
Published as a conference paper at ICLR 2024

Appendix: Denoising Diffusion Bridge Models

A PROOFS

A.1 MARGINAL DISTRIBUTION

We note that for tractable transition kernels specified in Table 1, we can derive the marginal distribution
of xt using Bayes’ rule

p(xt | x0,xT) =
p(xT | xt)p(xt | x0)

p(xT | x0)

We can directly derive this by looking at the resulting density function. First,

p(xt | x0) =
1√
2πσt

exp

(
− (xt − αtx0)

2

2σ2
t

)
(16)

p(xT | xt) =
1

√
2π
√
σ2
T −

α2
T

α2
t
σ2
t

exp

− (αT

αt
xt − xT)

2

2(σ2
T −

α2
T

α2
t
σ2
t)

 (17)

=
1

√
2π
√
σ2
T −

α2
T

α2
t
σ2
t

exp

(
−

(xt − αt

αT
xT)

2

2σ2
t (

SNRt

SNRT
− 1)

)
(18)

p(xT | x0) =
1√
2πσT

exp

(
− (xT − αTx0)

2

2σ2
T

)
(19)

and we refer readers to Kingma et al. (2021) for details on p(xs | xt) for any s > t. Then we know

p(xt | x0,xT) (20)

=
1

√
2π

σt

σT

√
σ2
T −

α2
T

α2
t

σ2
t︸ ︷︷ ︸

σ̂t

exp

(
−1

2

[(xt − αtx0)
2

σ2
t

+
(xt − αt

αT
xT)

2

σ2
t (

SNRt

SNRT
− 1)

− (xT − αTx0)
2

σ2
T︸ ︷︷ ︸

− (xt − µ̂t)
2

2σ̂2
t

])
(21)

where

σ̂2
t = σ2

t (1−
SNRT

SNRt
) (22)

µ̂t =
SNRT

SNRt

αt

αT
xT + αtx0(1−

SNRT

SNRt
) (23)

A.2 DENOISING BRIDGE SCORE MATCHING

Theorem 2 (Denoising Bridge Score Matching). Let (x0,xT) ∼ qdata(x,y), xt ∼ q(xt | x0,xT),
t ∼ p(t) for any non-zero time sampling distribution p(t) in [0, T], and w(t) be a non-zero loss
weighting term of any choice. Minimum of the following objective:

L(θ) = Ext,x0,xT ,t

[
w(t)∥sθ(xt,xT , t)−∇xt

log q(xt | x0,xT)∥2
]

(9)

satisfies sθ(xt,xT , t) = ∇xt
log q(xt | xT).

Proof. We can explicitly write the objective as∫
xt,x0,xT ,t

q(xt | x0,xT)qdata(x0,xT)w(t)p(t)
[
∥sθ(xt,xT , t)−∇xt log q(xt | x0,xT)∥2

]
dxtdx0dxT dt

(24)

13

Published as a conference paper at ICLR 2024

Since the objective is an L2 loss and p(t), w(t) are non-zero, its minimum can be derived as

s∗(xt,xT , t)

=

∫
x0,t

q(xt | x0,xT)qdata(x0,xT)����w(t)p(t)∫
x0

p(xt | x0,xT)qdata(x0,xT)����w(t)p(t)dx0
∇d log q(xt | x0,xT)x0dt (25)

=

∫
x0

q(xt | x0,xT)qdata(x0,xT)

q(xt,xT)
∇xt

log q(xt | x0,xT)dx0 (26)

=

∫
x0

((((((
q(xt | x0,xT)qdata(x0,xT)

q(xt,xT)

∇xt
q(xt | x0,xT)

((((((
q(xt | x0,xT)

dx0 (27)

=
∇xt

∫
x0

qdata(x0,xT)q(xt | x0,xT)dx0

q(xt,xT)
(28)

=
∇xtq(xt,xT)

q(xt,xT)
(29)

=∇xt
log q(xt | xT) (30)

Thus, minimizing the objective approximates the conditional score.

A.3 PROBABILITY FLOW ODE OF DIFFUSION BRIDGES

Theorem 1. The evolution of conditional probability q(xt | xT) has a time-reversed SDE of the form

dxt =
[
f(xt, t)− g2(t)

(
s(xt, t, y, T)− h(xt, t, y, T)

)]
dt+ g(t)dŵt, xT = y (6)

with an associated probability flow ODE

dxt =
[
f(xt, t)− g2(t)

(1
2
s(xt, t, y, T)− h(xt, t, y, T)

)]
dt, xT = y (7)

on t ≤ T − ϵ for any ϵ > 0, where ŵt denotes a Wiener process, s(x, t, y, T) = ∇xt
log q(xt |

xT)
∣∣
xt=x,xT=y

and h is as defined in Eq. (5).

Proof. To find the time evolution of q(xt | xT) =
∫
x0

p(xt | x0,xT)qdata(x0 | xT), we can first
find the time evolution of p(xt | x0 = x0,xT = xT) for fixed endpoints x0 and xT , which by Bayes’
rule is

p(xt | xT = xT ,x0 = x0) =
p(xT = xT | xt)p(xt | x0 = x0)

p(xT = xT | x0 = x0)

where p(xt | x0) follows Kolmogorov forward equation

∂

∂t
p(xt | x0 = x0) = −∇xt

·
[
f(xt, t)p(xt | x0 = x0)

]
+

1

2
g2(t)∇xt

· ∇xt
p(xt | x0 = x0)

(31)

and p(xT = xT | xt) follows Kolmogorov backward equation Szavits-Nossan and Evans (2015)
where

− ∂

∂t
p(xT = xT | xt) = f(xt, t) · ∇xt

p(xT = xT | xt) +
1

2
g2(t)∇xt

· ∇xt
p(xT = xT | xt)

(32)

The time derivative of p(xt | xT = xT ,x0 = x0) thus follows

∂

∂t
p(xt | xT = xT ,x0 = x0) (33)

=
∂

∂t

p(xT = xT | xt)p(xt | x0 = x0)

p(xT = xT | x0 = x0)
(34)

=
p(xt | x0 = x0)

p(xT = xT | x0 = x0)

∂

∂t
p(xT = xT | xt)︸ ︷︷ ︸

1

+
p(xT = xT | xt)

p(xT = xT | x0 = x0)

∂

∂t
p(xt | x0 = x0)︸ ︷︷ ︸

2

(35)

14

Published as a conference paper at ICLR 2024

Further expanding the right-hand-side, we have

1 = − p(xt | x0 = x0)

p(xT = xT | x0 = x0)

(
f(xt, t) · ∇xt

p(xT = xT | xt) +
1

2
g2(t)∇xt

· ∇xt
p(xT = xT | xt)

)

2 =
p(xT = xT | xt)

p(xT = xT | x0 = x0)

(
−∇xt ·

[
f(xt, t)p(xt | x0 = x0)

]
+

1

2
g2(t)∇xt · ∇xtp(xt | x0 = x0)

)
We can notice that the sum of the first terms of 1 and 2 is the result of a product rule, thus

1 + 2 = −∇xt
·
[
f(xt, t)p(xt | xT = xT ,x0 = x0)

]
+

1

2
g2(t)

(
p(xT = xT | xt)

p(xT = xT | x0 = x0)
∇xt
· ∇xt

p(xt | x0 = x0)

− p(xt | x0 = x0)

p(xT = xT | x0 = x0)
∇xt
· ∇xt

p(xT = xT | xt)

) (36)

We now focus on reducing the terms in the last bracket. For clarity, we similarly number the two
terms inside the bracket such that

3 =
p(xT = xT | xt)

p(xT = xT | x0 = x0)
∇xt · ∇xtp(xt | x0 = x0) (37)

4 =
p(xt | x0 = x0)

p(xT = xT | x0 = x0)
∇xt
· ∇xt

p(xT = xT | xt) (38)

Now we can complete these terms to be results of product rule by adding and subtracting the following
term

∇xt
p(xT = xT | xt) · ∇xt

p(xt | x0 = x0)

p(xT = xT | x0 = x0)
(39)

=
∇xt

p(xt | x0 = x0)

p(xT = xT | x0 = x0)
·
[
p(xT = xT | xt)∇xt

log p(xT = xT | xt)
]

︸ ︷︷ ︸
5

(40)

=
∇xt

p(xT = xT | xt)

p(xT = xT | x0 = x0)
·
[
p(xt | x0 = x0)∇xt

log p(xt | x0 = x0)
]

︸ ︷︷ ︸
6

(41)

which takes 2 equivalent forms 5 and 6 . Now we can write Eq. (36) as

1 + 2 = −∇xt
·
[
f(xt, t)p(xt | xT = xT ,x0 = x0)

]
(42)

+
1

2
g2(t)

(
3 + 4 + 5 + 6

)
− g2(t)

(
4 + 5

)
(43)

We can notice that

3 + 6 = ∇xt ·

(
p(xt | xT = xT ,x0 = x0)∇xt log p(xt | x0 = x0)

)
(44)

4 + 5 = ∇xt
·

(
p(xt | xT = xT ,x0 = x0)∇xt

log p(xT = xT | xt)

)
(45)

and using Bayes’ rule,

∇xt
log p(xt | xT = xT ,x0 = x0) = ∇xt

log p(xT = xT | xt) +∇xt
log p(xt | x0 = x0) (46)

15

Published as a conference paper at ICLR 2024

we have

3 + 4 + 5 + 6 = ∇xt
·

(
p(xt | xT = xT ,x0 = x0)∇xt

log p(xt | xT = xT ,x0 = x0)

)
(47)

= ∇xt
· ∇xt

p(xt | xT = xT ,x0 = x0) (48)

Therefore,

∂

∂t
p(xt | xT = xT ,x0 = x0)

=−∇xt ·

[(
f(xt, t) + g2(t)∇xt log p(xT = xT | xt)

)
p(xt | xT = xT ,x0 = x0)

]

+
1

2
g2(t)∇xt

· ∇xt
p(xt | xT = xT ,x0 = x0)

(49)

which is a Fokker-Planck equation for a (forward) SDE with the modified drift term

f(xt, t) + g2(t)∇xt
log p(xT = xT | xt)

To find the time derivative for q(xt | xT) =
∫
x0

p(xt | x0,xT)qdata(x0 | xT), we can simply
marginalize out x0 with distribution qdata(x0 | xT) in the resulting Fokker-Planck, which can be
achieved due to linearity of expectation with respect to x0. That is,

Ex0∼qdata(x0|xT=xT)

[∂
∂t

p(xt | xT = xT ,x0)
]

=−∇xt ·

[(
f(xt, t) + g2(t)∇xt log p(xT = xT | xt)

)
Ex0∼qdata(x0|xT=xT)

[
p(xt | xT = xT ,x0)

]]

+
1

2
g2(t)∇xt

· ∇xt
Ex0∼qdata(x0|xT=xT)

[
p(xt | xT = xT ,x0)

]
(50)

Since for t ∈ [0, T − c] for some c > 0, Doob’s h-function is well-defined, and p(xt | x0, xT) is
smooth, and we can take the expectation inside the equations. Additionally, the drift adjustment
∇xt

log p(xT = xT | xt) does not depend on x0 the expectation is simply over p(xt | xT = xT ,x0)
expectation and by definition LHS is q(xt | xT = xT),

∂

∂t
q(xt | xT = xT) =−∇xt

·

[(
f(xt, t) + g2(t)∇xt

log p(xT = xT | xt)
)
q(xt | xT = xT)

]

+
1

2
g2(t)∇xt

· ∇xt
q(xt | xT = xT)

(51)
This characterizes a reverse SDE specified in Theorem 1.

We can further use conversion trick in Song et al. (2020b) to convert this into a continuity equation
without any diffusion term where

∂

∂t
q(xt | xT = xT) = ∇xt ·

[
f̃(xt, t)q(xt | xT = xT)

]
(52)

where

f̃(xt, t) = f(xt, t) + g2(t)∇xt
log p(xT = xT | xt)−

1

2
g2(t)∇xt

log q(xt | xT = xT) (53)

= f(xt, t)− g2(t)
(1
2
∇xt

log q(xt | xT = xT)−∇xt
log p(xT = xT | xt)

)
(54)

16

Published as a conference paper at ICLR 2024

A.4 SPECIAL CASES OF DENOISING DIFFUSION BRIDGES

Unconditional diffusion models. We first give a general intuition that the marginal distribution
of xt sampling from the bridge is the same as sampling marginally from p(xt | x0) for a diffusion
transition kernel p(·). We can see this by observing

xt =
SNRT

SNRt

αt

αT
xT + αtx0(1−

SNRT

SNRt
) + σ2

t (1−
SNRT

SNRt
)ϵ1 (55)

where ϵ1 ∼ N (0, I). And since we assume xT ∼ N (αTx0, σ
2
T I),we rewrite the above equation as

xt =
SNRT

SNRt

αt

αT
(αTx0 + σT ϵ2) + αtx0(1−

SNRT

SNRt
) + σt

√
(1− SNRT

SNRt
)ϵ1 (56)

=
SNRT

SNRt
αtx0 +

SNRT

SNRt

αt

αT
σT ϵ2 + αtx0(1−

SNRT

SNRt
) + σt

√
(1− SNRT

SNRt
)ϵ1 (57)

= αtx0 + σtϵ (58)
where ϵ ∼ N (0, I) and the last equality is due to the fact that the addition of two Gaussian with
variances σ2

1 , σ2
2 is another Gaussian with variance σ2

1 + σ2
2 .

Formally, to show that it is a special case, we first observe that the score matching objective allows our
network to approximate ∇xt

log p(xt | xT) which is the conditional score of the diffusion transition
kernel. Then we will show that the Fokker-Planck equation reduces to that of a diffusion when
marginalizing out dependency on xT .

From proof of Theorem 1, we know that the Fokker-Planck equation for p(xt | xT) follows

∂

∂t
p(xt | xT = xT) =−∇xt

·

[(
f(xt, t) + g2(t)∇xt

log p(xT = xT | xt)
)
p(xt | xT = xT)

]
(59)

+
1

2
g2(t)∇xt

· ∇xt
p(xt | xT = xT) (60)

Here we note that we use p(xt | xT) because we are considering a diffusion process as a special case
of a general q(xt | xT) introduced in Theorem 2. We can marginalize out xT such that

∂

∂t
ExT∼p(xT)

[
p(xt | xT)

]
=ExT∼p(xT)

[
−∇xt ·

[(
f(xt, t) + g2(t)∇xt log p(xT | xt)

)
p(xt | xT)

]]

+
1

2
g2(t)∇xt

· ∇xt
ExT∼p(xT)

[
p(xt | xT)

]
(61)

and so
∂

∂t
p(xt) =−∇xt

·
(
f(xt, t)p(xt)

)
− g2(t)∇xt

· ExT∼p(xT)

[
p(xt | xT)∇xt

log p(xT | xt)
]

+
1

2
g2(t)∇xt · ∇xtp(xt) (62)

and the second term can be reduced by writing the expectation explicitly as

ExT∼p(xT)

[
p(xt | xT)∇xt

log p(xT | xt)
]

=

∫
xT

p(xT)p(xt | xT)∇xt
log p(xT | xt)dxT (63)

=p(xt)

∫
xT

p(xT | xt)∇xt log p(xT | xt)dxT (64)

=p(xt)

∫
xT

�����p(xT | xt)
∇xtp(xT | xt)

�����p(xT | xt)
dxT (65)

=p(xt)∇xt

∫
xT

p(xT | xt)dxT (66)

=0 (67)

17

Published as a conference paper at ICLR 2024

Therefore, the resulting probability flow ODE is
∂

∂t
p(xt) =−∇xt

·
(
f(xt, t)p(xt)

)
+

1

2
g2(t)∇xt

· ∇xt
p(xt) (68)

which is that of a regular diffusion. Therefore, by setting data distribution qdata(x0,xT) to be
p(xT | x0)qdata(x0) we recover unconditional diffusion models.

OT-Flow Matching and Rectified Flow. As proposed, we use a VE schedule such that f(xt, t) = 0
and σ2

t = c2t for some constant c ∈ [0, 1]. Then the probability flow ODE conditioned on x0,xT

becomes

dxt = −c2
[1
2
∇xt log q(xt | x0,xT)− log p(xT | x0)

]
dt (69)

Specifically, the drift term D = −c2
[
1
2∇xt log q(xt | x0,xT)− log p(xT | x0)

]
becomes

D = −1

2
c2

[
− ϵ

c
√
t(1− t

T)
+ 2

(t
T xT + (1− t

T)x0 + c
√
t(1− t

T)ϵ− xT)

c2(T − t)

]
(70)

where xt =
t
T xT + (1− t

T)x0 + c
√

t(1− t
T)ϵ. And we can rearrange the terms to be

D =

[
−

(t
T xT + (1− t

T)x0 − xT)

(T − t)

]
+O(c) (71)

=

[
−

((1− t
T)x0 − (1− t

T)xT)

(T − t)

]
+O(c) (72)

=

[
(xT − x0)

T

]
+O(c) (73)

And by taking c → 0, we have limc→0 D = x1 − x0 for T = 1. Therefore the network learns to
match this drift term in the noiseless limit of denoising diffusion bridge in OT-Flow Matching and
Rectified Flow case.

We next note that the original score-matching loss is no longer valid as bridge noise σ̂t → 0 causes
exploding magnitude of bridge score∇xt log q(xt|x0,xT). We can then resort to matching against
limc→0 D altogether.

One additional caveat is that our framework as presented needs to take in xT as an additional condition.
To handle this, we note the generalized parameterization can be used to define sθ(xt,xT , t) =
cskip1(t)xt + cskip2(t)xT + cout(t)Vθ(xt, t) where Vθ(xt, t) is our actual network. We then set

cskip1(t) = cskip2(t) = 0 and cout(t) = 1 and uses loss Ext,t

[
∥sθ(xt,xT , t)− (xT − x0)∥2

]
=

Ext,t

[
∥Vθ(xt,xT , t)− (xT − x0)∥2

]
, which is the case of OT-Flow-Matching and Rectified Flow.

A.5 GENERALIZED PARAMETERIZATION

We now derive the EDM scaling functions from first principle, as suggested by (Karras et al., 2022).

Let at = αt/αT ∗ SNRT /SNRt, bt = αt(1− SNRT /SNRt), ct = σ2
t (1− SNRT /SNRt). First, we

expand the pred-x objective as

Ext,x0,xT ,t

[
w̃(t)∥cskip(t)xt + coutFθ(cin(t)xt, cnoise(t))− x0∥2

]
where xt = atxT + btx0 +

√
ctϵ for ϵ ∼ N (0, I). To derive cin(t), we set the variance of the

resulting input cin(t)xt to be 1, where

c2in(t)
(
a2tσ

2
T + b2tσ

2
0 + 2atbtσ0T + ct

)
= 1 (74)

=⇒ cin(t) =
1√

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct

(75)

18

Published as a conference paper at ICLR 2024

For simplicity we denote the neural network as Fθ, and the inner square loss can be expanded to be

w̃(t)
∥∥∥cskip(t)

(
atxT + btx0 +

√
ctϵ
)
+ coutFθ − x0

∥∥∥2 (76)

=w̃(t)c2out(t)

∥∥∥∥∥Fθ −
1

cout(t)

([
1− cskip(t)bt

]
x0 − cskip(t)

[
atxT +

√
ctϵ
])∥∥∥∥∥

2

(77)

And we want the prediction target to have variance 1, thus

1

c2out(t)

([
1− cskip(t)bt

]2
σ2
0 + cskip(t)

2
[
atσ

2
T + ct

]
− 2
[
1− cskip(t)bt

]
cskip(t)atσ0T

)
= 1 (78)

and

c2out(t) =
[
1− cskip(t)bt

]2
σ2
0 + cskip(t)

2
[
atσ

2
T + ct

]
− 2
[
1− cskip(t)bt

]
cskip(t)atσ0T (79)

Following reasoning in Karras et al. (2022), we minimize cout(t)
2 w.r.t. cskip(t) by taking derivative

and set to 0, which is

−2(1− cskip(t)bt)btσ
2
0 + 2cskip(t)(a

2
tσ

2
T + ct)− 2(1− 2cskip(t)bt)atσ0T = 0 (80)

and this implies

cskip(t) =
btσ

2
0 + atσ0T

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct

(81)

=
(
btσ

2
0 + atσ0T

)
∗ cin(t)

2 (82)

And

c2out(t) = σ2
0 − 2cskip(t)btσ

2
0 +

(
btσ

2
0 + atσ0T

)
cskip(t)− 2cskip(t)atσ0T (83)

= σ2
0 −

(
btσ

2
0 + atσ0T

)
cskip(t) (84)

=
a2t (σ

2
0σ

2
T − σ2

0T) + σ2
0ct

a2tσ
2
T + b2tσ

2
0 + 2atbtσ0T + ct

(85)

=⇒ cout(t) =
√
a2t (σ

2
0σ

2
T − σ2

0T) + σ2
0ct ∗ cin(t) (86)

Finally, w̃(t)cout(t)
2(t) = 1 =⇒ w̃(t) = 1/cout(t)

2, and for time, we simply reuse that proposed in
Karras et al. (2022) as no significant change in time’s distribution.

EDM (Karras et al., 2022) as a special case. In the case of unconditional diffusion models, we
have xT = x0 + Tϵ, so σ2

T = σ2
0 + T 2 and σ0T = σ2

0 . Additionally, at = t2/T 2, bt = (1− t2/T 2),

19

Published as a conference paper at ICLR 2024

ct = t2(1− t2/T 2). Substituting in these into the coefficients, we have

cin(t) =
1√

t4

T 4 (σ2
0 + T 2) + (1− t2

T 2)2σ2
0 + 2 t2

T 2 (1− t2

T 2)σ2
0 + t2(1− t2

T 2)
(87)

=
1√

�
��t4

T 4σ
2
0 + �

�t
4

T 2 + (1− t2

T 2)2σ2
0 + 2 t2

T 2σ2
0 − �2

t4

T 4σ2
0 + t2 − �

�t
4

T 2

(88)

=
1√

σ2
0 + t2

(89)

cskip(t) =
(1− t2

T 2)σ
2
0 +

t2

T 2σ
2
0

σ2
0 + t2

(90)

=
σ2
0

σ2
0 + t2

(91)

cout(t) =

√
t4

T 4
(σ2

0(σ
2
0 + T 2)− σ4

0) + σ2
0t

2(1− t2

T 2
) ∗ cin(t) (92)

=

√
t4

T 4
(σ4

0 + σ2
0T

2 − σ4
0) + σ2

0t
2(1− t2

T 2
) ∗ cin(t) (93)

=

√
t4

T 2
σ2
0 + σ2

0t
2 − σ2

0

t4

T 2
∗ cin(t) (94)

=
σ0t√
σ2
0 + t2

(95)

And w̃(t) = 1/c2out(t) = (σ2
0 + t2)/(σ2

0t
2) = 1/t2 + 1/σ2

0 .

A.6 SAMPLER DISCRETIZATION

EDM introduces Heun sampler, which discretizes the sampling steps into t0 < t1 · · · < tN where

ti>0 =
(
T

1
ρ +

N − i

N − 1
(t

1
ρ

min − T
1
ρ)
)ρ

and t0 = 0 (96)

and ρ = 7 is a default choice. It then integrates over the probability flow ODE path with second-order
Heun steps for each such discretization step. We reuse this discretization for all our experiments.

B EXPERIMENT DETAILS

Hybrid Sampler. We present in Algorithm 1 our hybrid sampler.

Architecture. For unconditional generation, architectures are reused from Karras et al. (2022)
for both CIFAR-10 and FFHQ-64×64. For pixel-space translation, we use ADM (Dhariwal and
Nichol, 2021) architecture for both 64×64 and 256×256 resolutions. For latent-space translation,
which reduces to 32×32 resolution in the latent space, we use ADM (Dhariwal and Nichol, 2021)
architecture for 64×64 resolution but change the channel dimensions from 192 to 256 and reduce
the number of residual blocks from 3 to 2, and we fix everything else to be same as that for 64×64
resolution. We use 0.1 dropout for all models. Conditioning is done via concatenation at the input
level.

VE and VP bridge parameterization. There are many schedules we can choose for both types of
bridges. For all our experiments, VE bridges follow σt = t and αt = 1 and VP bridges follow a linear
drift schedule (Song et al., 2020b) with f(xt, t) = −0.5t(β1 − β0) − 0.5β0. We choose β1 = 2.1
and β0 = 0.1 because the resulting bridge is close to VE schedule. We observe that dramatically
increasing drift causes the max noise to shift towards a higher t and the noise decreases faster to 0
at t = T than for a symmetric bridge. This makes the learning process more difficult and degrades
performance.

Training. We use AdamW optimizer with 0.0001 learning rate and no weight decay. The batch
size is 256 for all image size less than 256 and training is done on 4 NVIDIA A100 40G. For

20

Published as a conference paper at ICLR 2024

Algorithm 1 Denoising Diffusion Bridge Hybrid Sampler

Input: model Dθ(xt, t), time steps {ti}Ni=0, max time T , guidance strength w, step ratio s,
distribution qdata(y)
Output: x0

Sample xN ∼ qdata(y)
for i = N, . . . , 1 do

Sample ϵi ∼ N (0, I)
t̂i ← ti + s(ti−1 − ti)

di ←−f(xi, ti) + g2(ti)
(
s(xi, ti,xN , T)− h(xi, ti,xN , T)

)
x̂i ← xi + di(t̂i − ti) + g(ti)

√
t̂i − tiϵi

d̂i ← −f(x̂i, t̂i) + g2(t̂i)
(

1
2s(x̂i, t̂i,xN , T)− wh(x̂i, t̂i,xN , T)

)
xi−1 ← x̂i + d̂i(ti−1 − t̂i)
if i ̸= 1 then

d′
i ← −f(xi−1, ti−1) + g2(ti−1)

(
1
2s(xi−1, ti−1,xN , T)− wh(xi−1, ti−1,xN , T)

)
xi−1 ← x̂i + (12d

′
i +

1
2 d̂i)(ti−1 − t̂i)

end if
end for

256×256 resolution, the batch size is 4 accumulated 4 times such that the effective batch size is 64,
trained on 4 NVIDIA A100 40G. The training is terminated at 500K iterations. During training, for
image-to-image translation, we set σ0 = σT = 0.5, σ0T = σ2

0/2, and for unconditional generation,
we set σ0 = 0.5, σT =

√
σ2
0 + T 2 and σ0T = σ2

0 . We use random flipping as our data augmentation
for image-to-image translation and reuse augmentation from Karras et al. (2022) for generation.

Baselines. All baselines are trained using the same architecture as ours for each experiment. For
SDEdit, we use pretrained EDM model on x0 and conduct image-to-image translation by first noising
xT and denoising using the pretrained model. We reuse the noise schedule proposed by (Karras
et al., 2022) and for reasonable generation while retaining global structure of the image conditions,
we noise xT using the noise variance indexed at 1/3 of EDM noise schedule and denoise starting
from this noised image for the remaining 1/3 of total of N steps. For DDIB, we train two separate
unconditional models starting for x0 and xT separately and perform translation by reversing DDIM
starting from xT and generating using DDIM for x0. We reuse the original baseline code for all
baselines while.

Sampling. For all experiments we evaluate models on a low-step regime, i.e. the same number of
sampling steps. For all experiments, we set guidance scale w = 0.5 and for image translation and
unconditional generation, we use euler step ratio ratio s = 0.33 and s = 0 respectively. In case of
s = 0, no Euler step is done. With these settings, we set N = 18, or NFE = 53, for 32×32 resolution
image translation, and for all other resolutions, we use N = 40, or NFE = 118, for image translation.
For unconditional generation, N = 18 =⇒ NFE = 36 for CIFAR-10 and N = 40 =⇒ NFE = 79
for FFHQ-64×64. FID and IS scores are calculated using the entire training set for all datasets for
image translation tasks. They are calculated using 50K samples for unconditional generation tasks.

Additional visualization We give additional visualization from our model below.

21

Published as a conference paper at ICLR 2024

Figure 6: Additional Edges→Handbags results.

22

Published as a conference paper at ICLR 2024

Figure 7: Additional DIODE results.

23

Published as a conference paper at ICLR 2024

Figure 8: Additional DIODE results.

24

	Proofs
	Marginal distribution
	Denoising Bridge Score Matching
	Probability Flow ODE of Diffusion Bridges
	Special Cases of Denoising Diffusion Bridges
	Generalized Parameterization
	Sampler Discretization

	Experiment Details

