Mitigating Forgetting in Online Continual Learning
with Neuron Calibration

Haiyan Yin, Peng Yang, Ping Li
Cognitive Computing Lab
Baidu Research
10900 NE 8th St. Bellevue, WA 98004, USA
{haiyanyin, pengyangOl, lipingll}@baidu.com

This appendix is organized as follows:

* Section A: the detailed dataset statistics and a summary of model properties w.r.t. online
continual learning setting.

* Section B: additional experiment results on comparing with CTN.

* Section C: hyperparameter settings for all the algorithms.

A Task Specifications

We present the details on each dataset in Table 4. Under the online continual setting, the tasks are
observed following a fixed order and the data from each task is observed as a (one-pass) stream of
samples. The batch size is 10 for all the datasets. We do not randomize the order of tasks or optimize
the task orders. The task order is defined by processing the original datasets (CIFAR, minilMN and
CORe50) or random (pMNIST). We also present a summary of the key model properties with regard
to the online continual learning setting in Table 5. The term store historical params/grads/logits
(training) refers to the case that historical information about the model, such as its parameters,
gradients or logit outputs, needs to be accessed for optimizing the model at its training time.

Table 4: Details on the benchmark datasets

Dataset #Tasks # Classes per task ~ # Training # Testing Dimension Disjoint label space
pMNIST 20 10 1000 10,000 28 x 28 X
CIFAR 20 5 50,000 10,000 3 x32x32 v
minilmageNet 17 5 42,500 8,500 3 x84 x84 v
CORe50 10 5 113,894 44,971 3 x 224 x 224 v

Table 5: Details on the model properties w.r.t. the online continual learning setting for each method
considered. Note that all the fask-incremental methods require the access to Task ID during inference.

Use Episodic ~ Use Task-Specific ~ Need Task ID Store Historical Store Historical
Method Memory Parameters During Inference ~ Params/Grads/Logits (training) Params (testing)
Offline X X X X X
Independent X v v X v
GEM [19] v X v v X
AGEM [6] v X v v X
MIR [1] v X v X X
MER [27] v X v v X
CTN [25] v v v v X
CCLL [36] X v v X v
NCCL (ours) v X v v X

B Additional Results on Comparing with CTN

We present an ablation study to investigate whether task-specific properties could bring positive effect
to NCCL. To this end, we consider to employ a light-weight task-specific module proposed in a recent
work CTN [25] which has proven to be effective for online continual learning: (1) a light-weight
controller module (CTR) which uses a task embedding to generate task-specific calibration over the
feature map (2) a validation memory module (VM) which holds out partial samples from the episodic
memory to train the controller, for better generalization. We create two variants of CTN that employs
CTR or both CTR and VM. The results are shown in Table 6. First, we notice that employing the
task-specific controller module does not bring positive performance gain over the original NCCL.
While the FM(]) for NCCL+CTR is slightly better or comparable to NCCL, the ACC (1) and LA(?)
are substantially lower. Also, we notice that when employing the VM module, the training with
hold-out data leads to inferior performance than only using CTR or the original NCCL. The reason
might be that holding out samples to create validation memory would let both the base parameters and
the calibrator/context parameters be trained by less samples during memory rehearsal and therefore
lead to inferior continual learning performance.

Table 6: Ablation study results on exploring the task-specific properties of NCCL. We employ the
controller module (CTR) and the validation memory module (VM) from CTN to our method and
evaluate whether the task-specific modules bring any improvement. Each method adopts a memory
size of 50.

CTR VM Split CIFAR Split minilmageNet
ACC(D) EM (D) LA(T) ACC(D) EM (1) LA
NCCL v X 7256£0.59 3.81+£0.40 74.62+0.71 66.21+£0.74 3.16+0.62 66.741+0.98
v v 71.324+1.00 4.61£0.83 74.56+0.80 64.47£0.56 0.38+£0.45 66.03£0.49
(ours) X X 7439£0.97 4.88+0.97 78.28+0.53 69.49+0.92 3.36+091 70.69+1.06
CTIN v v 68.62+0.59 592+0.73 73.83£0.71 65.25£1.65 3.78+£2.31 67.54+2.87

C Hyperparameter Specifications

We present the hyperparameter configurations for all the methods considered in our experiment.

* GEM

— Learning Rate: 0.1 for pMNIST, 0.001 for CIFAR and miniIMN, 0.01 for CORe50
— Number of gradient updates: 3 (all benchmarks)
— Margin for QP: 0.5 (all benchmarks)
+ AGEM
— Learning Rate: 0.05 for pMNIST, 0.001 for CIFAR and miniIMN, 0.01 for CORe50
— Number of gradient updates: 3 (all benchmarks)
— Margin for QP: 0.5 (all benchmarks)
* MIR
— Learning Rate: 0.1 for pMNIST and miniIMN, 0.03 for CIFAR and CORe50
— Replay batch size: 50 (all benchmarks)
— Number of gradient updates: 3
* MER
— Learning Rate: 0.1 for pMNIST and miniIMN, 0.03 for CIFAR and CORe50
— Replay batch size: 64 (all benchmarks)
Reptile rate 5: 0.3 (all benchmarks)
Number of gradient updates: 3

* CIN

— Learning Rate: 0.03 for pMNIST, 0.01 (all benchmarks)
— Number of inner/outer updates: 2 (all benchmarks)
— Temperature and weight for KL: 5, 100 (all benchmarks)

— Replay batch size: 64 (all benchmarks)
— Semantic memory percentage: 20%
* CCLL
— Learning Rate: 0.003 (all benchmarks)
— Number of gradient updates: 4 (all benchmarks)
e NCCL (ours)
Learning Rate «;,,: 0.1 for pMNIST, 0.01 for CIFAR and miniIMN, 0.003 for CORe50
Learning Rate avy,,¢: 0.05 for pMNIST, 1e-3 for CIFAR and miniIMN, le-4 for CORe50
Replay batch size: 64 (all benchmarks)
Temperature and weight for KL in £;: 5, 100 (all benchmarks)
Weight (5 in outer loss L.: 1 (all benchmarks)
Number of gradient updates: 4 (all benchmarks)

	Introduction
	Related Work
	NCCL: (N)euron (C)alibration for online (C)ontinual (L)earning
	Neuron Calibration
	Learning Calibration Parameters
	Interleaved Optimization

	Experiments
	Benchmark Datasets
	Architectures
	Baselines and Evaluation Metrics
	Evaluation Results on Continual Learning Benchmarks
	Additional Results on Comparing with CCLL

	Conclusion
	Task Specifications
	Additional Results on Comparing with CTN
	Hyperparameter Specifications

