A Details of the Experiments

A.1 A Synthetic Linear MDP Example

We construct a synthetic linear MDP example based on a hard example proposed in Section 5 in
[10], which was used to illustrate their lower bound. However, the feature dimension d = 2 in their
illustrative example is too small to show discrepancy between our algorithm and theirs. Therefore,
we construct an example sharing a similar structure but of much larger feature dimension and size of
action space.

MDP instance. In specific, our MDP instance contains |S| = 2 states and |.A| = 100 actions, and
the feature dimension is d = 10. We denote S = {0,1} and A = {0, 1,...,99} respectively. For
each action a € [99], we represent it by a binary encoding vector a € R® with each entry being either
1 or —1. With a slight abuse of notation, we interchangebly use @ and and its vector representation a.

We define
1 if 1{s =0} =1{a =0},
0 otherwise.

sov) = {

Then the feature mapping is given by
o(s,a) = (a’,d(s,a),1 —6(s,a))" € RO,

Let {ap }re(m) be a sequence of integers taking values in {0, 1}. For each s € S, the vector-valued
measures are defined as

/'l'h(s):(07"'707(175)@aha5@ah)

forall b € [H], where @ denotes the "XOR’ sign. Finally, we define v, = v = (0,...,0,1,0) € R,
Thus the transition is Py (s’ | s,a) = (¢(s,a), up(s’)) and the expected reward is r,(s,a) =
(d(s,a),~). Ttis straightforward to verify that this is a valid time-inhomogeneous linear MDP.

Behavior and target policy. The target policy is given by m(s) = 0 for both s = 0, 1. The behavior
policy is determined by a parameter p € (0, 1): with probability 1 — p, the behavior policy chooses
a = 0, and with probability (1 — p)/99 it chooses a = i for each ¢ € [99]. This p can be used to
control the distribution shift between the behavior and target policies. Note that p close to 0 induces
small distribution shift, while larger p leads to large distribution shift. Moreover, we set the initial
distribution £; to be uniform over S.

We remark that in our implementation of VA-OPE we do not apply data splitting, i.e., D = D and
therefore no data is wasted. As is mentioned in the main text, the only purpose of the data splitting is
to avoid an otherwise lengthy theoretical analysis. Therefore, for each fixed K, both algorithms use a
dataset of size K sampled under the behavior policy.

A.2 TImpact of the Planning Horizon

We first study the impact of the planning horizon H on the performance. We run our algorithm
VA-0PE and the baseline method FQI-0PE with A = 1 on the linear MDP instance constructed in the
previous subsection under different values of H. We fix the initial distribution to be &; = [1/2,1/2]
and p to be 0.6. The results are reported in Figure 2.

To explain the results, let us first recall the dominant term in our error bound and that in [10] (ignoring
the logarithmic and constant factors):

H H T
py - Dbl LU =k DVl

VK VK

As mentioned in the discussion following Theorem 4.1, it holds that Dy, < Dgqr. Indeed, this is
reflected by the error plots where the error of VA-0OPE is smaller than that of FQI-0PE except for very
small K.

Moreover, as careful readers may have already observed, the discrepancy between Dy, and Dgqr
would be amplified as the value of H increases. Again, our simulation results confirm this theoretical

(A.1)
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Figure 2: OPE error vs. v/K . The results are averaged over 50 trials and the error bars are chosen to be
the empirical [10%, 90%] confidence intervals. For a proper comparison, each sub-plot corresponds
to a different setting of H by keeping everything else the same: |S| = 2, |.A| = 100, p = 0.6.

observation as we can see by comparing the subplots of Figure 2. For larger values of H, VA-OPE
tends to enjoy a much faster convergence rate. We would like to emphasize that this performance
gain is especially beneficial for long-horizon tasks.

These findings also shed light on the minimax optimality of the OPE problem. The previous
FQI-OPE algorithm is nearly minimax optimal only for a subclass of linear MDPs where V,, V", | =
O((H — h)?). As suggested by our theory and confirmed by the numerical experiments, our
algorithm VA-OPE achieves a tighter instance-dependent error for general linear MDPs. We would
like to establish the universal minimax lower bound in the future work, and we believe that VA-OPE
is a promising candidate for achieving minimax optimality.

We would also like to remark that the width of the error bars of VA-0OPE is similar to that of FQI-0PE.
It only appears wider on the plots since the y-axis is log;,-scaled.

A.3 Impact of Distribution Shift

We also illustrate the impact of distribution shift between the behavior policy and the target policy on
the performance, which can be controlled by the value of p. In Figure 3°, we compare the performance
of VA-OPE and FQI-OPE under different values of p.

The subplots in the same row share the same value of H. It is clear that for larger distribution shift,
the performance of VA-OPE is superior. The reason behind this is that for fixed H, the ratio Dgqr/ Dy,
increases as p increases. We further investigate this in the next subsection.

A4 Comparison of the Dominant Terms

Finally we compare the dominant terms in the error upper bound of VA-OPE and FQI-OPE as defined
in (A.1). Since both Dy, and Dgqr are theoretical values as the expectation over the occupancy
measure induced by the transition kernel and the behavior/target policy, we simply estimate them by
averaging over 1,000,000 independent trajectories. As presented in Figure 4, our characterization

3Note that the range of the y-axis differs among different rows.
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Figure 3: Log-scaled OPE error vs. v/ K under different levels of distribution shift and horizon H.
The level of distribution shift is controlled by the parameter p, where larger p corresponds to larger

distribution shift.
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Figure 4: Ratio between dominant terms vs. H. The results are generated by averaging over 1,000,000
trajectories.

of the distribution shift, Z het IVhll A is tighter. This is the main reason for the performance
discrepancy that we have seen in the precedmg subsections.

A.5 Hardware Details

All experiments are performed on an internal cluster with CPU and 30 GB of memory.

B Further Comparison with Duan et al. [10]

Consider the dominant term in the OPE error (omiting the logarithmic coefficients) given by Theorem

2 in Duan et al. [10], which was shown to be Zle (H —h+1)||v]|ls;-1/VK from their proof. As
h

comparison, recall that our dominant term is about Zthl [IVEl A /v/K. The definition of ¥}, in

(2.5) and that of Ay, in (2.6) immediately imply X;, < [(H — h + 1) +

above by (H — h + 1)? + 1. Therefore, it holds that

ul (H—=h+1)[Ivills-
> (H - h+1)||vh|\21>z e )h A;

h=1

1] - Aj, as o7 is bounded

(B.1)

The RHS of (B.1) is close to 25:1 V7| o—1 if H is large. Moreover, when V; V7 is small, the
h

RHS of (B.1) can be much smaller than the LHS with appropriate choice of 7. In other words, our

bound is tighter than that of Duan et al. [10] in all scenarios, especially when V,V}T, ; is small.

Consider, for example, a scenario where the conditional variance of V;7, h € [H] is less than
H — h+ 1, which is smaller than the crude upper bound of (H — h+1)% by afactor of (H —h +1).

Then by choosing 7, = 1 and 0,, = 1, we would have 07 = H — h + 2, and
(H—h+1)||vh||2;1 _ H-h+1
Ivillaz VH—=h+2

which suggests that || v] || A is smaller than its counterpart by a factor of (H—h+1)/vVH —h+2.

Also, as mentioned in the main text, the conditional variance of Vi does not need to be uniformly
smaller than H — h + 1 for all (s,a) € S x A. It only needs to be small on average.

Regarding their lower bound (Theorem 3), it only holds for a subclass of all MDP instances where
the conditional variance V;, ;™ ; is on the order of (H — h + 1)2. Indeed, the theorem assumes there
exists a high-value subset of states S and a low-value subset of states S under the target policy 7 such
that V;", ,(s) > 2(H —h+1)if s € Sand V[, | (s) < $(H — h+ 1) if s € S. They also require
there is non-zero probability p > ¢ > 0 and p > ¢ > 0 of transitting into S and S respectively. These
assumptions immediately imply V,V,", ; = Q((H — h + 1)?). Therefore, the prior result is only
(nearly) minimax for a very small class of MDPs. This is confirmed by our numerical experiments in
Appendix A where we compare the OPE error of VA-0OPE and FQI-OPE under different settings of
H. The results show that VA-OPE’s advantage over FQI-0PE increases as H becomes larger. It thus
remains open to derive an instance-dependent lower bound that matches our upper bound.
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C The Uniform Convergence Result

C.1 Important Remark

Throughout the appendix, we consider and analyze a slightly more general form of Algorithm 1. We
now explain.

Recall that in (2.7), we define o, (-, -) as

on(s,a) = \/max{l,Vth’TH(s, a)} + 1,

and the corresponding estimator is given by
Gn(+) = \fmax{1, VU, ()} + 1.

Here taking maximum with 1 is to deal with the situation where V; V7, (-, ) is close to zero or
negative, and the second 1 is to account for the variance of the rewards. Now as a more general
scheme, we replace both with adjustable parameters: 7;, and o2 such that 77, > 1 and 0 < o, < 1.
Thereby, for each h € [H], we have

Gule,) = \fma{nn, Vi, ()} + 02

We allow the flexibility of the choices of {7 }recz) and o, in part for generality and theoretical
interests. These parameters will appear in the final results for the uniform convergence and the OPE
error bound. The general algorithm is then presented as in Algorithm 2.

Algorithm 2 VA-OPE (general form)

1: Input: target policy 7 = {74} (), datasets D = {{(sk,h,ak,h,rk,h,s%’h)}he[m}ke[m and
D = {{(8k.h> Qk.h, Tk s 5;@,h)}he[H]}ke[K]’ initial distribution &, Wi | = 0, A, 0, {0 }nepa

:forh=H H-1,...,1do

Sh e S, Grndip, + Ma

= SIK I Tr s

Bh < X, ! > k=1 ¢k,th+1(5§c,h)2

~ S 1K L Om e

On 3,1 300 b Vil (31 )

Fu(-) - Jmax{mn, UV, () + 02
A+, Gk n®in/Th g + N

Yien ¢ rh,n + (D7 (8] 1), Whit)

9 W At drnYin /52,

10: RCs) (@), Wh), Vir() < (o7(), Wh)
11: end for R

12: Output: 07 + [s V" (s) d&1(s)

R DDA

Correspondingly, throughout the appendix we redefine for each h € [H]:

on(s,a) = \/max{nh,Vth"H(s,a)} + o2, (C.1)

and thus A, defined in (2.6) also becomes (7, o2 )-related.

Besides generality, this is actually also meaningful, because let’s consider, for example, a situation
where the agent actually knows that the reward is deterministic (i.e. there is no noise in the observed
reward). Then the agent can choose o, = 0 (though this will not give a huge boost to the OPE error
bound since the determinant factor in ||v7, || A s the variance V3, V)T ).

C.2 Recap of Notations

Before presenting the theorems and proof, let’s walk through the algorithm and remind the readers of
the notations.
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Variance estimation Recall the dataset D = {Di}ne, where Dy, =
{(8k,n> Gk ,hs Trohs 8 1) ee[]-  For each h, the dataset Dy, is used to compute the function
on(+, ), which is an estimator for the conditional variance of Vh”_H. To be more clear, let go through
the inner loop of Algorithm 2.
In the main text, due to the space limit, we use the abbreviation:

Or,h = O(3k,hs ke,n)-

For each h, the (biased and un-normalized) sample covariance matrix s n, (line 3) is given as

K
= Z Grnbip + Ma,
k=1
and its normalized population counterpart 33, is defined by (2.5) as
Xh= Eﬁ',h [d)(sva)d)(sa a)T} .

Then the Algorithm computes %A/h IA/h“H , which is an estimator of V, V;7, |, as the following:
2

ViVl (o) = (@( ), Bh)jo,(H—h+1)2] — [<¢('» )00 0, H-nt1]| >
where 5}7{ and §g are computed in Algorithm 2 based on the estimated value function ‘A/,Z‘H from last
iteration, and the dataset Dh. Finally, the function &, is computed.

Value function estimation Once we have the variance estimator &}, we can apply weighted

regression to estimate the value function V; using the dataset Dy, = { (8,1, ak,h, Tk 1> S} p) Fre[K]-

This is described by line 7 to 10 in Algorithm 2. Please note that we have adopt the abbreviation:
Ok,n = D(Sk,hy Qk,h)s Tk = Oh(Sk by Okh)-

Note that the weighted sample covariance matrix A n in Algorithm 2 is given as

K
A T /a2
Ay = Z Ok nPr.n/0k.p + A,
k=1
with its normalized population counterpart A, defined by (2.6) as
-2 T
Ay = :[EFFJL [O'h<87 CL) d)(S, a)¢<57 CL) ] :
Also note that in the offline dataset D, for each D, and the data point (s i, @k h, Tk ks S) 1,) in Dh,
the reward 7, is the random reward given by 74 5, = 71(Sk,h, Qk,n) + €k, Where rp(-,-) is an
unknown deterministic function representing the (conditional) mean and ¢y, 5, is some independent
random noise. We only observe 7, 5, and not e, 5.

Function classes Based on this characterization of the value functions, we define the following
function class for each h € [H| and L > 0:

Va(L) = {v<s> — (]().w)

One can see that functions in V, (L) are parametrized by vectors w € R®. From Proposition 2.2, it is
clear that V;* € V,,(2H+/d) for all h € [H].

We define the following function class for each h € [H] and Ly, Ly > 0:
777, (Ll ) L2)

= {ou )= \/ max {in. (6, ) B0,y + (@) O)o.rnia]” } + 0F

w e R |w|. < L, su§|V(s)\ gH—h+2}. (C.2)
s€

18]l < Ly, 6] < L2}7

(C.3)
which is parametrized by 3, @ € R<. Later we will see that, with high probability, for all h € [H],
we have &, € T}, (L1, Lo) with above choice of Ly = H?,/ KTd and Lo, = H,/ %, which is an

immediate result by Theorem C.2 and Lemma H.15. Also note that o, € T;,(L1, L2), which is clear
from (3.4).
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C.3 Formal Statement of Uniform Convergence Theorem

A weaker data sampling assumption. Recall Assumption 2.5 on the data sampling process intro-
duced in the main text. It turns out that the uniform convergence result (Theorem C.2) holds under a
weaker assumption which is the following.

Assumption C.1 (Trajectory-sampling Data). We have two offline datasets D and D where each
dataset consists of K trajectories with horizon length equal to H. Each trajectory is independently
generated by the behavior policy 7. That is, D = {Dy },c|k]. Where each D, is given by D}, =
{(8k,ns @k 1> 1,1 ) Yoy such that agp ~ 7h(+|sk,n) and sgpi1 ~ Pp(:|skn, axn). For each
(k,h) € [K] x [H], the random reward ry, j, = 7Sk h, k1) + €x.h, Where 75 (Sk n, ak,p) is the
(unknown) expected reward and ¢y j, is the noise. Similarly, we have D= {Dk}ke (K]> Where
Dy = {(8%,n> Gk n> Tr,n) Yne(m)- Here we denote s;’h = g, nh+1 for simplicity.

Note that Assumption 2.5 is stronger than Assumption C.1 in the sense that Assumption 2.5 assumes
an extra independence between the data points sampled at different stages. Therefore, as will be clear
from the proof, since Theorem C.2 is established under Assumption C.1, it automatically holds under
the stronger Assumption 2.5.

We now introduce the uniform convergence theorem. To simplify the notation, we define:

H
1 C (H-h+1
Cri =3 chz_z,/ 2 g = TR 6= (- i)

i=h
Note that by setting 175, = 0, = 1 we recover the same C}, 2, C, 3 as in the main text.
Theorem C.2 (Uniform Convergence). Set A = 1 and ny, € (0,(H — h + 1)?] forall h € [H] in

Algorithm 1. Under Assumption 2.1, 2.3 and C.1, there exists some universal constant C' such that if
K satisfies

K>C. , (C.4)

H%2 (dHK> (H—h+1)> (H—h+1)>
10 _— -max —————  max ———
KO helH) (nn+02)%  helH] u(nn + 02)

then with probability at least 1 — ¢, it holds for all A € [H] that supcg "A/h’r(s)‘ < H —h+2,and

Ch.od dH?*K Cy, 1H\/a
— log +C  ——.
vK ) K

We now present the proof of Theorem C.2. The proof relies on a backward induction argument, i.e.,

we will show |X7h“(s) — V7 (s)| is uniformly small for h = H, H — 1, - - , 1. For this purpose, we
need to use the first form of error decomposition (4.2) in Lemma 4.4.

sup [V (s) = Vir(s)| < €

seS

C.4 Step 1: Base Case at Stage h = H

We first bound the approximation error at the last stage h = H. From the algorithm we have
VH_~_1 V11 = 0. Therefore, we have OH = ﬁH =0,0g = /Ny + 02, and

~ 1
Agp=——5 Z (st iy ar,m)d(sk 1, arm) + M.

By the error decomposition in (4.2), we have

Vii(s) - V() = ~ () A 12—0;@ IO MR Ry (€3)
Y N —— —
Ao

Aq
We will bound the two terms separately.

To bound |A1 |, we first apply Cauchy-Schwartz inequality to obtain that

(C.6)

O(SkH,a
A1) < 1655 - ZM

2€]€,H
e (Sk,m, QK H)
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By Lemma H.5, with probability at least 1 — §, we have

2
||¢ﬂH(5)||K;Il < \/7 : H¢7IEI(S)||A;{1 (C.7)

forall s € S, as long as K satisfies that
512|| A2 <2d) . } 512 A2 <2d>
K > max § S 2H o0 (20} oyt = 2220u g0, (22
s {7 o () a1} = T (5
Note that Var(ex, ) = 02 < G (s, 1, ar,m)? forall k € [K]. Then by Theorem H.10 we have

K
> G sk arm)  G(sk.m, arm)ern
h=1

AL
<8 Jdlog (14— ) S +4 L AR
- 8 Ad(ng +02) B\ ne + o2 A
4K?
< 12Vdlog <5> (C.8)

with probability at least 1 — §.

Then by (C.6), it suffices to take a union bound over (C.7) and (C.8) to conclude that if K >
128|| A" |2 log(2d/8) /(ni + o2) then

12vd, . 4K?
8l = 20kl 1o () ©9)
with probability at least 1 — 4.
At the same time, we can bound |A;| using the same argument.
Az < Mok (s)lla,: - IWhliz,r < 57 185 (s)la; - IWE Az (C.10)

where the second inequality holds on the same event as does (C.9).

Finally, we combine (C.5), (C.9) and (C.10), and obtain that if K > 512||A;"|%/(nar +
02)?log(4d/d) then

sup [V (s) — Vii(s)| <
seS

12v/d 4K? - 4\ . .
X tog (45 ) - sup 06y + 7 -sup 165 0)lage - [l

B 12\/dHA1}1II1 4K\ | SAHVA|A
=T VR B\ K

with probability at least 1 — §, where the last inequality follows from Assumption 2.1, Proposition
2.2 and the choice that A\ = 1. Note that since 5 (-,-) < 1+ 02, we have Ay = Xy /(1 + 02),
which implies that | A;'|| < 2||2;'|| as 02 < 1. Then we further have

~ 12v2d  16AH3Vd
sup |V (s) — V(s ‘ < +
Seg 71 (8) T(s)| < Krg Krn

Meanwhile, we can bound sup,¢ g |1A/§(s)\ as follows

o 12v/2d 16 \HVd
sup |V (s)| < sup Vi (s) + + <2,
seg| H( )‘ seg H( ) \/m Kkg
when K satisfies that K > 600(\ + 1)(d + HV/d)/kg.

In conclusion, we have

sup [V (s)] < 2,
SES
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and

~

sup |Vi(s) - V()| <
seS

12v/2d N 16MAH/d
\/K,‘{H KK/H ’

given that K satisfies

204 2 H
szax{2081og <d>,600(A+1)M} (C.11)

wy (e + 07)? 5 Ko

C.5 Step 2: Induction Hypothesis

For the induction hypothesis, we assume that if for all sufficiently large K, with probability at least
1 — (H — h)4, the following event (denoted as 1) holds:

sup [Vitga(s)| < H — h, sup Vi ()l < H —h+ 1, sup [ViT 1 (s) = Vil (s)] < am—n,
se se s

where agr—p, < (n + 02)/[8(H — h +1)].
We claim that if K satisfies

K >

(C.12)

3600(H — h + 1)4d2 dHK
2 212 -1
Hh(nh + Uv')

then with probability at least 1 — (H — h + 1), the following event (denoted by &},) holds:

Iiha

Vil <H—h+1,
V| <H-h+2,
~ - 8\ 2\Hd
Slslp‘vh (s) = Vii(s)] < (1 + LhK) ag—n+ K
20 i+d(H—h+1) b (d(H—h+1)2K>
VE \Vin  Vmmrod) ) B\ w026

We again bound the three terms in the error decomposition (4.2) simultaneously. Let gh be the event
given by Lemma F.7 for h such that P(E;,) > 1 — §, where we have L = (1 + 1/H)d\/K/\.

+

Let’s consider the event &, N En11, which satisfies P{gh NEry1} >1—(H —h+1)4 by aunion
bound. Note that on 1, we have |‘A/h”+1\ < H — h + 1. Furthermore, since |‘7h”+2| < H-—-hon
Enh+1, again by Lemma H.15 with B = H, we see that IA/thH € Vi11(L). Therefore, by Lemma F.7
it holds on gh N Ep41 that

~ —1
Ay 8
< — 1
|| < I S (C.13)
and
K
‘fﬁ(& a) " ALY G (skony ann) 2D sk ann) (PRV (Sks arn) = V(sh ) = €xn)
k=1
_ _ 2
_2 (4 dH-h+) .10g<d(H h+ 1) K)j 1
VK \Ven o (o + 0?) Kn(nn + 02)0

forall (s,a) € S x A.

Since it holds on &, 11 that sup,cg HA/}ZT_H (s) = Vi1 (8)| < ag—n, we have

sup ‘[JhIP’h(V,fH _ Vh’fﬂ)](s)’ <am_n. (C.15)
se
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Also by (C.13) and sup, 5 |I7h”+1 (5) = Vi 1(s)| £ ag—p, it follows from Cauchy-Schwartz inequal-
ity that

~_ - . 8 oy
sup /\qbZ(s)TAhl/ (Vh+1(s) - Vh+1(s)> pn(s)ds| < 22 (C.16)
sES S K
Similarly, for the last term in (4.2) we have by Cauchy-Schwartz inequality that
TR —lom . ~_ . 2AHVd
sup |A@f (s) " A, 'wi| < Asupllgr(s)llz IR w7l < K (C.17)

s€S
where the second inequality follows from Proposition 2.2.
Finally, combining (C.14), (C.15), (C.16) and (C.17), we obtain by the error decomposition (4.2) that

4 d(Hthl))'lO (d(Hh+1)2K>
kn(np + 02)0

sup |V ) = T (s)| < - (

s€S Lh(nh + ‘772-)
8\ 2\HVd
14+ — _ _ 1
* ( * LhK) H—h K (©19

Note that when K satisfies (C.12), we would have sup 5 |V;7 (s) — ‘A/,Z’ (s)| < 1, and thus
sup |‘7;f(s)| < sup |V (s)| 4 sup ‘fo(s) — ‘7,1”(5) <H-h+2. (C.19)
seS seS seS
Therefore, by (C.18) and (C.19), we conclude that Eh N Ert1 € &r, which implies that
P{€} > P{ENEna} > 1 — (H —h+1)d.

C.6 Step 3: Recursion

Let £ = miny,¢c g £n. Suppose K satisfies that

3600 H?d? dHK H—-h+1) H—h+1)*2
K > - log ( ) . % % . max Q (C.20)
K &6 ) helH) (qn+o07)?  heH] wn(nn + 07)
We also define the following quantity
2 \HVd 20 d dH—-h+1 d(H — h+1)’K
EHon = J+7 : 7+¥ -log <(2)> (C.21)
wkK VK \Vn o Ju(gn +02) Kn(n +02)0

for all h € [H]. With the choice of K in (C.20), the following holds

. 1 1 . 77h+02
< BLIN T o 2
&u h_mm{QHe’lGH hI?EE]H—hH} €22

forall h € [H].

First by the base case at stage h = H from subsection C.4, we have

12v/2d N 16AHVd

su V”s—?”s‘g Q. C.23)
seg h(s) T(s) Krn Krg 0 (
Also by the choice of K in (C.20), we have
11 . mntol
< — — T3 C.24
aO_mm{Qe’lGe ;fél[lﬁ]H—h+1} €29

Then by the induction step at stage h = H — 1 from subsection C.5, we have

sup |Vis—1(s) = Vi _1(5)] <
s€

23



with

MNCr_1H 1 . + o2
ap < (14—};{1) ap +&1 < <1+H)a0+§1§m1n{1,m]16}

We then define g, = (1 + 1/H)ag_p+1 + Eg—p recursively for all h € [H — 1]. Note that for
all i € [H — h] we have

- : , 2
_(1+ >a0+2(1+ ) €]'§6.<)40-1-e-z:§jgmin{l’7”8{(_2‘1-1:|—1C;T}7

h=0

where the first inequality follows from the fact that (1 4+ 1/n)™ < e for all positive integer n, and the
second inequality is due to (C.22) and (C.24).

Therefore, we may apply the induction step from the previous subsection to all & € [H — 1] and
obtain that

sup | V7
s€ES

and

~ 1
sup 7 ) = Vir ()] < (14 7 ) an + a1

sES
1 H—h H—-h 1 H—h—1
<(14 = 1+ — i
< ( + H> Qo + ; < + H) 3

H—h

Seapter Y & (C.25)

i=0
with probability at least 1 — H ¢ simultaneously for all h € [H].
Therefore, replacing § by 6/H and plugging (C.21) and (C.23) into (C.25), we obtain that

sup [V (s) — Vi (s)

sES
_12eV2d | 16eAHVA | 2eAHVd Hz‘:l 1, d0ed <dH2 )H ! H-h+1
o KHH KFCH K Py Lh \/E —h \/Lh nh+o'2>
(C.26)
We further define
H H

H-h+1
Cha =Y oms Cha= Y NOCETL
i=h h i=h 77h + Or
then we can simplify and rearrange (C.26) to

Ch.od dH?*K Ch 1H\/(§
~ log +C .
VK KO K

sup ‘7{(5) - Vh”(s)’ <C-
SES

This completes the proof of Theorem C.2.

D Proof of OPE Convergence

As stated in Appendix C.1, we consider the general form of Theorem 4.1. Recall the following
notation:

1 Chys (H—h+1)? 2
Chi = —, Chao= —=, Chz=———=—, Cha=(||[Ax]-|lA,
h,1 ; . h,2 ; » h,3 - ha = ([[A&] - 1AL )



Theorem D.1 (General form of Theorem 4.1). Set A = 1, n, € (0,(H — h + 1)?] forall h € [H]
and orf < 1. Under Assumptions 2.1, 2.3 and 2.5, if K satisfies

dH?K\1?
K>C-Cs-d* {log( )] , (D.1)
KO
where C'is some problem-independent universal constant and
Chys - CZ 9 H* H? Chys Chys
C3 := maxq max o3 0 1o g3 max 5 .
nelH) 3 (nn + 02) orK2 T OrKk? he[H)Mp + 02 he[H] h

Then with probability at least 1 — 4, it holds that

H
. log(16H/6) 16H 1 1
};h’nAhl]' T—&—C-Céylog 5 ) W_FE ,

where Cy == Zh 1 {\/Ch4 Choa- Lﬁnﬁ;lz))i .1og(dh$K) . ||VZ||A;1}~

Note that by setting 1, = 0, = 1 we recover Theorem 4.1.

[of 27| <C-

The proof is based on the recursive error decomposition given by (4.3) and the prerequisite result on
uniform convergence. We will show the OPE convergence conditioned on the high probability event
of uniform convergence established by Theorem C.2.

Recall the error decomposition for the OPE problem given by (4.3) (proof in Section E):

F 1] = fAZ VDA [ (Vo) = T () (o)

K

TA-1 Sk hy Gkl ~ N

P Z (s ’ )? ([th}?ﬂ](s’“’“ arn) = Vi1 (k) — %h)
k=1 k,hs Ok,h

_|_
va

>
Il
—

vi)TAL W

+
>
INGE

h=1
=F1 + FEs + Fj5. (D.2)

It suffices to prove that each term can be bounded with high probability and then we can take a union

bound. By the result of Theorem C.2, we can condition on the event where both ‘A/h“H and 7, are
good estimators of their population counterparts.

Remark D.2. All the lemmas in the remaining of this Section D will be proved under Assumptions
2.1 and 2.5. So we do not explicitly add these two assumptions into the description of the lemmas.

Also, recall the function classes V(L) and Ty, (L1, L2) defined by (C.2) and (C.3). In the remaining
of this section, we will assume L, L; and L5 to be

Lo t! Kd L L R
Jitol VX VX

The reason that we can make the above assumption is that, conditioning on the high probability event
of uniform convergence (Theorem C.2), it follows immediately from Lemma H.15 that we have

on € Tn(L1, La), and IA/h’T € Vi (L) for all h € [H] with the above choice of L, L; and L.
D.1 Bounding the £> Term in the OPE Decomposition
We consider the term E» first. Decompose E5 into Fy = ZhH:1 Es j, where for each h € [H], Esyp,

is given as

K
. (Sk hs Ok, h) = > ’
FE. h = vy TA 1 —(]P’,,,V“ Sk.hy Ak h 7V7T S *Ekh)~
2, ( h) h ]; h(sk hy ., h)2 [ h+1}( 5 5 ) h+1( k,h) ;
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. K
Further decompose Es , into Eg j, = > w1 €h,k Where
TA-L @ (Sk,hs Ok 1)

P,V , — VU (sh ) — ) .
Uh(Sk,h, ak7h)2 ([ h h+1](5k,h ak,h> h+1(5k,h) €k,h

In the following lemma, we consider the term Ej j, for arbitrarily fixed h € [H]. To simplify the
notation, we omit the subscript h and take e, = ey, ;, once h is fixed.

Lemma D.3. For any h € [H], condition on IA/h’Lrl € Vp41(L) and the induced (-, -) € Tp (L1, L2)
being fixed, such that 7}, satisfies for all (s, a)

enk = (Vp)

- o C(H —h+1)2Vd
’ai(s,a)—af—max{nh, VthH(s,a)H < ( NG ) ;

for some C' > 0. If K satisfies (D.7), then with conditional probability at least 1 — §, we have

4 1 8 4\ 2(H—-h+1)+
Eyp| <2¢/2log | < ) By —= - |[[Villg-+ + 5log | < | -
12| < Og(é) " VK IVilla: + 3 0g(6> h+ 02

D.3)

1 _ 1
AVE e - leRt 1 =

where By, is a IA/[ ", 1-dependent constant and Gy, is a j,-dependent matrix given by

VyVr s,a) + o2
Bp = max nVii (8, 0)

(8,@)~vn max nh’vh‘/}};r+1(57a)} +O’% _ C(H—-h+1)2Vd

VK
~1+0(1/VEK),
a\77,:| )

P, 0)(5,0)"
Th(s,a)

Remark D.4. Lemma D.3 will be combined with Lemma F.2, which gives an explicit formula for

the constant C' with high probability, as will be shown in Lemma D.5.

Gh = ]Eh |:

Proof of Lemma D.3. By definition,

TA-1 ¢(5k,h ak,h)
Ah PR L At L

— (T ¢ P, U _U7 (s ) — )
ex = (vp) F (s Gn)? ([ W Vi) (Sk,ns akon) — Vil (Sk.n) — €k,n

for all k¥ € [K]. From Algorithm 1, it is clear that the function‘A/h”+1(~) depends on the dataset
D;,D; fori > h + 1, and the function (-, -) depends on XA/,ZT ", and the dataset Dy, which are all
independent of the dataset D, under Assumption C.1. Therefore, conditioning on ‘7h+1 and o, will
not change the distribution of Dj,.

Define F}, = {(Sk,h,ax,n), k € [K]}, and for now we further condition on Fj, being fixed. Then Kh
and Oy p = On(Sk,n, ak,n), k € [K] are both fixed. Define the filtration {F} },c[x) conditioned on
Fy as Fy, = o{s’w7 €1y " 752_17,” €x—1,n|Fp} for 1 < k < K, and F; as the empty o-field. Then
Elex | Fx] = 0 implies that {e } e[k is a martingale difference sequence. Since XA/h”H € Vpt1(L)
and 75, € T, (L1, La), we have 51,(s,a)? > ny, + o2 for all (s, a) and |\7h”+1(s)| < H —h+1for
all s. Also by Assumption 2.1 we have |ej | < 1 almost surely. This then implies

2H—h+1)+1

<
lexl < nn + o2

VR

Villar - o(skns arn)liz-1 s

Ch,k

and

Var(eg|Fp, Fi) = {(VZ)TK; Fy, Fi

~ ~ 2
1 P(Sk,0: Ak,1) r g | [ BnVi (ks akn) = Vil (k) — b
On(Sk,h, ak,h) Oh(Sk,hs Qk,h)

IN

-
|:(VZ)TAh1 d)(sk,héak,h)¢(5k7h,2ak7h> Ahlvﬂ}
h(sk,hv ak,h)

94 2
Vi Vite1 (Skns arn) + 07

~ _ 2 ’
max {nh,Vth”H(Sk,h, ak,h)} +02— C(H%W
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where the last step is from Assumption 2.1 that €, , is independent random noise satisfying Var[ey, 5, |
Sk.hy Gk k) < 02, and (D.3). Denote ¢, = maxy¢ (k]1¢h,k }. We then have

2H —h+1)+1

< T~y - (JATLY/2,
on < T V- 1A (D.4)
For simplicity, denote
V}z‘/}hﬂJrl(Sk,ha ak,h) + 0'7%
bh,k) = ~ 9 C(H—h+1)2\/3
max {nh,VthTr_‘_l(Sk’h?ak’h)} + oy — T
C(H-h+1)*Vd
N
<1+ L2 C(H—h+1)2Vd
Th (o= VE
~14+0(1/VK),
and by, := maxy,{bp,_ }. Therefore, we further have
K
DSk hen)D(Skoms arn) T\ ~_1
Var €k Fh,fk S A Vﬂ—'bh
; (el )< i Z Tn(sk,n, ak,n)? hoth

= (vi)TA;! (Ah - )\Id) AT by
< b [V

since (Kh)_l/Q(Kh — )\Id)(f\h)_l/2 is a contraction. Then by Freedman’s inequality H.2, we have

P i Fy ) <2e 62/2
€k h| <2exp | — —
k=1 bthhH%;’I + che/3

since by, and ¢, are fixed once we condition on ‘A/h’ﬁrl, o5, and F},. It follows that with conditional (on

> €

Vhﬂ-&-l’ On, Fy) probability at least 1 — 4,

2 2 2
< 4/2log <§) by, - HVZ||K;1 + 3 logg - Cp. (D.5)

Define the matrix Gy, as the conditional expectation given as

Gz, {¢<sva>¢<s,af

6'\h(sv a)2

34 , (D.6)

by recalling the notation E,[f(s,a)] = [s, 4 f(s,a)dvy (s, a) for any function f on S x A, with
vp(+, ) being the occupancy measure of the MDP for stage h induced by the behavior policy 7. Now,

since conditioning on V;, ; and 7 does not change the distribution of Fj,, by Lemma H.5, if K
satisfies

2d
K > max {512(nh +02)72G, " ? log (5) ,4A||G,;1||} , (D.7)

then over the space of F},, there exists an event &, such that P(&;,) > 1 — § and for all F}, € &, we
have

2
[uflz- < Nid [uflg;
for all u € R?. Combining (D.4), (D.5) and (D.8), we conclude that, with conditional probability (on
Vh”H, oy, only) at least 1 — 24,

/ 2 2 2(H-h+1)+ " _iq1/2 4
< 210g< ) T ”VhHG 1+ log 5 m + o2 ||VhHG;1 : ||Gh1|| e
I
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where By, is a 17,f+1-dependent constants given by

Vhf}hﬁ_l(s, a) + o?

Bj, = max —
(s:@)~n max {nh,Vth’H(s, a)} +o02— Mw
~1+001/VK),
and Gy, is a 6,-dependent matrix given by (D.6). Replacing ¢ with d/2 finishes the proof. O

In the next lemma, we relax the conditioning on &, and condition on V;T, ; only.

Lemma D.5. For any & € [H], condition on YA/,Z”+1 € Vp+1(L) being fixed and satisfying
sup, |X7h“+1(s) — Vi 1(s)] < pfor some p > 0, if K satisfies (D.14) and

K>max{911-log <4d> , 6)\}, (D.9)

(mn + 07)%05, 5 ) "

then with conditional probability at least 1 — §, we have

8 . 1

|Ean| < 24/2log (5) By - ||VhHA;1 TR
8 1 ™ 1/4 1

+2y[2log | 5 ) By [CoCr- - [Vl A - (K Vo) 7

8 8 2H-h+1)+1 1 1
21 2. VO —— VTl —
+3 og (5> nh_'_o_% 1 Th ||Vh||Ah1 K
8 8 2H-h+1)+1 1 =~ 1
1 °). N o o . | B .
T 3008 (6) > o-C1- Vil Vv K

where

A 1/2
- (M)
Lh

1
O
~ 1 CKh(s(H—h—Fl)Q\/Zi
= : b, +A4H-h+1)-p|,
P = ot o2 ( VE ( )
1 1 A+EK\ 1. 82 1
=12v2- —  |=log [ 222 ) + Zlog = 12\ —.
Ck.hs V2 NG [2 og( h >+d og 5] + 12X\ o

and By isa ‘7h’r+1-dependent constant given by

Vv,V s,a) + o2
B, = max h h+1( ) r

= —
(8:0)~Vn max {nh7VhV}Zr+1(5, a)} +o02— CK”‘"‘(%H) Vd

Remark D.6. Conditioning on the event in Theorem C.2, we have p ~ O(1/v/K) and thus 5 ~
O(1/VK), which means the term /K j is a constant up to a logarithmic factor. This indicates that
in the upper bound of | E5 1|, only the first term is of order O(1/VK) .

Proof of Lemma D.5. For simplicity, denote the function oy (-, -) as

ov(,) = \/max {nh, Vhf/,fﬂ(-, )} + 02,
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and recall that G, (-, -) is an estimator for oy (-, -) generated using the dataset Dj,. Also recall the
definition

on(: \/max {nh, VuVir (s } + o2

First of all, by Lemma F.2, with probability at least 1 — § over the space of Dy, the following event
happens:

C H-h+1)%/d
sup 32 (s,a) — o3 (s, 0)] < L2 ﬂ; Ve,

where C j, 5 is given by

1 1 A+ K\ 1. 412 1
Crns=12v2- —— | Zlog [ 212 ) £ Z1og = 12X —.
Khs = 12V2 e {2 Og( By >+d°g5] A

Denote the above event of 7j, by 5. For each fixed o), € &, we can then apply Lemma D.3 with

C replace by C p,5. This gives that, for any h, condition on V" 1 and o, with probability at least
1-96,

(D.10)

| E2.n]
/ 4 ” 8 4\ 2(H-h+1)+1 . _ipi2 1
<2 210g( ) T ||Vh||c;;1 + glog <5) : — : ||Vh||c;,j1 G| K
(D.11)
where
ViV, (s,a) + o2 ~
Bj, = max nVie(8,0) +0 ~ 14 0(1/VEK),

s,a)~v, O Cr.n.s(H—h+1)2Vd
(5.0) hmax{nh,vhvh+l(s,a)}+gg_ PRREER

lralptralll; ]
”Vh”G 1 and ||G

G, =E
e [ 63(s,0)
and so is the lower bound of the sample complex1ty given by (D.7). Therefore, it remains to derive a
uniform upper bound of Es j, for all 53, € &, and a uniform lower bound of K.

1 || 1/2 term are o', -dependent,

To get this, first note that since ‘A/h’ﬁrl, Vi1 € Vhy1(L) and supy HZZTH (s) = Vil 1(s)] < p, we have

sup |0 (s,a) — o (s,a)| < 4(H — h+1)p.

s,a

Using triangular inequality and (D.10) gives

H-h+1)3%/d
sup 52 (s, a) — o3 (s, 0)| < 8 v e

for all 7}, € &5.

4(H—-h+1)-p,

Note that by definition,

[Gr — Al =

=7
~ O(1/VEK),

X F(S a)(i(j)a)w _E, {qb(s 6;)(1)(8 a)T] H

o (s,a)
=2
T07(s,a) O’h s,a
sls.00(.0)7 T ) |

Ex

IN

1 ' <CK,h75(H—h+1) Vd

o (SR )
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where the inequality is from ||¢(-,-)|| < 1and |o(-,-)| > /nn + o2 forall o(+,-) € Tp,. Combine
the above inequality with Lemma H.3, and we have

A AL ]
<

G, < < S (D.12)
1S T T el = T A
and by Lemma H.3 again,
Ml < (1 V(A 1AW -6 5] - v
- A
< 1+\/(HAh1H.||AhII)1/z HHA1HH~ p] IVElla-
[ - 1
= 1+\/(HAth)?’/Q-<||Ah||>“2 W p| AN
= HVZ“A,jl + \/(HAh1H)3/2 (1A - W Vi ||VZ||A;1 . (D.13)
h

Note that the above holds when K is sufficiently large such that ||A;1 H - p is less than, for example,

AL -7 < 1/4. (D.14)
We are now ready to derive an upper bound independent of &,. First define
- _1n\1/2 ) 1/2 _ 1

Then we have ||VZ||G;1 < ||vg||A;1 +1/CoCy ||AM ] 7 - ||vg||A;1, and ||G;1H1/2 < /O -

||A}:1 ||1/2. It follows that
il G 12 < VO [IA 2 IvE s + Cr A VCo - IVE A v/

Plug into (D.11), and we have that, condition on ‘A/ff " 1s with probability at least 1 — 24,

4 . 1
\E27h| < 24/2log (5) By, - thHA;l . N
4 -1 x ~ 1
+2y/2log | = | Bn -1/ CoCh HAh H'thHA;l \/;ﬁ

gl (5) ’r’h—|—0'2 \/CT ||A 1|| HVhHA 1=
8 4 20H—h+1)+ B i 1
+310g(5)- Nh + o2 'Cl'HAhIH'VCO'HVh”A,:l'\/;'E

Replacing & by §/2 and using 1/¢j, = ||A;,*|| gives the desired upper bound. It remains to show the
lower bound. By (D.7), (D.12), and (D.14), a uniform version of D.7 is given by

5 16, _ 4d 4. _
K max {31200 + 02) - 1A P 1og () x- 514

911 4d 6\
— .1 — — 5. D.1
>max{(nh+03)2L% og(é) ; Lh} (D.15)

Lemma D.7. If K satisfies (D.17), (D.20), (D.21) and

911 8Hd 6
K > I —_ D.16
> }11161% max{(nh I og( 5 ) o }, ( )
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then with probability at least 1 — §, we have

16H x 1
il < 22108 (557 ) B | S M |-
16v2,  (16H 7 1
+log<5>~\/§- ZAl(h) 7L
h=1
+M1 LN i(A (h) + As(h)) 1
5 P 2 3 Ka
where
1 ~ T
() =\ Colh) - = (KA/5R)) - [Vl
2H—-h+1)+1 1
As(h) = — - [Vi A=
() = T m T e Mg
20H—-h+1)+1
Az(h) = T + 02 VG \/ ‘Vh”A 1,
A 1/2
Co(h): ( h“) ,
Lh
_ 1 Crps(H —h+1)%/d ~ d
h) = . = +4(H—-h+1)-Ch)- —= |,
)= o ( VE ( ) e TR
1 1, (A+K\ 1, 16H]"? 1
Crhns=12vV2- —— - | =1 _— —log — 120 —,
Kohs fﬁ{20g< \ >+d°g5} A
~ dH’K
C(h)C’~Ch72~log< 3 >,
and C' is some universal constant, B is a problem-dependent constant given by
B ViV (s,a)+ o?
—}{Ielaé( Vegia)fL srtrzla~xuh, 9 _ Cions(H-h+1)2Vd’
LH] +1(B) (s:a)~vn max {n;,, V,,V(s,a)} + 02 — 77

and C}, o are the same constants as in Theorem C.2.

Proof of Lemma D.7. First, by Theorem C.2, if K satisfies

2 72 _ 2 _ 2
KZC.HdIOg<dHK)_;n?§](H h+1) (H—h+1)
S

. D.17
= w5 et AN amror O

for some problem-independent constant C, then with probability at least 1 — §/2, for all h € [H], we
have

sup |V (5) = V(o) < € =
where
~ dH?’K H
= . - . L .
C C-Chpo og( 3 ) +C-Ch \/ﬁ7 (D.18)
and

H

H
Cha :Zi7 Ch’z:zﬂ,
i=h

= Vo +07)
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For simplicity, we define

~ dH?K
C(h) =C~Ch,2-1og< 3 ),

for some different constant C', since the first term on the RHS of (D.18) is much larger than the
second one by using 1, < (H — h + 1)2.

Now we can combine Theorem C.2 and Lemma D.5 with the parameter p replaced by C- f take a

union bound over all H terms, and conclude that, with probability at least 1 — 4, the result of Lemma
D.5 holds for all h € [H] :

16H . 1
|E2.n| < 2\/210g (5) By, - ||Vh||A;1 : ﬁ

16H = 1

+2\/2log (557 ) 8o yJeucs - Ikl (V) - g

8 16H\ 2(H—h+1)+1 1 1

21 . SO —— VT, —
+ 3 og( S ) Ny + 02 Gy \/E HV}LHAh K

8 16H\ 2(H-h+1)+1 1

=1 1 -— (D1
#atog (1570 2L VG0 Ll VAR e 919

where for each h € [H], p(h) is given as

(7 4}02.)2 ' (CKJIV&(H\;E}L 1V +4(H—-h+1)- é(h) . d) 7

<) —
p(h) NI
1/2
CK,h,6:12\[2'L' {1log <M> 11 16H} +12/\~i.

VER |2 A d 1) Kh
Now, by the expression of By, if K satisfies
4C% j, sHYd 1 1 A+ K\ 1. 16H] H%
K> ———— >1152- — | =1 —— | + =log , D.20
SR [2°g<x) d 5] o 020
then we have By, < 2 for all h € [H]. Also, by (D.14), K also needs to be large enough so that
Al = o(h < 1/4, D.21
max AL -2} = max {p(h)/n} <1/ (D21)
which implies C; < 4/3 for all h. We can then simplify (D.19) into
| E2,nl
6H ” 1
2\/21og (6) HVhHA;l : \/?
16v/2 16H i
+ 710g (6) A] K3/4
1612 16 1
+ 25 v0g (F5) VB L) + a0
where
1 ~ ™
i) =\ Colh) - = (KA/FR)) - [Vl
2H-h+1)+1 1
As(h) = - |VE -
2(H —h+ 1 )+1 .
As(h) = = VG f Vil
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By denoting

2
B = max max max ViV(s.a) + oy

h€[H] VEVh41(L) (8,0)~Vh 1ax {0, ViV (s,a)} + 02 — CK,}L.J(b\f/—Rh—i-l)2\/&7

which is less than 2 by (D.20),and using | Fs| < Z,Ile
bound of K comes from (D.17), (D.20), (D.21) and (D.15) .

D.2 Bounding the £; Term in the OPE Decomposition

Consider the term F4 in (D.2):

H
[Er <A)
h=1

where for each h € [H],

TR [ (V) = T (o) mae)as

B = ADTR [ (Vi) = T () (o).

Lemma D.8. Under the same event where the result of Lemma D.7 holds, if K satisfies (D.16),
(D.17), (D.20) and (D.21), we have

H

2 A

H
|Ey| < 4V2) f

where for each h,

H-h+1 1 . T _
Ay(h) = — 7 ﬁ : ||Vh||A;1 ‘ {1 + \/QCO(h) o 'P(h)] ;

and Cy(h) and p(h) are same constants as in Lemma D.7.

Proof of Lemma D.8. By (D.8) and (D.13) , we have that

2
HuHK;Tl = ’ {Hu‘”Ah1 + \/(HAh1|’)3/2 : (||Ah||)1/2 HA 1H \/ HuHA 1}

K

~{||u||Ah1+¢co<> e e \/ﬁ<h>-||u||Ah1}, (D22)

= [la -7

Al S

for all u € RY, where the constants take the same values as given in Lemma D.7, i.e.,

p(h) = A(H —h+1)-C(h)-

(nn + 07)? VK

1 [1 A+K\ 1. 16H]Y? 1
Crns=12v2 — . | =1 ~log 4= 12X\ —
Kohs = 12V2 = {2 og< 3 >+dog 5} + P

~ dH?K
C’(h)—C’-C’h72~log< >,

1 .<CK,h,5(H—h+1)2\/&+ d)
\/E ’

)

with C}, o being the same constant as in Theorem C.2. Also, since the result of Lemma G.4 holds, we
have
Ay,

Zh A
K h

42 ( 16Hd)1/2 A
log —— %

Sm' 5 + — +p(h) < 2p(h),
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where the first step is by replacing ¢ with § /4 Hand the second step is by the choice of K in Lemma
D.7. Then It follows from Lemma H.3 that

< &AL~ 1o At 2fla
L= AR |[An = KA, ~ K120 At~ K

HA ‘ (D.23)

since 2p(h) - || A}, o || < 1/2by (D.21). Also, since on the event of Lemma D.7, we have |V;"; (s) —
Vh+1( s)| < 2(H — h+ 1), Assumption 2.1 then implies

| (0060 = T 0) (s <= hr VA

Together with (D.22) and (D.23) and Cauchy-Schwartz inequality, we conclude that
Bl = D TR [ (W) = T (o)) ()
AWE(H — h+ 1)V | A

K) h '||V;{||A;‘ .{1+\/200(h)-L1h'5(h)},

H

2 A

<A

and thus

| B | <4\TA—

where for each h,

L HohAL e L5

and Cy(h) and p(h) are same constants as in Lemma D.7.

D.3 Bounding the £'5 Term in the OPE Decomposition

It remains to bound the term E3 in (E.3) given by:

E5—)\th ZEsm

where E3 j, = A(v}[)t&;lwh. Similar to Lemma D.8, we have the following lemma.

Lemma D.9. Under the same event where the result of Lemma D.7 and Lemma D.8 holds, if K
satisfies (D.16), (D.17), (D.20) and (D.21), we have

H
| E5| < 4v/2) (Z A5(h)> : HT*@,
h=1

where

As(h) = = Il - {1y 2000 2},

and Cy(h) and p(h) are same constants as in Lemma D.7.

Proof of Lemma D.9. First note that
Byl <A+ [VElIz-1 - W7l

T T A—1 1/2
<A IVEla= - Iwil - |47

2 . V2 a2
<)\'\/E‘{|Vh||A;1+\/2CO HA 1” th”A }\/EHAth (2HVd
1 . T _ HVd
= avane il {1 oo -p<h>} A
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where the third step is by (D.22), (D.23) and Proposition 2.2. We then conclude that

H H\/&
|Es| < 4v2) (; As(h)> =

where for each h € [H],

As(h) = = Il - {12000 2 g}

D.4 Proof of Theorem D.1

Proof of Theorem D.1. By (4.3), and Lemmas D.7, D.8 and D.9, we have that with probability at
least 1 — 6,

U1”1|<\/210g< >

Z Ivilla; ] TR

H
+ ﬂlog (HigH) ZAl(h) . Ki/ﬁl
h=1
H
102105 (151) VB |3 () + )|
h=1
£V |37 () + As(h) VA (D.24)
h=1

We now compute a lower bound for K. This comes from the lower bound of K required by Theorem
C.2, Lemma D.7, Lemma D.8 and Lemma D.9. Recall (D.21), (D.16), (D.17) and (D.20):

16]|a5"
K > max ———
ne() (nn + o2)*

911 Hd\ 6\
K> maxmax{( log(8 ),}7

(CK,h,&(H —h+1)*Vd+4(H —h+1)-C(h)- d>2 ,

helH] M+ 02)20} 5 ) tn (D.25)
2 12 _ 2 _ 2
ch'szlog<dHK>' Xw.maxu7
K0 nelH] (nn+02)%  he[H] w(nn +02)
1 A+ K\ 1. 16H] H%
K>1152- |Slog ( —— | + 5 log ——| - -
=115 [2°g< A >+d°g 5} PP

It remains to simplify the expression. For the first lower bound in (D.25), note that C (h) > Ckns-H,
and thus

Cxns(H—h+1)*Vd+4(H —h+1)-C(h)-d <8(H —h+1)-C(h) - d. (D.26)
Therefore, it suffices to let K satisfy
2 2
o (5]
- |log | —— ,
KO

(D.27)

where C'is the problem-independent universal constant from the proof of Theorem C.2. The second
lower bound in (D.25) is much smaller than (D.27) and thus can be omitted. We then consider the
third and the fourth lower bound together. They can be combined into

H?d? H —h+1)? H —h+1)? dHK
K>C- 42- ax{max(—zz)-max(_FQ),HQ}-log( )
helH] (nn + 02) nelH] tp(nn + 02) )

H

K> max 2. 1024 H-—h+1
= Vn(mn +03)

2 (H—h+ 12
he[H] G (nn + o?)* ( ) [

(D.28)
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Denote
(H—h+1)?

Ch3 =
o3 np + o2

)

Then (D.27) is simplified to

Ch,3d? Chs dHQK
> .
K2t A+ 7P [Zv o)L oo

and (D.28) can be simplified

H2d? dHK
K>C- -max 4 max —C" - max Ch3H2 dog [ ——). (D.30)
oiK? helH]) Nn + 02 he[H] )

We then combine (D.29) and (D.30) and get that
dH?K\ 1’
K >C-C3(h) - d?* {log( > >] ,
K

where C'is some problem-independent universal constant and

Z /ChB Ch,3 ChB H*
Lh U4H2 he[H] nh—|—02 he[ ] th ) ork2

To simplify the upper bound given by (D.24), first note that by the choice of K, we have B < 2. By
(D.26), we have that p(h) satisfies

C3(h) = max { max Chs ot o2
he[H)| Lh Nh + o5

_ 1 (H- h+1 Tog- h+1 (dH2 )
h) <8C— - = ). D.31
It follows that
(H—h+1)d [ H-h+1 1 (de)
Aj(h) < C- Ch~7 C = og [ —— ) - IVE a1 S
) <€\ |Gl gy |2 s | o8 (g ) I

(D.32)

for some (different) universal constant C'. Also, it is not hard to see A2(h) and Az(h) are less than
the RHS of (D.32) up to a constant factor by our choice of K, which gives

H

Z As(h) + As(h)

h=1
u (H—h+1)d [\~ H-h+1 | 1 dH2K

SN IR tog (5 ) vl
}; (T}h+0'2 ; /in, 77h+02 KO RIlAG

(D.33)

for some universal constant C'. To bound A4(h) + A5(h), note that A4(h) < As(h) and thus

As(h) + As(h) < 7 VT, 1~{1+\/200(h)~blh~ﬁ(h)}, (D.34)

where
2
Vin

1
Al 20t 2 -

(H—h+1 [i H—h+1

< 273y | Co(h)
KA\ 70 (nn + 02)? = Vi +02)

1 1 dH?K ﬁ
: E - log T : ||Vh||Ahf1 .
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Recall (D.24). By our choice of K, it is clear that

2 T
HVd- N villazr \/ZCO(h) o -p(h)

(H—h+1)d ZH: H—h+1
(n + 02)?

<C-|Co(h)-

1 o dH?K vl
L & ) hllagt

where the RHS of the above is exactly the RHS of (D.32) up to a constant factor. Therefore, we can

combine [ZhH:1 Ay(h) + As(h)|H+/d with (D.33), and together with (D.34), the last two terms on
the RHS of (D.24) can be upper bounded by

Lh (Wh + 072)

H H
%\/ﬁlog (165]{) VB - h;(z‘b(h) + As(h)) .%-1—4\/5)\ ;(A4(h) + As(h)) HT\/E
S¢Ge 10g(1¢;H) % (D.35)

where C'is some universal constant and CY is given by

H H
(H—h+1)d H-h+1 ] 1 dH2K
Oy = Co(ny- =+ Dd dog (RN v
}; (ﬁh+02) Z \/Lh 77h+0'2 KO hilAy

(H—h+1)d dH2KN

Pluggmg in the formula for Cjy(h) given in Lemma D.7 finishes the proof. Note that in Theorem C.2,
the notation Cy(h) is changed to CY, 4.

O

E Proof of Error Decomposition

Proof. Since Q7 (s,a) = ¢(s,a)"wi = rp(s,a) + [PaV,T,,](s, a) for some vector wj € R%, we
further have

Q7 (s,a o(s,a) ./AX*
hsa)= h on(Skns arn)?

XK: D(Sk,0, k1) P(Sk,1s aen) " + )\Id> w

/\
H

K
TR =1 (Sk h7ak h) TR -1
= A : A A T
Pl A kz::lah(sk,hyak h)2Qh(Sk k) + AB(5,0) Ay W]
Toine Bk arn)
= ¢(s, a)TAgl Z h($:7::a:7:)2 (Th(Sk,hyak,h) + [th;ﬁl](sk,h,ak,h))

It follows that

K
x A - Sk, Akn x S
Qii(s,0) = Qfi(s,0) = @lsnsan) TAT Y ahESk o ,32 (IPA V) (st k) = Vi () = eion)

+ )\(;b(sh,ah)TK}:lw

=3

K

A— Sk,h, @ ™ s

= p(s,a) ALY (:ES:: a: :;2 ([thh-i-l](sk,h,ak,h) - [thh-',-l](sk,h,ak,h))
1 )

K
~_ D(Sk,hs Qk,n) o 5 /
+B(s,a) ALY ([PhV;fH](Sk,h, arn) = Vig1(Sen) — Gk,h)
= On(Sk.h, ak.n)
—1__

+ )\(;b(s,a)T./AXh Wi
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where ¢, 5, is the noise in reward. Note that

PRV ) (S ain) — PRV (S, akn) = /5 (Vhﬂ—o—l(s) - ‘2&1(8)) (D (sk,hs k1), o (5))ds

= Blonmacn)” [ (Vi) = T ) m(s)ds.
and thus

Qi) = Qi(s.0)
a0 Rt Y okt 6 )] () = s () )2

=1 7 (Sk,hs k,h)
i (Sk.n,a
k,hs Qk,h) - ~
+ d) 8, a Z = : ([PthZTJrl](sk,ha ak,h) - Vhﬂ+1(5;€,h) — ek,h)
i—1 Th (Sk,h» Qk,p)?

+ Ap(sn,an) Ay W]
= [Pr(Vili1 = Vi)l (s.0) — Ad(s,a) T A, /S (Viria(s) = Vi s)) a(s)ds

K
~_ B (Sk,h> k) S S

+¢(s,a) AT Y F (55, G )2 ([PthH](Sk,h, ak,h) = Vi1 (Skn) — €k,h)

k=1 ho Bk,

+ Ap(s,a) Ahlwh (E.1)
Then by the Bellman equation, we have

Vi (s) = Vi (s) = Jn(QF — QF)(s)
= JhPh(VhTrH - ‘7}ZT+1)(5) - )\,]]hgb(s)—rf&;l/s (VhﬂJrl(s/) - VhﬂJrl(sl)) Hh(sl)dsl

K
Tro1 D (Sk,hs Ak,h) ( S Sroo )
A — [P,V -V — )
+Ine(s) A, E < Blotm o) Pr Vil (8k,hs akn) — Vi1 (Sk,n) — €k,n

+AJh¢(> K; Wi, (E.2)

where I, f(:) = [, f A al-)da for any function f : S x A — R. Recursively expanding the
above equation, we obtaln

Vi (s) = V' (s)

H
=-A Z (H JiP, ) Tnp(s /S Vs () = Vs () ) pon(s)ds’
digyioes i D(Sk,hs Qi) ~ ~
+ hz::l (I[l JiP; ) Ino(s ; o, ann)? ([PthH](Sk,m ak,n) = Vg1 (Skn) — Ek,h)

H

h—1
+AY (HJP>Jh¢(Sl) Aywr (E.3)
h=1

Here with a slight abuse of notation we define Hf;ll J;P; =1 when h = 1. We then have

T :_szh TR [ (V) = Tl m()ds

Mm

+ h:l(vh )TAL! Z m ([th}:r-&-l](sk,h’ ar,n) = Vi1 (Skn) — %h)
H
+AY (Vi) TAL W
h=1
= E1 + E2 + Eg, (E4)
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where for simplicity we write v = E; [(H?__ll JiPi) Jrno(s1)

51~ §1} = Ex n[é(sn,an)] by
recalling the definition of E j,[-] given in the text following (2.4). O

F Lemmas for Uniform Convergence

All lemmas in this section are under the Assumption of Theorem C.2.

F.1 Convergence of &

Lemma F.1. For any h € [H] and any 17,{:_1 € Vh+1(L), with probability at least 1 — 4, it holds for
all (s,a) € S x A that

(H—-h+1) \f[21 ()\J;\K) 1 4}1/27

‘(917(8,&),311)[0,(}17“1)2] - Ph(‘/}h+1)2(s7a)‘ <Cks- NG + = log

and

d °6

~

‘<¢(5,a), On)[0,H—h+1] — P, (Vit1) (s, a)‘ <Cks-

where

(H—h+1)\/3{1 <A+K> 1 4]1/27

21 oo =
VE 28\ T ) Ta%;

1 A+ K\ 1. 4772
AV AN — | Zlog (2 ) 4 Zlog = .
Cik s V2 kJr o [2 og( \ )erogé}

Proof of Lemma F.1. First we consider <¢<57a);Bh>[O,(H—h+1)2]- Note that, since
P (Vii1)?(s,a) € [0, (H — h+1)7],

[(B(5,a), Br) 0.ct1—ns1y2) — Pa(ViT)*(5,0)] < [(B(s,a), Br) — Pa(Viy1)?(s, a)l-
It then suffices to bound the RHS.

(@(s,a), Br) — Pr(Vis1)*(s,0)
K
= ¢(s,0) " (Zn) ™Y O(rn ann) Vs (3h)? = Pu(Viy)? (s, a)

k=1

= $(5.0)T(E) S (G ) Vi (55, — d(s.a) " /5 (Vi) (s )dpn(s))-
k=1
Note that

(s.0)T / (V)2 (") dpan (")

=

K
= ¢(s (Z & (3t hs @) (S, ) + )\Id> /S(V{+1)2(s’)duh(s’)

1

= ¢(s,a) " (Z)) 7 ¢(5k,hadk,h)Ph(‘Afﬁl)Z(ék,h,flk,h) +M’(&a)(ih)_l/(‘75+1)2(8')duh(8')7
:1 S
and it follows that

(#(s,a), Bn) —Ph(‘A/h+1)2(5 a)

= $(s,0) kah,akh (V571026 n) = Pu(Tr) G )|
Aiq(s,a)
A(s0)T ()7 [ (T dmns).
S
Az (s,a)
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To bound |A; |, we first apply Cauchy-Schwartz inequality to obtain that

[Br(s,0)] < (s, 0) 5 - Z¢ Sttt i) (V)25 = PV Grons ann) |

st
By Lemma H.5, if K satisfies
4d
K > max {51225 P 1og (5 ) an; . E1)
then with probability at least 1 — 6/2, for all (s,a) € S x A,
2
(s, a)llg—1 < TR (s, a)ll-1-

By Lemma G.5, for fixed ‘A/,f ", 1» With probability at least 1 — §/2, we have

(S ) | (V1)) = Pr(Vi) 2 s )|

st
d. (A K 4112
<WOAH-h+ 1) |Zlog (22 410 2]
2 A )
Combining the two inequalities above, we have that, with probability at least 1 — 9,

d A+ K 4% 2
< _ 2|z = L= 1
|A1(s,a)|] < 2\/§(H h+1) {2 log ( y ) + log (5} Wi qu(s,a)”zh

_ 1 A+ K\ 1 41" (H—h+1)2Vd
< 4v2|s e {2 log <>\> + Elog 5} '(\/E)v

for all (s, a). At the same time, we can bound A as

s(s.0)] < Mol | [T amn()

2—1

A gl fH/ D )

(H—h+1)2Vd
K b
where the last step is by Assumption 2.1. We then conclude that, if K satisfies (F.1), then with
probability at least 1 — 4, for all (s, a),

‘<¢(Saa)’§h> - Ph(‘A/h+1)2(8,a)’
< |As(s, a)| + |Az(s, a)|
1/2
< avaim 2 [pros (P55 ) ¢+ Jrog ] I UMy (LR

—1
Eh

<z

N ) Ta®s VK K
1/2 _ 2 _ 2
il Lo (AEEY (L) A o 12VA AN (H = 1PVA
\/Kh 2 A d 1) \/? Kp K

where in the last step we use the definition kp, := Apin(21,). Note that by Assumption 2.3, we have

kp, > 0 forall h € [H]. At the same time, we can bound (¢ (s, a), 9h>[0 Heh+t1] — IP’h(VhH)(s a)
in a similar way as

‘<¢(57a), 0n) 0.5 —hi1] — Pr(Vii1)(s, a)‘
1 1 A+ K\ 1. 4 (H—h+1)Vd 4\ (H-h+1)Vd
< avat b () ¢ g ] b VA 0 kv

X\ d %5 VE ko K
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Lemma F.2. For any h € [H] and any ‘7h7r+1 € Vht1(L), with probability at least 1 — 4, it holds for
all (s,a) € S x A that

~ . C H—-—h+1 2\/g
oi(S,a)—af—max{nh, VthH(Saa)HS K,h,o( N )
20(H — h+1)%Vd (K)
=< qflog | — |,
knVEK Ad
where
o vt L (AHEY L1 4] o L )
K,hs = N E g \ p g(S . ]

Proof of Lemma F.2. Recall that by definition,
~ . - 2
ViViiii(s,a) = ]P’h(V;fH)Q(s, a) — (IP’hV;fH(S, a)) .
‘We then have

. . 2 .
H:<¢(5aa)n@h>[0,(Hh+l)2] - (<¢(3>a)a0h>[O,H7h+1]) } — ViV (s, a)

~

< (5. 0). Bu)o,c-ne e = PV (s,0)| + 20 = 1) - (s, 0), Oudio.m—nsr) — Pty (s,a)]
and the rest follows from Lemma F.1 and the fact that max {7y, -} is a contraction mapping. [

Lemma F.3. Forany h € [H — 1], let V € V1 (L) N{V : sup,es |V (s) = Vi7 i (s)| < p} for
some sufficiently small p < (n;, + 02)/[12(H — h + 1)]. Suppose K satisfies that

3600(H — h +1)*d Kd
Ad
Then for any ¢ € (0, 1), it holds with probability at least 1 — ¢ that

~ -1
1) I
K T p

Proof of Lemma F.3. By Lemma F.2, there exists an event £ over { (3., dx.n), k € [K]} such that

P(€) > 1 — ¢ and on this event it holds for all (s,a) € S x A that

K>

F.3
k7 inf, 4 op (s, a)? (E3)

|6'\;21(8,(L) - 0—7% — max {nha VhViZTJrl(Sva)}‘ <

20(H — h+1)2Vd <K
log

— | +4(H—-h+1)-p.
Kthg )+ ) p

Then by (F.3) and the assumption on p, we have

%ah(s,a) < on(s,a) < gah(s,a) (E4)

for all (s,a) € S x A. In the following argument we condition on &, and this will not affect the
distribution of {(sy,n, ar,n), k € [K]} by independence.

Recall that
K
Ay = Zah(sk,ha arn) 2P (st akn)P(Skns arn) | + M.
k=1

Since 7}, > inf; , 01,(s, a)/3, it then follows from Lemma H.1 that

12v2 2d
< “allog | — ). F.5
H VK -inf, 4 05(s,a)? & ( d ) )
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To bound ||(Aj,/K)~1||, we use the fact that

~ —1 —~ —1 —~ —1 ~ —1
Ah Ah Ah Ah
— <||E | = — —E|—
1) Nelle®e] 140 () -=[
A AN A A A
h h h h h
< - - . -=n -n -=n
<[5 I0CR) 1=l IF5 =%
which implies
~ N\ -1 - 1= PR ~ - -1
Ah Ah Ah, Ah, Ah
— E|— 1—||E|— —E|=
13) W=l 5] QT 5=
Ah B Ah Ah
< —= —||= -E|= .
<(lEl®] -l % o
Note that by (F.4), we have
~ K
A 1 T A
g |An :*ZE (b(Sk,hiak,h)qb(Sk,h,ak,h) 'y
K K= n(Sk,hs Q,n)? K
K
1 A (5k,h, ke n)P(Sk,h, arp) " A
- E : : : : |
OV e T S &
1 A
=_—-A —14. E.7
5 h+K d E7)
Finally combining (F.5), (F.6) and (F.7) yields
IGRE 1 3
T (i A V2 dy ~ L
(7}1 + F) - \/f.inflja on(s,a)? ’ IOg (27) 4
where the second inequality follows from (F.3). O

Lemma F.4. Forany h € [H — 1], let p be some positive constant such that p < (9, +02)/[12(H —
h + 1)]. For any ¢ € (0,1), suppose K satisfies that

B600(H — h+ 1)*d> <d(H —h+ 1)KL>

K >
- LhER A

(F.8)

H% infs o o (s, a)?

Then it holds with probability at least 1 — § that

~ —1
An 8
K - h.

forall V€ Vi1 (L) N{V :supses |V(s) = Vil 1 (s)] < p}.

~

Proof of Lemma F4. Let ¢ > 0 be a constant to be determined later and Cy be a e—cover of
Vi1 (L) N{V : supges [V(s) — VT 1 (s)| < p}. By Lemma E.3, the choice of K in (F.8) and a
union bound, we have

~ N\ -1

Ay, 4
n < F.9
() = "

forall V € Cy, given K satisfies that
3600(H — h +1)*d KdN.

K > -1 - F.10
= kiinf, o on(s,a)? © < bY) (F10)

42



where N is the e—covering number of Vi 1(L) N {V : sup,cs |V (s) = Vi 1 (s)| < p}.

For any Vi € Vhy1(L) N {V :sup,cs [V(S) — VT, 1 (s)] < p}, there exists Vo € Cy such that
sup,cs [Vi(s) — Va(s)| < e. Let o1 and Kh,l be the variance estimator and the weighted covariance
induced by V1, and o5 and Ay, 5 that of V5. Then we have

|Jf(s,a) — O’%(S, a)|

< |05, @), Bt — Bua)| + 2 — 1) \<¢<s, @), 011~ O1.2)

K
S0 ko ann) (VRS 0) — Vi (555)

. 2
- 4(H - h+2) K.e’ ELD
Kh

IN

K
Z (8. @k n) (Vi (S ) — ‘/2(52,;1))‘

where the second inequality is due to Assumption 2.1 and the third inequality follows from the fact
that V1, Vs € Vi1 (L).

Therefore, we can bound the difference between Kh,l and th,g as follows.
A 2
K

T . 0'1(57(1)2 - 02(57a)
o1(s,a)?04(s,a)?

K

1

e E D(Sk,hy Ak,n ) P(Sk, s Ok
=1

_1 EKI o1 (5,0)2 = 03(s, 0)?|

K =1 0'1(3, Cl)20'2(8, a)2

4(H —h+2)’K
&n(nn + 07)?

where the first inequality follows from Assumption 2.1, and the second inequality is due to (F.11).
When ¢ is small enough, by (F.9) we have

< ‘e, (F.12)

~ ~ ~ ~ Lh 4(H —h + 2)2K
Amin(An.1/K) > Apin (A K)—||A — >t T
(Ap1/K) (An2/K) = ||Any — Ap2|l/K 1 ol o) €

which further implies that

~ -1 _
Apa <<Lh_4(H—h+2)2K 6) 8
K —\ 4 Kh(nh+02) T

if we choose € = v,k (N + 02)/[32(H — h + 2)2K]. In this case, by Lemma H.13, we have

AL(H — h +2)2K
logN. < d- (1 + 64L( + 2) ) (F.13)
thkn(mn +02)
Therefore, by (F.10), (F.12) and (F.13), it suffices to choose K such that
452 _
K> 3600(H h+1) ;l log <d(H h+1)KL> '

k7 inf 4 op (s, a) LhKRAD

O

F.2 Bernstein Inequality for the Self-Normalized Martingales
Lemma F.5. For any h € [H — 1] and any fixed ‘A/h’ﬁrl € Vp+1(L), let 5, be as defined in Line 6 of
Algorithm 2 and Kh be as defined in (3.3). Suppose K satisfies that

L600(H — h+1)*d | <K>
K2 (nn + 02)? A6

K>

(F.14)
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Then for any 6 € (0, 1), it holds with probability at least 1 — ¢ that

K
> Fnl(snr k) T D(sk,ns a,n) (PhVJH(Sk,h, ar,n) = Vip1 (Skn) = 6k,h)
k=1

K AK?\  4(2H — 2h +3) (4}(2)
< 4/2d1 1+ —7——-—-1 1
—\/ Og( +/\d(nh+03)) Og( 5 >+ T B\7s

Proof of Lemma F.5. Let & be the event given by Lemma F.2, on which it holds for all (s,a) € S x A
that

A-1
Ay

- PN 20(H — h+1)%Vd K
2 — g2 - v,V < yflog [ — ). F.15
on(s,a) — oy —max{n, VRVi7 1 (s,a)}| < IS g | 15 (F.15)

Now conditioning on &, it will not affect the distribution of {(s 4, ax ),k € [K]} by independence.
In the following argument, we omit the explicit notation for conditioning on £ for simplicity.

Define x; = ¢(Skn,akn)/0h(Sk h,ak,n), Which is a deterministic function of (s n,axn)
since §h and Bh are fixed. Define (; = (th/,fﬂ(sk’h,ak’h) — \A/,fﬂ(s;%h) —ek,h) [Tk hs
which is a function of shh,ak’h,ek’h,s;ﬁ,h. Now we define the filtration {Fy}i
by Fo = o(sinain), Fi = 0(S1,n, 01, €10, 8], S2,0,020) 5 o, Fr =
U(Sl,haal,hafl,hys/Lm s aSk,}ua’k,hvek,hv5;67h78k+1,h3ak+1,h) for k = 1, s ,K — 1, and ]:K =

0(Fr—1, €K hs S’Kh) Then we see that x;, is Fj_1-measurable and (. is Fj-measurable. Fur-
thermore, since IE[‘A/}ZTH(s;C’h) | Fr—1] = Phﬁ}f+1(sk7h,ak7h), Elern, | Fx—1] = 0 and G, is
Fi—1-measurable, (. | Fr—1 has zero-mean. Also, by construction we have |(| < (2H — 2h +
3)/v/nn + 02, and it follows from (F.15) that

% 2
Vi Vil (Sk,ns ak,p) + 05

20(H—h+1)2Vd log (%)

Var(Ck | Fr-1) < =
maX{anhV;ﬁrl(Sk,hv a/k,h)} + 0'2 - ’ih\/?

<2

— )

as long as K satisfies (F.14).
Then by Theorem H.10, with probability at least 1 — §, we have

K
K 4K? 4(2H — 2h +3) 4K?
X Cr < y/2dlog <1 + > -log < > + log ( .
S| = o (14 ) () S e (4

Since P(£) > 1 — 4, the overall probability is at least (1 — §)? > 1 — 24 by independence. Finally
replacing § by d/2 completes the proof. O

Lemma F.6. Let ¢ > 0 be a constant. For any h € [H] and § € (0, 1), suppose K satisfies that

K >

_ 472 — 2
1600(H — h+ 1)'d® ((H h+1) KL) (F.16)

K3 (n + 02)? Akp(nn + 02)d

where N, is the e-covering number of V},1(L). Then with probability at least 1 — 4, it holds for all
function V' € Vj, 11 (L) that

2

—1
Ah

K
Z Gn(Sk,ny akn) " 2P(Skny ak.n) (PoV (Skn» akn) — V(skn) — €kn))
k=1

\/g(Hh+1)>2.log2<K(Hh+1)2L>. F17)

Vi + o2 Kn(nn +02)0

<50 <d+
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Proof of Lemma F.6. For the simplicity of presentation, we first define some notations. We define
the following vector,

DSk, Ake,h) (th(sk,m ar,n) = V(spn) — 5k,h>
. .

= On(Sk.h> Qk,h)

and the following matrix
o T /a2
Ty = @8k arn)B(skn: arn) " /Gh(Skns arn) + Ma.

It remains to show that, with probability at least 1 — 4, for any function V' € Vj,41(L), V‘T/I“_,lvv
is no greater than the R.H.S. of (F.17). In the following argument, for Vi € V},1(L), we denote
vi = vy,, I'1 = T'y, and o, the variance estimator induced by V7, and similar for V5.

Let Cy be the smallest e-cover of Vy,11(L), and N, = |Cy | the e-covering number of V;, 11 (L). For
any V1 € Vi,11(L), there exists V2 € Cy such that dist(V1, V2) = sup, |Vi(s) — Va(s)| < e. Note
that we have the following decomposition:

viAT v <v) AT v + |V1 AT'vi — vy Ay V2| (F.18)
By Lemma H.13, when K satisfies (F.16), we have

1600(H — h + 1)%d ) KN,
H%(nh + 03)2 Ad

Then by Lemma F.5 and a union bound, we have that, with probability at least 1 — 4,

2
K AK2N.\  A(2H —2h+3) [4K2N.
Vi s v S <\/2‘“°g( i) s () e os (45)

(F.19)

It remains to bound the second term in (F.18). We first bound ||v; — val|o.

[vi—va

02 (Sk,h, Ak, p) 03 (Sk,h, Ok, p)

K PpVa(sknsann) = Vi(spn) = €en PuVa(skn, akn) — Va(sy ) — €k
Z D(Sk,hs Ok,h -

K

<Y N (shns )l -

k=1

PrVi(sk,n, ak,n) = Vi(sin) = €en PaVa(skn, akn) — Va(sy ) — €kn

U%(Sk,hvak,h) U%(sk,h,ak,h)

(]thl Sk,hy Gk,h) — Vi(sy ) — €k h) (th2(3k: hy Gk,h) — Va (8%, ) — €k h)

K k) ) y k)
Z i - ¥ i (F.20)

Pt 07 (8k,h»> Ok,h) 05 (Sk,hs Qke,h)

where the first inequality follows from Cauchy-Schwartz inequality and the second inequality is due
to Assumption 2.1.

Note that for any real-valued function f1(-), f2() and positive function g1 (-), g2(-) bounded away
from 0, we have

i P _|he-hatha-af
g1 g2 g192
< J1(g92 — g1) n g91(f1 — f2)
9192 9192
[(sup |f1]) - 192 — g1] + (sup g1) - |f1 — fal] - (F21)

~ inf gy inf go
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Now, by the construction we have 0% (-,-) € [n, + 02, (H —h+1)? +02], and P, V1 (+,-) — V4 () —
€x,n € [—2H +2h — 3,2H — 2h + 3], and the same for o3 and V5. Also note that for all (s, a),
|U%(57 CL) - U%(Sa a)|

< [((s.0). B = Br)| + 20 —h+ 1) |(6(5.0). 811 — B1.2)|

K K
<IZY bk rn) (VE(Brn) = V3 (S| + 120 Y @k arn) (Vi(5) 1) — Vz(ék,h))‘
k=1 k=1
_ 2
JAH b K £22)
K

where the second inequality is due to Assumption 2.1 and the third inequality follows from the fact
that V1,15 € Vh+1 (L)

Denote u = v, — v;. Combining (F.20), (F.21) and (F.22) yields that
- <ZK: 1 {4(2H2h+3)(Hh+2)2K.
= 2+ o2y
< 10(H — h+1)2K?
Kn(nn + 07)?
where the second inequality is due to the fact that 02 < 1.

Next, by Lemma H.7 and (F.22), we have

e+ ((H—-h+1)*+02) 2
Kh

€, (F.23)

SK*((H —h+1)>+07) .

ATT A< F.24
R S e "
Also note that
vi AT v, — v;—Agva’ = |VIA;1V1 —(vi+uw AT (vi + u)|
<|vi(AT' = ATYvi|+2|v] AT [+ [uTAS e (F25)

By the definition, we have ||v1||2, [|[vall2 < (2H —2h+3)K/(n, +02), and || AT ], ||AS ]| < 1/
It then follows from (F.24) and (F.25) that

(2H — 20+ 3)2K* SK2((H —h+1)>+0?)

TA-1 T -1
vi A7 v — vy A v2‘§

(nn +02)? Nkp(nn + 02)?
22H — 2h +3)K 10K (H — h+ 1)2K?
A(np 4 02) Kn(ny + 02)?

100(H — h+1)*K*
AU
200(H — h+ 1)*K*
K (n + 07)?
by the choice of A = 1. We then choose € = &3 (15, + 02)?/[200(H — h + 1)*K5], and thus

1
’vlTAl_lvl — vaA2_1V2’ < Ve (F.26)

)

Now by Lemma (H.13), we have

o 4757\ 4
400(H — h+ 1)*K L) (F27)

N <1+
- ( K7 (mn + 02)?

Then combining (F.18), (F.19), (F.26) and (F.27) yields
2

K
Z Oh(Skohs @n) 2P (Skohy A, (PaV (Sk,hy akyn) — V(skn) — €k,h))
=1

2 2
<50 <d+d(H_h+1)> ~log2(K(H_h+1) L)'

Vo + 02 Kn(nn + 02)d

1

Ay
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This completes the proof. O

F.3 Bounding the error terms

Finally, we prove the following key lemma for completing the induction step in the proof of Theorem
C.2.

Lemma F.7. Set L = (1 + 1/H)d\/K/X. Forany h € [H — 1], let p be some positive constant
such that p < (n, + 02)/[12(H — h + 1)]. For any § € (0, 1), suppose K satisfies that

H — h+1)*d? dHK
K> 36002 +2 2) -lo ( > (F.28)
Kh (77h + 07‘) K/hd
Then the following two events hold simultaneously with probability at least 1 — 9:
1. & forall Ve Vi1 (L) N{V s sup,es [V(s) — Vir 1 (s)] < pls
N\ -1
Ay, 8
— < = F.29
2. &: for all function V(-) € Vi1 (L) N{V : supges [V(s) = Vi (s)| < p} and all (s, a)

pairs,

K
)TA! Z (Sk,hs Ahoyn) "2 DSk, Ak p) (PLV (Sk,hy Qi) — V(skn) — €k,h)

dH—h+1) (d(H—h+1)2K>
ﬁ Vin(n + 02) Kn(nn + 02)0

Proof of Lemma F.7. We want to show ]P’{gl N gg} > 1 — 4. It follows from Lemma F.4 and (F.28)
that P(&;) > 1 — 4.

To show that P(gz) > 1 — 9, first by Lemma F.6, we have

arn) 2 d(skns ann) (PrV (8K, arn) — V(shn) = €rn))

At
2
<50 gy dH =R+ .10g2<K(H_h+1)2L> (F.30)
- \/1h + o2 Kn(mn +02)6 )7

forall V- € Vyy1(L).
It follows from Cauchy-Schwartz inequality that

Kﬁl Zah<5k,h; arn) 2P (skns ann) (PhV (Skns arn) — V(skn) — €rn)

< (s, )5+ -

K
Z Fn(skns arn) 2P (skn ann) (PR V](Skns ann) — V(shp) — €n)
k=1

< || A2

-1
Ay

K
Zah(sk,ha arn) 2P (skns ann) (PRV](Skns arn) — V(shp) — €kn)
k=1

< 20 i+d(H—h+1) o (d(H—h+1)2K>
VK \Vin (s +02) kn(mn +02)s )7
where the second inequality follows from Assumption 2.1 and the third inequality follows from (F.29)

and (F.30). Note that this holds for all (s,a) € S x A as we directly bound the operator norm of th.
Replacing § by 6/2 completes the proof. O
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G Lemmas for OPE Convergence

G.1 Concentration of

Recall that in the algorithm, to estimate the variance, we use ,@h and §h which are estimated using

the function V7, | and {5 p, G n, é;ﬁh}ke[K].

For the next lemma we denote the function o (-, -) as computed from some function V' (-) and data Dj,.

Lemma G.1. Letp > 0. Forany V' € Vy 11 (L)N{V : sup, [V (s)— V)T (s)| < p}, with probability

at least 1 — 4, we have

Crns(H—h+1)2Vd
VK

|02(s,a) — o7 —max {ny, VaViia(s,a)}| < +4(H—-h+1)-p,

forall (s,a) € S x A where

1 [1 A+ K\ 1. 4742 1
C =12v2.- —— - | =1 _— —log = 120\ - —.
K,h,8 V2 NG [2 og( h >+ p og 5} + .

Proof of Lemma G.1. By Lemma F.2, with probability at least 1 — §, we have

Crpns(H—h+1)2V/d
VK '

Note that if two functions f1, fo : S — R satisfies sup, | f1(s)— fa(s)| < p,sup, |fi(s)| < H—h+1,
and supy | f2(s)| < H — h + 1, then for all (s, a),

\Vifi(s,a) = Vi fa(s,a)| < 4(H —h+1) - p.

Then using the triangular inequality and [V, V (s, a) — V5 V[T, | (s,a)| < 4(H — h + 1)p finishes the
proof. O

|o%(s,a) — 02 — max {ns, V4V (s,a)}| <

G.2 Concentration of Weighted Sample Covariance Matrices

In this subsection, we study the concentration of the matrices Kh, h € [H] to their population counter-

parts. Recall from Algorithm 1 that for each h € [H], the matrix A}, is generated using the function
on(-,-) and the dataset Dy, = {(Sk n, QO by Tk by 827h)}ke{K]. Since the function (-, -) itself is

generated by IA/hH (-) and the dataset Dj, = {(8k,ns ks T 1y 37, 1) Yee[K]» WE can equivalently view

Ay, as generated by XA/hH (+) and the datasets Dy, and Dy,. In the remaining of the subsection, we will
omit the subscript and superscript when it is clear and simply write

K
Ap = Z D(kpy W) P (ks k) /0% (k,hy k) + AL,
k=1

where o (-, -) is generated using the function V(-) and the dataset Dy, as described in Algorithm 1.
We also denote

0\2/'('3 ) ‘= max {nha th('7 )} + 0'7%'

By Lemma F.2, we know that with high probability, o%(-, -) will be a good estimator for 0% (-, -).
This will be used to show the concentration of the matrix A ;. We start from the next lemma.

Lemma G.2. For any h € [H], conditioning on o (-, ) € T (L1, L2) being fixed, with conditional

probability at least 1 — 6,
1/2
‘ L4 S

~

An V(s,a)qb(s a)T}

- [ lo
= 4 02)WVE ( % K
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Proof of Lemma G.2. Since o(-,-) is a function of V and the dataset D, which is indepen-
dent of Dy, conditioning on o(-,-) won’t change the distribution of Dj;. In other words,
&(Sk,h, 0kn)/0(Sk.h, Gk,n), kK € [K] can be viewed as independent random vectors. Then by
Lemma H.4, we have that, with conditional probability at least 1 — &,

Ay, Ay 4v2 2d
—Ern | ||| S 7= /log | < |
K 7K (m + o})VK 8
and thus
Ay (s, a)p(s. a)T Ay A, (s, 0)p(s.a)"
— —Ex — —Ex Ez —Ez
K o [ o?(s,a) K MK + 4 o2(s,a) 4
< 4v2

Next, combine Lemma G.2 and the event that o2(, -) is a good estimator for o3 (-, ), we get the
following lemma.

Lemma G. 3 For any h € [H], condition on V' € V11 (L) being fixed, with conditional probability
at least 1 —

¢(s,a)p(s,a)’
77E7Th - 92/. N
oy (s,a)
log 4d>1/2+)\+ 1 Crans(H—h+1)*Vd
(77h+0'2)\/f? o K = (nn+02)? VK ’
where

1 A+ K\ 1. 8?2 1

C =12 — I _ — log — 122 - —.

K,h,o V2. T: [2 og( \ >+d0g5} + o

Proof of Lemma G.3. First note that condition on o'(-,-) € T,(L1, L2) such that sup, , [0%(s,a) —
0% (s,a)| < p for some p > 0, we have

- [easea) (20060 |

o2(s,a)
< Erp [H¢<s,a>¢(s,a>TH sup (gzé,a) - aa(i,a))]
= ﬁ

since 02(s,a) and 0% (s, a) are lower bounded by 77h + 02. Then by Lemma G.2, we have that,
conditioning on fixed o (-, -) s.t. sup, , [0*(s,a) — o (s, a)\ < p, with conditional probability at

P

least 1 — 6,
N T 1/2
LSRN (AR (SR SRR\ SR B
K Uv(Saa) (nh-l-U%)\/E 4 K~ (nn+02)
(G.1D

Since conditioning on V' (-) won’t change the distribution of Dy, under Assumption C.1, by Lemma
F.2, with probability at least 1 — 4, it holds for all (s,a) € S x A that

Crpns(H—h+1)2/d
VK ’

|o%(s,a) — oy (s,a)| <

(G.2)
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where

1 1 A+ K\ 1. 4] 1
Crns =122 —— | Zlog (222 ) + Zlog = 12\ —.
Kb V2 o {2 Oi—’;( \ >+ 708 5} + .

Combine (G.1) and (G.2), and we get that, condition on V', with probability at least 1 — 24,

H (s a)@(s, a>T] ‘
7 Eﬂ h 2
oy (s, a)
(log 2d> 1/2 LA, 1 Cras(H—h+ 1)2Vd
(nh+02)\/f 6 K (nn+07)? VK '
Replacing 0 with 0/2 finishes the proof. O

Finally, combining Lemma G.3 and the event of uniform convergence, we can bound the distance
between Ay and its population counterpart Ay,.

Lemma G.4. For any h € [H], condition on V' € Vy,(1(L) N{V :sup, |V (s) — V;7 ,(s)| < p},
with conditional probability at least 1 — §, we have

Ay,
K M

42 ( 4d)/ A 1 Crns(H —h+1)2Vd
<— v (10 +Z 4+ : L +4(H—-h+1)-p|,
 (gh + 02)VK &5 K = (nn+02) VK ( )
where

1 1 A+ K 1. 812 1
Crns=12vV2- —— - |Zlog [ 222 ) 4+ Zlog = 12\ —.
K.h,6 V2 NG [2 og( h\ >+d ogé} + .

Proof of Lemma G.4. First note that by Lemma G.3, with probability at least 1 — 9,

.
|2 -, [l
14
_ <log 4d>1/2+>\+ 1 Crns(H—h+1)*Vd
(77h + 02)\/E 5 K (nn+07)? VK '

On the other hand, by sup, [V (s) — V/7, (s)| < pand [V (s)],
sup, 0% (s) — o2 (s)| < 4(H — h+ 1)p. It implies that

d(s.a)¢(s,a)" P(s,a)p(s,a)"
Eir,h - 92/ N | ]E‘Tr,h - 9/ N
O'V(S7CL) (S,CL)
Then by triangular inequality, we conclude that
Ay [$ls,0)d(s.a)"
K ol o3 (s,a)

42 4d\'?* A 1 Crns(H —h+1)2Vd
<—F o (log—) +=+ o |
(m + 2 )WVE § K (g +02) VK

Finally, recall the definition of A} given by (2.6). O

(s)| < H— h+1, we have

1

< G

+4(Hh+1)'p>.
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G.3 Bound for the self-normalized martingales

Lemma G.5. For any h € [H], condition on ‘A/h’TH € Vhy1(L) s.t. sup;

thl(s)‘ < B, with
conditional probability at least 1 — 6,

22

h

Proof of Lemma G.5. Denote xi, = ¢(3k.n, Gk,1), and 1y, = (XA/;ZZA)(E;M) — Ph(‘/}hﬂ_,_l)(gk,ha Qg.h)-

Define the filtration {F;}5 ) by Fo = 0(31,p,G1,8), F1 = 0'(517}1,(11,}“gll)h,élh,(vlzh) e,
Fi = (81,1, Q1,031 y s Sk,hs Qheohy S s Skt 10 A1) for k= 1,--- K — 1, and Fg =
o(Fx-1, é’K »)- Then we see that xy, is Fj,_1-measurable, and 7, is Fi-measurable. Furthermore,
since E[(V/7,1)2(5), 1) | Fie1] = Pr(Viy1)? (3ks @ )s e | Foo1 is zero-mean. Also, [ny,| < 2B,
which implies that 7y, | F_1 is 2B-subgaussian. Then by H.9, with probability at least 1 — §/2,

K 2 R
E 1/2 I _1/2

> x| < 8B%log (det( n) 5;12et(A) )

k=1 S-1

Recall that ZAlh = Zle & (38,1, dk7h)¢T(§k7h, ag,n) + Alg where || ¢|| < 1. It follows that

det(2,) < (A + K)%.

d A+ K 2
< 21z - — .
i 8B [2log< \ )-i—log 5]

The second inequality is similar. Taking a union bound finishes the proof. O

‘We then conclude that

H Auxiliary Lemmas

H.1 Concentration Inequalities
Lemma H.1 (Matrix McDiarmid inequality, Tropp 41). Let z;, & = 1,--- , K be independent

random vectors in R%, and let H be a function that maps K vectors to a d x d symmetric matrix.
Assume there exists a sequence of fixed symmetric matrices { Ay },c[x] such that

(H(Zlv"' yLfgy vt aZK)_H(Zla"' 7Z;c7"' 7ZK))2 ina

where zy, z), ranges over all possible values for each k € [K]. Define o2 as

DAL
k

Then, for any ¢t > 0,

2
P {Auae (H(2) — EH(2)) > £} < d - exp <80t ) ,

where z = (z1, -+ ,Zk).
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K

e v e d. (A+K 2
Z D(31hy Ak, {(Vthl)(S?c,h) - Ph(VhH)(Sk,mak,h)} <8B” [2 log (/\) +log ~
k= 271
u : d A K
> 06 (T (6 = Fu(Ti 2 onmoana) ]| <88 | Sog (255 ) 410
k=1 sS—1

|\

2

0

|



Lemma H.2 (Freedman’s inequality for martingales, Freedman 13). Consider a martingale difference
sequence {ey, k = 1,2,3,---} with filtration F, := o{ey, -+ ,ex_1},fork =1,2, ---. Assume
e, s uniformly bounded:

lex] < R almost surely for k=1,2,3,---

Then for all € > 0 and o2 > 0,

K
D
k=1

IP{EIK>O:

- 9 —€2/2
Ze,kZ:lVar[ek‘}—k]SU §2exp(02+R€/3>

H.2 Basic Matrix Inequalities
Lemma H.3. Assume G; and G € R%*4 are two positive semi-definite matrices. Then we have
G <G |+ G- G2 - 1G1 — Gl

and

lullgpr < [1 e 16 l6 - 1G: - Gal| -l -

for all u € R4,

Proof of Lemma H.3. The first inequality is by
G < llG |+ l1G2" =G| < |G |+ (|G| - 1G2 = Gall - |G-

To prove the second one, note that

allg-: = \/uTGrtu

= \/u—r((}f1 ~GyHYu+uTGtu

= \/uTc;;l/2 [I +(GY?GGY? - I)] G, '*u
1/2
< (14 |ererey 1 ) fule,

and the rest follows from
HG;/QGl_lGé/Q 7 IH _ HG;/Q(Gl—l B GQ_l)G;/QH
- [ei*erie - eneriey|
_ 1/2 _
< (HG21H||G2||) 'HG11H'||G1*G2||-
O

Lemma Hd4. Let ¢ : S x A — R? be a bounded function such that |¢(s,a)| < C for all

(s,a) € S x A. Forany K > 0 and \ > 0, define G ¢ = Zszl o (sk, ar)p(sk, ar) " + A\ where
(8K, ax)’s are i.i.d samples from some distribution v over S x A. Then with probability at least 1 — 4,
it holds that

G Gr 4/202 2d\ /2
—E, |==|| < log — .
K K VK 0
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Proof of Lemma H.4. Denote x;, = ¢(sg, ax). Denote 3, as the matrix obtained by replacing the

k-th vector x, in 3}, by X, and leaving the rest K — 1 vectors unchanged. Then we have

~ ~ 2
X _ Zn
K K

TN 2
<xkxz — xkxz>

1
K2

| )\

K2
4C*

K2
= A2

K

(2xkxk xkxk + 2xkxk XX )

(201, +20'1,)

1

where the first inequality uses the fact that (A — B)? < 2A2 + 2B? for all p.s.d. matrices A and B,
the second inequality is from ||| < C. Note that we have

k

Then by Lemma H.1, we have: for all £ > 0,

>
Zh _g
K

"

Equivalently, with probability at least 1 — 9,

ZhE
K

This completes the proof.

58
K

~

Xn
K

> A

>t}<2d exp(

2
k

act

N

—t2K
3204 -

2 1/2
o

VK

Og(s

O

Lemma H.5. Let ¢ : S x A — R% be a bounded function such that ||¢(s,a)|s < C for all
(s,a) € S x A. Forany K > 0and A > 0, define Gx = S0 (sk, ar)p(sk, ax) | + ALz where

(Sk,ar)’s are i.i.d samples from some distribution v over § x A. Let G = E,[p(s,a)p(s,a)

Then for any 0 € (0, 1), if K satisfies that

2
K > max {51204||G_1||21og (;) ,4A||G‘1} :

Then with probability at least 1 — 4, it holds simultaneously for all u € RY that

lullg <

Proof of Lemma H.5. Note that

ullg-1-
\/»

Hu”c’;;(l =

u'G lu4+u’

<_

Gg
K

) - G—1] .

A~ =~

1
< —

VK

= -1
G1/2 (?) G1/2 1,

1/2

where the last inequality follows from Cauchy-Schwartz inequality.
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= -1
WG lu+uTG1/2 [(;1/2 (cjf) G1/2 - Id] G-1/2u

lallg-1,

T].

(H.1)

(H.2)



It then reduces to bound HG1/2 (G‘:K/K)f1 G2 —1,),

= -1 = -1 =
G G G
1/2 [ UK 1/2 _ —1/2 5K ~—1/2 _(-1/289K ~-1/2
G ( i ) G I, {G % G ] I,-G 7 G . (H.3)
By Lemma H.4, we have
LW () 2 Yz
— —E log —
VK o
with probability at least 1 — (5 and thus
_ GK Gk Gk _
-G /222G Y2 ——E E|—-—|-G|| |G
| Gl e | S e
4 2|Gg1 2d  M|G™!
_AVACGTY [ ad NG
1
<= H4
<5 (H.4)
where the last inequality follows from the assumption (H.1). Therefore,
G G 1
. “1/20K o-1/2) s _ T @ 122K 12| > 2
Amin (G i G ) >1-|I-G % G 25
with probability at least 1 — §. This further implies that
G —1 G -1
G 122K G-1/2 = A (GTV22EGTY2) <2 H.5
[ K K - (H.5)
Combining (H.3), (H.4) and (H.5) yields that
= -1
G/ (if) G2 -1, (H.6)

with probability at least 1 — §. Then plug (H.6) back into (H.2), and we obtain that
g < —=lullg
Gy \/*
with probability at least 1 — §. Note that in the above argument we only need to bound
HGl/ 2 (Gg/K)~ ‘gz _ IdH which is independent of the choice of u, thus it holds for all u € R?
simultaneously. This completes the proof. O

H.3 Inequalities for Sample Covariance Matrices

Here we introduce some useful lemmas about the inverse Gram matrix.

Lemma H.6 (Lemma D.1, Jin et al. 17). Let A; = >.'_, x;x; + Al where A > 0 and x; € R%.
Then

¢
ZXE—A;lxi <d.
i=1

Proof of Lemma H.6. Note that

t
ZXIA;IX,L Ztr TA X; —tr< 1Zxx >

Usmg the eigen-decomposition 27 1 x:x; = Udiag(\q,---, )\d)U , we have A; = Udiag(\; +
,Ad¢ +1)UT, and it follows that

t d
tr (Atl me?) = Z g
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Lemma H.7. Forany h € [H]and Ly, Ly > 0, let oy, 02 € Ty (L1, Lo) such that sup, , [01(s, a) —
oa2(s,a)| < e. Define

K
A= Z DSk, W) D(Skhy ki) | /01 (81 s anen)® + Mg,
k=1

K
A=Y DSk @k n) (ks arn) | /02 (skny arn)? + Mg .
k=1

Then under Assumption 2.1, it holds that

2K\/(H—h+1)2+02 ¢

A — Ay <
|| 1 2||_ (TIhJFU%)Q

)

and

2K\/(H—h+1)2+02 ¢

A—l 7A_1 <
a7 - azt) < ZAE AT

Proof of Lemma H.7. We have

K
1 1
Ay = Ay =" P(skn,arn)@ " (sknrarn) ( - )
k=1

U%(Sk,haak,h) U%(Sk,haak,h)

and thus
K

A1 = Aol < NSk arn)d " (km,axn)ll -

1 1

U%(sk,ha ak,h) Ug(sk,h, ak,h)

e
=

1 1
2

o (Skprarn) 03 (S aih)

IN

M 10>

|1 (Sk,hs @len) + 02(Sk,hy Gkon)| - |01 (Skhs Gin) — 02(Sk,h, Gk )| ‘
02 (Sk.hy O,k )03 (S by Qe b))

=~
Il
_

_ 71 52
<K. 2y/(H —h+1)2 + o2 g
(nn + 02)?
where the first inequality is from the assumption that ||¢(s,a)|| < 1 forall (s,a) € S x A and the
second inequality is by 02(-) € [, + 02, (H — h + 1)? + ¢2]. It then follows that

1AL = AL = AT (A1 — As) AT

AT - [[AL = Asfl - A

2K\/(H—h+1)2+02 ¢
A2 (nn + 02)?

where in the last inequality we use ||A7!]|, |AT?] < 1/ O

IA

)

Lemma H.8. Forany h € [H| and Ly, Ly > 0,let o1, 03 € T (L1, L2) such that sup, , lo2(s,a) —
02(s,a)| < e. Then it holds that
K

Ay — Ayl < .
el ¥ (+ )’

56 AT —ASY <

K
(n+a7)

Proof of Lemma H.S. Note that

K
1 1
Ay — Aol <D 1@k arn)@ " (skns ann)l - -
I I k:1|\ ($k,hs k1)@ (Skhy aren) | oo~ )
K
<y 03 (Sk,hs @k,n) — 01 (Sk,hy Qi)
i 03 (8k,hy @h,h) - 05 (Sk,hy Ok )

and the rest follows from the proof of Lemma H.7. O
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H.4 Bounds for self-normalized vector-valued martingales

Here we introduce some concentration inequalities that can be applied to bound the self-normalized
martingales.

Theorem H.9 (Hoeffding inequality for self-normalized martingales, Abbasi-Yadkori et al. 1). Let
{n:}$2, be areal-valued stochastic process. Let { F; }$2, be a filtration, such that 7; is F;-measurable.
Assume 1, | F;_1 is zero-mean and R-subgaussian for some R > 0, i.e.,

vVAeR, E [6)"“‘}3*1} < NR/2,

Let {x;}2°, be an R%-valued stochastic process where x; is }"t 1-measurable. Assume Agisad xd

positive definite matrix, and define A; = Ay + ES L XsX, . Then, for any § > 0, with probability
atleast 1 — ¢, forall t > 0,

Z XSTIS

Theorem H.10 (Bernstein inequality for self-normalized martingales, Zhou et al. 53). Let {n;}2, be
a real-valued stochastic process. Let {F;}22, be a filtration, such that 7, is F;-measurable. Assume
1, also satisfies

det(A;)/? det(Ao)_l/Q)

< 2R?1
0g< 5

A 1

nel < R, Elne | Fiea] =0, E[nf | Fyma] < 0.

Let {x;}°, be an R%- valued stochastic process where x; is F;_;-measurable and ||x;|| < L. Let
Ay =2+ Zs | XsX. . Then, for any § > 0, with probability at least 1 — 4, for all ¢ > 0,

tL? 442 42
< dlog [1+ =) -1 4R 1o )
Al_sg\/ 0g<+>\d) Og(5)+R <5>
t

H.5 Auxiliary Results for Self-normalized Martingales

sTls

Assume the function o4 (-, ) is computed using the function V; (-) in the same way o, is computed

using XA/h“H as in Algorithm 1. In this way, we can view o as a function parameterized by V;. And
similar for o5 and V5.

Lemma H.11. Assume V; and V5 € V;, (L) and satisfy sup, [Vi(s) — Va(s)| < e. Then

KH-—-h+1
sup |o1(s,a) — oa(s,a)| <2 %

AK(H —h+1
sup |o3(s,a) — 02(s,a)| < %e.

Ve

Proof of Lemma H.11. By the proof of Lemma H.14, we have

sup|o1(s, a) — o2(s, a)| < sup \/IJ?(&G) —03(s,0)] < VI[IB1 — Bl +2(H — h+1) - 61 — 65].

Note that

K
-t Z Sk anen) (Vi — Va) (3 )
=1

61 — 62 =

K
< ¢
A

~

where we use H(Eh)*l H < 1/Aand ||¢(s,a)|| < 1forall (s,a). Similarly, we can show

K

(=) > s arn) (Vi($hp)? = Valhn)?)

k=1

181 — B <

2K(H — h+1)
fﬁ

< ‘ (f:h)—lH K -2(H —h+1)e <
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Altogether, we have

KH-h+1
sup |o1(s,a) — oa(s,a)| <2 g

a A\ : \/gv

and

4K(H — h+1
sup o3(s,a) — o3(s,)) < D

H.6 Covering numbers of the function classes

Here we compute the covering numbers of the function classes V}, and Tp,.

Lemma H.12 (Covering number of the Euclidean Ball). For any € > 0, the e-covering number of
the ball of radius 7 under the Euclidean norm satisfies N, < (1 + 27 /¢)<.

A proof of this classical result can be found, for example, in the work by Vershynin [42]. Now we
give the covering number of the function class V(L) for all h € [H] and L > 0.

Lemma H.13. Forany h € [H] and any L > 0, let V,, (L) be as defined in (C.2). Let AV, denote the
e-covering number of V;, (L) with respect to the distance dist(V7, Vo) = sup, |Vi(s) — Va(s)|. Then
under Assumption 2.1, it holds that
d
2L
N < (1 + > .
€

Proof of Lemma H.13. For any Vi, Vo € V;,(L) parametrized by w; and wo respectively, we have
dist(V1,V2) = sup [(@7(s), w1 — wa)| < [[wi — wallz - sup [|@7 (s)[l, < [[wi — wall2,

where the first inequality is by Cauchy-Schwarz inequality and the second inequality uses the
assumption that ||¢(s, a)|| < 1.

Let Cy, (€) be an e—cover of the Euclidean ball {w € R?| ||w||2 < L}. Then for any V; € V,,(L),
there exists a Vo € Vj,(L) parametrized by wa € Cy (€) such that dist(V7, Va) < e. Then we see that

d
2L
N<leol < (14 2)
€
where the second inequality follows from Lemma H.12. O

Lemma H.14. Forany i € [H|and Ly, Ls > 0, let T, (L1, Lo) be as defined in (C.3). Let \V; denote
the e-covering number of 75 (L1, L2) with respect to the distance dist(o1, 02) = sup, , |01(s,a) —
o2(8, a)|. Then under Assumption 2.1, it holds that

40, \? S(H —h+ 1)L\ *
IR AL LSS
€ €

Proof of Lemma H.14. For any o1, 0o € T which are parameterized by (31,6,) and (32, 05)
respectively, we have

diSt(O’l7 0'2)

= sup |o1(s,a) — o2(s,a)]
s,a

< sup \/|J%(S, a) — o3(s,a)]
s,a

< sup \/ |(®(5.0). B1) = (@(5.0). Bo)| + [ [($(5, @), 01) 0.1 -] = [(S(s5, @), O2) o,

s,a

< sup \/ [(®(5.0). B1) = (@(5,0). Bo)| +2(H — h+1) - [($(5,),61) — ($(s,0), 62)]

s,a

<VIB1 = Bell +2(H — h+1) - |61 — 62].
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where the first inequality uses the fact that |a — b| < y/|a? — b?| for any a,b > 0, the second
and the third inequalities follows from the fact that max{7y, -} and the clipping {-}(o,(zr—n+1)2
{-}10,F1—h+1) are all contraction maps, and the last inequality is by Cauchy-Schwarz inequality and
the assumption that ||¢(s, a)|| < 1.

In order to have dist(o, 02) < ¢, it suffices to have |31 — Ba|| < €2/2and 2(H —h+1)|/0; — 02| <

€2/2. By Lemma H.12, in order to €2/2-cover {3 : ||B| < L1} and €2/(4(H — h + 1))-cover
{0: ]|0|| < Ly} we need

4L\ 8(H — h+ 1)Ly \*
%§O+gﬁ,M§@+(¥+)ﬂ

Altogether, to e-cover T, we have
d
4L 8(H—-h+1)L
MSM%%§@+Q~Q+(2)ﬂ.

€

H.7 Bounds for the Regression Estimators

Lemma H.15. Assume sup, < B for some B > 0. Then éh, Bh and w7 in Algorithm 1

‘7h7r+1 (s)

satisfy the following:
~ Kd ~ Kd B+1 Kd
0,|| < By/— < B*\/ — Wi || < ———1/ —.
101 < BySEL B < BT TS o=

Proof of Lemma H.15. For any vector v € R%, we have

K
VIO = (v ()™ d(Ekms rn) Vil (51 0)
k=1
K A~
Z ) Dk s k)| - sup (Vi (5)]
st s
<B-:

K K
ZVT(ﬁh)_lvl : lz ¢(§k,h7dk,h)T(th)_1¢(§k,h7(Vlk,h)]
k=1 k=1

K
< Blvlzy/ 5 - V.

where the second inequality is by Cauchy-Schwarz inequality, and the last inequality uses
H(f}h)—ln < 1/X and Lemma H.6. It follows that H§h|| < By/%Z. Similarly, we have

1B < B2,/ 54 since sup, |Vh+1( s)|? < B2

|VT‘/I\VZ =

viAL! Z B (Skns en)Yien /O
k=1

vTK;l ¢(3k/‘,\h7 ak,h)
Ok,h

— $ [ivm)—lv] - [i Blorates) (5,1 Hlokntis)

Ok,h Ok,h
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where the first inequality comes from

Y, Trn + Vi (s) 1
Ak’h _ k,h Ah+1( k,h) < (B + 1) . ,
Ok,h Ok,h /1n + o2

and note that by assumption |ry | < 1 a.s., and by the clipping in the algorithm, 7y, 5, > /7, + 02.
O
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