhanced images, with one exception: the Cascade
R-CNN (Cai & Vasconcelos, 2021) detector, which shows a marginal improvement of 0.08% over its raw-
trained counterpart. However, this slight increase does not demonstrate a clear advantage of enhancement-
based training. Enhancement methods often introduce distribution shifts in pixel intensities, color statistics,
and textures, leading to a mismatch with original training assumptions. Raw images, despite degradation,
preserve the natural domain where detectors perform best.

(2) CNN-based UIE performs slightly worse than traditional UIE: To support this observation, we
calculate the average detection performance for each enhancement category (Figure 3). CNN-based methods
(e.g., PRWNet (Huo et al., 2021), UWCNN (Li et al., 2020a), Water-Net (Li et al., 2020b), UIEC2-Net (Wang
et al., 2021)) show slightly lower detection accuracy than traditional approaches like CLAHE (Hummel, 1977),
Retinex (Fu et al., 2014a), and TOPAL (Jiang et al., 2022). The average mAP for CNN-based methods
is 52.22 (RUOD) and 40.97 (URPC2020), compared to 52.84 and 40.97 for traditional UIE methods. This
slight drop may result from CNN models being tuned for visual quality rather than detection accuracy. They
can introduce subtle artifacts, domain shifts, or uneven adjustments—especially in low-contrast areas—that
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affect object features. In contrast, traditional methods apply simpler, more uniform corrections that tend to
preserve these features more reliably. These findings align well with the visual comparisons in Figure 2.

(3) GAN-based UIE has the most severe negative impact on detection performance: UGAN
(Fabbri et al., 2018a), UWGAN (Wang et al., 2019) and AquaGAN (Desai et al., 2022) significantly degrade
detection accuracy, reducing the mAP by an average of approximately 4% compared to training on raw im-
ages. GANs often generate hallucinated textures, unnatural colors, and blurred edges, to improve perceptual
appeal. However, these distortions corrupt the fine spatial structures and edge sharpness critical for OD,
confusing the detectors.

(4) Diffusion-based UIE has minimal negative effects: Among all enhancement methods, diffusion-
based approaches had the least negative impact on detection performance, with results closest to those
obtained with raw images. Notably, WF-Diff (Zhao et al., 2024a) achieved the second-highest accuracy across
most detectors. WF-Diff applies wavelet transformation in the frequency domain combined with diffusion
processes in the wavelet space, leading to the best overall performance. Diffusion models reconstruct images
by denoising while preserving statistical structure, thus maintaining key features like object contours, color
consistency, and textures necessary for robust detection. Their gradual, probabilistic refinement avoids the
over-correction and distortion seen in other methods.

(5) Detection performance of one-stage and two-stage detectors: The performance degradation
in one-stage detectors is similar to that in two-stage detectors. Detectors trained on raw images generally
achieved higher mAP values than those trained on enhanced images, with Cascade R-CNN (Cai & Vasconce-
los, 2021) being the only exception, reaching 59.52% mAP on the enhanced RUOD (Liu et al., 2021) dataset.
Since both detector types rely heavily on low-level texture and edge features, any domain shift or feature
alteration caused by UIE methods affects them similarly.

(6) Detection performance on two datasets: Detectors trained on RUOD (FU2, 2023) consistently
outperform those trained on URPC2020 (Liu et al., 2021). Both datasets show similar performance trends
across enhancement methods, with two exceptions: YOLO-NAS (AI, 2023) achieved the second-highest mAP
in the TOPAL (Jiang et al., 2022) domain on RUOD, and SSD (Liu et al., 2016) achieved the second-highest
mAP in the UIEDP (Du et al., 2025) domain on URPC2020. The better results on RUOD are due to
its greater diversity of scenes and object categories, which promote stronger generalization. In contrast,
URPC2020’s narrower domain makes detectors more sensitive to mismatches introduced by enhancement.

In summary, these findings suggest that, despite the intuitive expectation that UIE should
aid detection, most current enhancement methods introduce distributional shifts, artifacts,
or domain inconsistencies that degrade detector performance. Only well designed UIE tech-
niques (e.g., diffusion-based) that preserve key low-level features without introducing artificial
distortions can minimize this negative impact.

4.2 Study of the Relationship Between Image Enhancement and Detection

To further explore the underlying relationship between underwater image enhancement and OD performance,
we conducted a trend analysis using scatter plots to examine the correlation between the enhanced image
quality composite index (UIQM (Yang & Sowmya, 2015)) scores and detection accuracy (mAP) across various
enhancement methods on the RUOD (FU2, 2023) and URPC2020 (Liu et al., 2021) datasets.

In Fig. 5, each dot shows a detector’s mAP versus the image quality score of an enhancement method. The
regression line indicates the linear trend between UIQM and mAP, with the shaded area showing the 95%
confidence interval—wider bands mean greater uncertainty, while narrower ones indicate higher confidence

Key Observations: (1) Weak Correlation Between UIQM and Detection Performance: The
scatter plots reveal that UIQM scores exhibit a weak or negligible correlation with detection accuracy across
different models and datasets. Some detectors, such as YOLO-NAS (AI, 2023) and RetinaNet (Lin et al.,
2020) on the RUOD (FU2, 2023) dataset, show a slight downward trend, while others display an almost flat
regression line, indicating little to no relationship between UIQM (Yang & Sowmya, 2015) and detection
performance. This suggests that higher UIQM (Yang & Sowmya, 2015) scores do not necessarily translate
to improved OD accuracy. The scattered distribution of points around the regression line further supports
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Figure 4: YOLO-NAS (AI, 2023) detection results on raw and enhanced images. Green boxes indicate
ground truth. Detection Results are shown for Trad. , CNN , GAN , Trans. , and Diff. methods. Orange
and blue boxes mark echinus and starfish. Raw images yield better detection than most enhanced ones.

the inference that detection accuracy is influenced by other factors beyond UIQM (Yang & Sowmya, 2015).
This implies that conventional image quality metrics may not be reliable indicators of detection
performance in underwater environments.

(2) Limitations of Current Evaluation Metrics: Existing objective underwater image enhancement
evaluation metrics (e.g., the composite index UIQM (Yang & Sowmya, 2015)) do not effectively reflect the
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Figure 5: Relationship between detection accuracy (mAP) and image quality scores for different detectors
on the RUOD and URPC2020 datasets. Regression lines with 95% confidence intervals show that higher
image quality scores have weak or no correlation with detection performance.

impact of enhancement on OD performance. This highlights the need for a more detection-aware enhance-
ment evaluation metric.

(3) Degradation Caused by GAN-based Methods: GAN-based enhancement methods (e.g., UGAN
(Fabbri et al., 2018a), UWGAN (Wang et al., 2019), AquaGAN (Desai et al., 2022) ) exhibit the worst
average detection performance in qualitative comparisons (Fig. 3). As shown in Fig. 2, UWGAN (Wang
et al., 2019) introduces noise and alters the original greenish underwater domain into inconsistent colors,
such as brown and purple. These transformations introduce artifacts, blur edges, and degrade visual quality,
ultimately reducing detection accuracy.

(4) Noise and Color Distortion Introduced: The enhancement processes of WB (Hsu & Cheng, 2021a),
Retinex (Fu et al., 2014a), and CLAHE (Hummel, 1977) introduce noise and color distortion, particularly
purple noise, leading to performance degradation compared to raw images. Among them, WB (Hsu & Cheng,
2021a) suffers from a low-contrast problem, making object boundaries less distinguishable. In contrast,
CLAHE (Hummel, 1977) preserves more edge information than both WB and Retinex (Fu et al., 2014a).
As a result, detectors trained on CLAHE-enhanced images outperform those trained on WB- and Retinex-
enhanced images.

(5) Domain Shifts by Enhancement Methods: Methods such as Spectroformer, and UIE-Convformer
(Wang et al., 2024) exhibit domain shifts, converting the greenish underwater tone into brownish or reddish
hues. In contrast, CNN-based enhancement methods like UIEC2-Net (Wang et al., 2021) show minimal
deviation from raw images, helping preserve detector performance.

(6) Superiority of Diffusion-Based Enhancement: Diffusion-based enhancement methods (e.g., WF-
Diff (Zhao et al., 2024a) and UIEDP (Du et al., 2025)) perform significantly better in color correction
and detail preservation. These methods achieve relatively higher detection accuracy within their respective
domain detectors, underscoring the advantages of diffusion-based approaches for underwater OD.

Key Inferences: From our observations, we infer that: (1) Edge preservation is crucial: Edge degra-
dation significantly impacts detector performance. Enhancement algorithms must preserve edge details to
maintain detection accuracy. (2) Color cast can disrupt detection: Unintended color shifts introduced
by enhancement methods can create domain inconsistencies, degrading detection performance. (3) Noise
decreases detection accuracy: Enhancement methods should avoid introducing additional noise, as it
negatively impacts detection. (4) Contrast has minimal effect, while color richness and saturation
matter: while contrast changes have little impact on detection, color richness and saturation play a crucial
role in influencing detector performance. These findings emphasize the need for enhancement methods that
prioritize structural integrity and color consistency while minimizing noise and unwanted artifacts to improve
underwater OD.
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5 Discussion and Conclusion
In this work, we conducted a comprehensive empirical investigation into the impact of UIE on OD. Our
study systematically evaluated 20 diverse UIE algorithms, including traditional, CNN based, GAN based,
Transformer based, and Diffusion based methods, and retrained 5 benchmark object detectors across 21
domains, resulting in a total of 210 model configurations. This extensive experimental design allowed us
to rigorously examine the interplay between enhancement quality and detection accuracy. By covering a
broad spectrum of enhancement techniques and detection architectures, our findings provide robust and
generalizable insights into how visual preprocessing affects downstream OD performance in underwater
environments. Our key findings are summarized as follows:

• UIE does not universally improve detection performance. Contrary to intuitive expectations, most
enhancement techniques reduced OD accuracy. Although enhanced images may appear visually
improved to human, they often introduce artifacts and domain shifts that negatively affect detector
performance.

• One-stage and two-stage detectors are similarly impacted. Our results indicate that both types
of detection architectures suffer comparable performance degradation when trained on enhanced
images. This suggests that the negative impact is rooted in the enhancement process itself rather
than in the detector design.

• The primary factor affecting detection is not the original underwater color cast, but rather the
multiple new color tones introduced by enhancement methods. These artificial color shifts often
result in inconsistent feature representations, leading to performance drops.

• Enhancement methods may introduce noise, edge blurring, and texture loss, all of which can signif-
icantly degrade object detector performance.

• While color correction is often a goal in enhancement, excessive adjustments to contrast, saturation,
and color richness can negatively affect detection. Among these, over-saturation and unnatural color
alterationshave the most significant impact.

• The choice of enhancement method is critical. GAN-based techniques tend to produce perceptual
artifacts and yield the worst detection performance. In contrast, diffusion-based methods such as
WF-Diff and UIEDP offer a better balance between perceptual quality and detection accuracy.

• Current underwater image quality assessment metrics are limited. They often fail to align with
both human visual perception and the performance of OD models. This highlights the need for new
evaluation metrics that are specifically designed for task-oriented applications and better reflect the
effectiveness of enhancement methods in detection tasks.

These findings point to a deeper challenge: underwater enhancement must be task-aware. Enhancing visual
appeal alone is not sufficient when the end goal is high-level vision tasks like detection or segmentation.
As such, future efforts should shift toward task-oriented enhancement frameworks that co-optimize visual
quality and downstream utility. We propose three critical directions for future research:

• Task-aligned enhancement models: Develop UIE approaches that are optimized jointly with object
detectors, enabling end-to-end learning that enhances both perceptual quality and task performance.

• New evaluation metrics: Existing quality metrics fail to reflect downstream utility. There is a clear
need for task-sensitive metrics that correlate with detection outcomes.

• Robustness and generalization: UIE methods should generalize across diverse underwater scenes
while minimizing distortion and maintaining feature consistency for detection.

In conclusion, our large-scale empirical study provides a critical benchmark for understanding how underwa-
ter image enhancement affects OD. We hope this work inspires future efforts toward developing enhancement
methods that are not only visually compelling but also effective in supporting real-world underwater vision
tasks. Moving forward, we aim to continue exploring task-oriented enhancement strategies and novel evalu-
ation metrics that bridge the gap between visual perception and deep learning-based detection.
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