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A PROOFS

A.1 PROOF OF THEOREM[3.]]

We already know ©7 is the unique minimizer of R(©) under the constrain that rank(©) = k.

We just need to show it is achievable. Given the fact that G being invertible, we could easily have
WV = 0;G~! which gives © = O7.

A.2 PROOF OF THEOREM[3.2]

For pFedHN, it will be unable to recover the client representations for all the m lost clients. Thus
it will suffered from an error R(©) = 13" R(6;) = |[W*v; — W*v;||%. In expectation,

E[|[W*v} —W*v;||%] = Eftr((v} —’U)TW*TW*(U —v;))] = 2dk. Thus R(©) = 2™ — (k.

A.3 PROOF OF THEOREM [3.3]

The full loss on all clients can be decomposed as the sum of the loss on attacked clients and the
loss on unattacked clients, i.c., R(©) = Racx(0) + Ruacx(©) where R.e(0) = L0 —
O)1:m[|% and Ryack (©) 1= L{|(©* — ©) (m41):n ]| % Recall that we use the subscripts to denote the
column indices. For simplicity, we further denote G'(,,41.n) and G'1.p, as P, Q. During training, the
unattacked loss get minimized. Using the assumption of client embeddings’s consistency with the
graph, ie., V*G = V*, we have R .1 (0) o [|[W*(V* — V)G ||%. Itis easy to see Raex(O)
is minimized to zero when ||(V* — V)P||% = 0. The solution might not unique depending on
the rank of P. However, we use SGD to optimize V' which has an implicit regularization of the
deviation of the final solution ng and the initialization V4. Thus, we can have an unique solution
ngn =Ww* Vgnn with Vgrm :=Vy + (V* — Vo) PP where 1 indicates the Moore-Penrose inverse.
The finish 10ss R(Ognn) = Rarx(Ognn) = Lijw=(v* — Vian)Q||%, which in expectation equals
the following

B[R(Oun0)] = Bltr(Q (V" — Vi) BV TWI(V* — V30) Q) ©
d d
LBV Vo)@lF) = GBIV - Vo) - PPOQIE] (10)
=2% 1 - pPhqly = @nu GmiynGlys ) Groml® (1D

Derivation from equation (10) to equation (11) is rooted from the Guassianality of V* and Vj and
the independence between V* and Vj.

A.4 PROOF OF LEMMA [3.1]

We first recall the definition of the graph aggregation operation G and the multi-layer aggregation
G = G'*. We then point out a few properties holds for both GG and G. Finally, we prove the necessary
and sufficient condition for the lowerbound and upperbound.

Definition 1 (Graph aggregation operation). Gisa simple mean aggregatwn which averages
embeddings according the graph adjacent matrix A, i.e., [G]w = ¥ )+11[J€N(7)U{z}] where

N@) :={jlAi; =1}. G = GE is operation of aggregating L times.

Property 1. (Value range) By definition, all elements in G and G are non-negative and in the range
of [0, 1].

Property 2. (Column summation) By definition, summation of any column of Gisone ie,1TG =
17, The property also holds for G since1'G =1"7G---G =1".

Property 3. (Norm) We denote G’s columns as g;, i.e., G = [g1, -+ , gn]- We have ||g;||3 € [1/n,1].

Proof of property 3. For the norm of g; is lower bounded via Jensen’s inequality as

lgsll> = g7, > ng/n =1/n (12)
%,
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For the norm of g; is upper bounded due to the non-negativity of g;’s elements,
lgill® = _ g2 < Qi) =1 (13)
% J
O

Proof of the lower-bound in Lemma. First, it is trivial that ||(] — G(mH):nGZmH):n)GLm”%’ > 0.
Second, (I = Gmi1)nGly 1)) Grmlh = 0 <= Grom = GoninmGlyy1)mGrm <
COI(Gl:nL) C CO](G(m+1):n)~ O

Proof of the upper-bound in Lemma. Because, G (p41): G ,G1:m is the projection of G'1.p,

](»m—H)m’ ](Lm+1);n)G1:mH%‘ < ||G1mH%‘
The equality holds when GImG(mH)m = 0. By property 3, we know ||g;||3 < 1 for any i € [m)].

Thus ||G1.m||% < m. The equality holds when each g; is one-hot vector. Further since g; ; > 0 by
definition, g; has to equal e; which is the 7’th standard basis vector. O

T
(m+1):

in the column space G, 41):n G we have [[(I — G mi1):nG

B ALGORITHM DETAILS

Communication cost. Via the chain rules, the gradient of the hypernetwork w.r.t the local task loss
can be composed as the following:

Vgl = (Vb)) Vo, L. (14)

Equation |14] shows that the client will only need to transmit Vy, L; to the server for updating the
graph hypernetwork parameters. Therefore, the communication cost is determined by the size of the
local model parameter changes Ad; uploaded from the clients to the server and the size of 6 sent
from the server to the clients. It means that our Panacea causes no additional communication cost
compared with traditional federated learning methods such as FedAvg |[McMahan et al.| (2017).

C DATASET DETAILS

Car classification dataset. Comprehensive Cars (CompCars)|Yang et al. (2015) contains 136,726
images of cars with labels including 4 car types (MPV, SUV, sedan, and hatchback), 5 viewpoints
(front (F), rear (R), side (S), front-side (FS), and rear-side (RS)), and years of manufacture (YOMs,
ranging from 2009 to 2014). We follow the data splitting from Xu et al.| (2021)), and each client
has car images only from one viewpoint and one YOM. The task is to predict the car type based on
the image. Two clients are connected if either their viewpoints or YOMs are identical/nearby. For
example, client A and B are connected if A’s YOM is 2009, and B’s is 2010.

Road network traffic datasets. PEMS-BAY and METR-LA|Li et al. (2018); Xu et al. (2021) are two
datasets constructed based on the traffic data collected by sensors in the road network. Specifically,
PEMS-BAY contains the traffic speed readings from 325 sensors in the Bay Area over six months,
from January 1st, 2017, to May 31st, 2017. METR-LA contains the traffic speed readings from 207
loop detectors in Los Angeles County over 4 months from March 1st, 2012, to June 30th, 2012. To
visualize the statistical heterogeneity, we show the histograms of traffic speed from different sensors
of PEMS-BAY in Figure|3] We also list the statistics of PEMS-BAY and METR-LA in Table

Table 3: Statistics of PEMS-BAY and METR-LA.

DATASET # OF # OF # OF TRAIN SEQ. # OF VAL SEQ. # OF TEST SEQ.
CLIENTS EDGES  PER CLIENT PER CLIENT  PER CLIENT

BPEMS-BAY 325 2,369 36, 465 5,209 10,419
METR-LA 207 1,515 23,974 3,425 6,850
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Figure 3: Illustration of data heterogeneity on road network traffic dataset PEMS-BAY. We randomly
selected 16 sensors and visualized the distributions of their data values.

D IMPLEMENTATION DETAILS

D.1 IMPLEMENTATION OF BASELINES

In the following, we introduce the implementation details of the baselines compared in Section[d, We
use the original implementations released by the authors if available; otherwise, we re-implement
them by referring to the original paper.

FedAvg [McMahan et al.|(2017). We re-implemented FedAvg by referring to the original paper.
On the client side, the clients pull the global model from the server and train it using their own
local data. The updated model weights are then uploaded back to the server. On the server side, a
subset of clients is randomly selected to perform local training, and their model weight updates are
aggregated to generate the new global model.

Per-FedAvg [Fallah et al.| (2020b). We utilized a third-party’s PyTorch implementation at/ht tps :
//github.com/KarhouTam/Per—FedAvg, which claims to be implemented based on the
source code shared by the original authors. On the client side, Per-FedAvg trains the local model
with Hessian-Free MAML (Model-Agnostic Meta-Learnin). On the server side, it performs the
same aggregation process as FedAvg.

pFedMe T Dinh et al.| (2020). We use the original implementation at https://github.com/
CharlieDinh/pFedMe. Different from other baselines, pFedMe maintains a personalized model
on the client side and uses the Moreau envelope function to help decompose the personalized model
optimization from global model learning. On the server side, pFedMe also adopts the same average
aggregation as FedAvg.

SFL [Chen et al| (2022). We use the original implementation at https://github.com/
dawenzi098/SFL-Structural-Federated-Learning. To prevent the local model from
deviating significantly from the global model, SFL introduces an additional regularization term dur-
ing the client’s local training process. For server aggregation, SFL aggregates the clients’ weights
from their neighbors and generates the global model by averaging the aggregated weights of all
clients.

pFedHN |[Shamsian et al.| (2021). We use the original implementation at fhttps://github.
com/AvivSham/pFedHN. In pFedHN, the client performs the local training in the same way
as in FedAvg. However, the model weights that clients pull from the server are generated by a
hypernetwork. On the server side, the hypernetwork is trained to share the knowledge between
clients while also personalizing the model for each individual client. Unlike Panacea, pFedHN
treats each client equally and independently and realizes the hypernetwork with an MLP.

D.2 IMPLEMENTATION OF PANACEA

The implementations of the graph hypernetworks. Our framework consists of three modules: a
GNN encoder, an MLP, and a graph generator (see Figure |I| in Sec. EI) For evaluation, we use a
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3-layer GNN encoder with hidden dimension 100 and a 3-layer MLP for generating local model pa-
rameters. The graph generator is instantiated with an inner-product operator. The client embedding
dimension was fixed to 100 for all datasets.

The implementations of the target networks. For the binary classification/regression tasks, we
realize the target network model with a 3-layer MLP for each client, where the model’s hidden
dimension is 16. For the forecasting tasks with traffic datasets, we reuse the gated recurrent unit
(GRU) model from |Cho et al.| (2014); [Meng et al. (2021), which has 63K parameters and it is a
1-layer GRU with hidden dimension 100. For the image classification task with CompCars dataset,
we use the ResNet18|He et al.|(2016)) model and the weights pre-trained with ImageNet dataset from
torchvision jmaintainers & contributors (2016) as the initial model.

D.3 HYPERPARAMETERS AND HARDWARE

Hyperparamters. In all methods, we use a batch size of 64. Unless otherwise stated,
we applied a grid search for following hyperparameters: the learning rate of graph hyper-
networks was tuned amongst {0.001,0.003,0.01,0.03,0.1}, the learning rate of target net-
works was tuned amongst {0.001,0.003,0.01,0.03,0.1}, and the coefficient A; was searched in
{0.001,0.003,0.01,0.03,0.1,0.3,1}. We used the SGD optimizer Kingma & Ba| (2015)) for all
client local updates. In each communication round, the number of client local steps K, is set as
50, and the number of server local steps K is set as 10. For all algorithms, we limit the train-
ing process to 100 server-client communication rounds for CompCars dataset, and 800 rounds for
other datasets. At each round, we randomly select 5 clients to participate in the training. For the
baseline approaches, we set their hyperparameters as reported in the corresponding paper Shamsian
et al. (2021);|Chen et al.|(2022); McMahan et al.|(2017); T Dinh et al. (2020); [Fallah et al.| (2020b).
Without specification, we report the results under the hyperparameters with the best performance
overall.

Hardware. We implemented our framework and all baseline approaches in PyTorch 1.12. All
clients and servers are simulated on a workstation with 2 x AMD Milan 7413 @ 2.65 GHz CPU, 4
x NVIDIA A100 GPU with 40GB memory, and 3.84TB SSD.

E RESULTS

Convergence and performance on PEMS-BAY. Figure 4] (¢) shows the task performance during
training with different personalized federated learning algorithms on PEMS-BAY. We can observe
that PEMS-BAY shows a similar trend as METR-LA, illustrated in the main paper (see Section 4).

Ablation on attack ratio. We conduct robustness evaluation over two classification tasks over FL
and CompCars, respectively. Figure 4] (a)-(d) depicts the performance of all approaches under 0%,
10%, 20% and 50% malicious clients, respectively. We can observe that our method, Panacea and its
variant Panacea-GN consistently outperform all the baselines in all settings, showing our robustness
to malicious attacks.

Ablation on local steps of clients/server. We also examine the effect of performing local optimiza-
tion steps of the clients and server. Figure ] (f)-(i) show the performance on TPT-48 and CompCars
throughout the training process for both clients and the server. Specifically, Figure |4 (f) and (h)
compare training using the chain rule with various K, while fixing the server step K, = 10. Using
our proposed update rule, i.e., making multiple local update steps yields significant improvements in
convergence speed and final accuracy when setting K. = 50. Figure[d](g) and (i) compare training
the graph hypernetwork using the chain rule with various K; while fixing the client step K. = 50.
When setting K; = 1, the performance is poor. We observe that Panacea achieves the best in con-
vergence speed and predictive performance when K, = 10. As stated above, we set K. = 50 and
K, = 10 while comparing with the baselines.

F LIMITATIONS AND POTENTIAL NEGATIVE SOCIETAL IMPACTS

Limitations. Our work sheds light on and facilitates the development of personalized federated
learning based on graph hypernetworks. However, Panacea assumes that the graph relation of clients
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Figure 4: (a)-(d) compare final performance under various attack ratios on CompCars; (¢) compares conver-
gence speed and final performance on PEMS-BAY; (f)-(i) ablation studies of the number of local optimization
steps on the client/server sides (on TPT-48 and CompCars).

is prior; one limitation is that graph relation may not be explicitly observed. Moreover, though our
framework can enhance the predictive performance, generalization capability, and robustness in
one go, how incorporating graph relation into the federated learning procedure impact the fairness
metrics of learned models is unknown. Specifically, how do clients with biased datasets in our
framework impact the experienced fairness of other clients on their local distributions? We leave the
above issues as our future work.

Potential negative societal impacts. Federated Learning (FL) is a framework intended to uphold
the privacy of sensitive personal data by categorically preventing raw data from being disseminated
to other users or organizations. Our work illuminates and propels progress in a previously untapped
field of personalized federated learning using graph hypernetworks. A potential drawback of our
system, named Panacea, is that it necessitates knowledge of the graph relation of clients, poten-
tially leading to unintended privacy breaches due to the implications of client adjacency. The client
relationships inherently hint at data similarities, thereby posing a privacy risk.

Furthermore, FL. demands the active involvement of numerous clients/participants during the learn-
ing process. Numerous end-user devices, including mobile phones, smartwatches, and other IoT
devices, are utilized as /participants. However, a surge in the number of federated learning partic-
ipants also escalates the communication frequency between them. This escalation can culminate
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in prohibitive communication costs and potentially exacerbate global environmental issues, such as
global warming, due to the increased energy consumption.

G RELATED LITERATURE

Federated learning. The federated learning (FL) setting assumes a federation of distributed de-
vices/clients, each with its local dataset Kairouz et al.|(2021). The goal of FL is to collaboratively
train statistical models over distributed clients with data confidentiality and communication effi-
ciency. Perhaps the standard and the most known algorithm is FedAvg [McMahan et al. (2017)
which learns a global model by aggregating local models trained with IID data McMahan et al.
(2017). In practice, the clients’ data distributions typically exhibit various degrees of heterogene-
ity Mothukuri et al.| (2021); |Wang et al.|(2020). Many variants have been proposed to tackle statis-
tical heterogeneity issues, such as FedMA |Wang et al.|(2020). However, training a unique model in
FL settings has been shown to be vulnerable to statistical heterogeneity over distributed clients in
the literature Kairouz et al.|(2021); [Tan et al.|(2022). More specifically, FL. shows poor convergence
on highly heterogeneous data, and the statistical heterogeneity deteriorates the performance of the
global model on individual clients [Li et al.| (2019} 2020); Zhao et al.| (2018)); Karimireddy et al.
(2020).

Model-agnostic meta-learning approaches are proposed to learn meta-models for local personal-
ization |[Fallah et al. (2020b); |Chen et al.| (2018)); [Jiang et al.| (2019); Khodak et al.| (2019); |[Fallah
et al.|(2020a); T Dinh et al. (2020). Existing MAML-based approaches usually are computationally
intensive as they require computing the Hessian matrix. Recently, multi-task learning (MTL) has
emerged as an alternative solution for PFL, where each client was treated as a learning task |Smith
et al. (2017); Marfoq et al.| (2021)); L1 et al. (2021)). Specifically, MOCHA [Smith et al.| (2017) is
proposed to generalize the distributed optimization methods Ma et al. (2015), attempting to address
the statistical challenges in federated settings. Marfoq et al. Marfoq et al. (2021) proposed federated
surrogate optimization algorithms by assuming each local data distribution is a mixture of unknown
underlying distributions. However, these works do not explicitly model the inherent dependencies
among clients, leading to sub-optimal solutions.

Some prior works implicitly model the statistical dependency among clients by enforcing the client
relationship in regularizing model weights |Smith et al.|(2017). Nevertheless, these works bear the
limitation of regularization-based methods due to the assumption that graphs only encode the sim-
ilarity of clients, and they can not operate in settings where only a fraction of devices are observed
during training. Instead, we propose to learn a parametric function approximation referred to as
graph hypernetworks, which attempts to generate the personalized model weights directly. The
most related to us is pFedHN [Shamsian et al.|(2021), which used a multi-layer perceptron to gener-
ate personalized heterogeneous models. Considering the participants equally limits their ability to
deal with the interdependency among the devices. To the best of our knowledge, the work proposed
here is the first federated learning framework to leverage hypernetwork to generate personalized
models considering the inherent dependency between devices.

Hypernetworks. Hypernetwork refers to a framework in which a neural network is trained to pre-
dict the weights of another neural network that performs the tasks of interest. The term “hyper-
network” was first coined in Ha et al.| (2017), and it has shown strong performance in large-scale
language modeling and image classification tasks. In the literature, hypernetworks have been widely
used in many learning tasks, such as neural network architecture search (NAS) [Zhang et al.|(2019);
Brock et al.| (2018)), molecule property prediction Nachmani & Wolf (2020). Specifically, in NAS,
hypernetworks were proposed to generate target networks conditioned on neural network architec-
tures Zhang et al.| (2019). In the context of personalized federated learning, hypernetworks could
be a feasible solution for generating personalized local models conditioned on the clients’ heteroge-
neous conditions, such as statistical heterogeneity.

The most relevant to ours is the use of Graph Hypernetworks (GHNs) — hypernetworks that take
graphs as input. For example, Nachmani e al. used graph hypernetworks for molecule property
prediction [Nachmani & Wolf| (2020); Zhang et al. leveraged graph hypernetworks for neural archi-
tecture search |Zhang et al.|(2019). To the best of our knowledge, ours is the first work to use graph
hypernetworks for generating personalized local models in federated learning settings. In this work,
we show that our graph hypernetwork can explicitly model the clients’ statistical relationship to en-
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sure effective knowledge sharing among clients. By incorporating a graph generator, it can preserve
clients’ uniqueness to ensure personalized performance.
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