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A How momentum can help reduce client drift
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Figure 2: Client-drift in FEDAVG (left) and MIME (right) is illustrated for 2 clients with 3 local steps
and momentum parameter β = 0.5. The local SGD updates of FEDAVG (shown using arrows for
client 1 and client2) move towards the average of client optima x?

1+x?
2

2 which can be quite different
from the true global optimum x?. Server momentum mt only speeds up the convergence to the
wrong point in this case. In contrast, MIME uses unbiased momentum computed at the server
parameter xt and applies it locally at every update. This keeps the updates of MIME closer to the
true optimum x?.
In this section we examine the tension between reducing communication by running multiple client
updates each round, and degradation in performance due to client drift [32]. To simplify the dis-
cussion, we assume a single client is sampled each round and that clients use full-batch gradients.

Server-only approach. A simple way to avoid the issue of client drift is to take no local steps. We
sample a client i ∼ C and run SGD with momentum (Mom) with momentum parameter β and step
size η:

xt = xt−1 − η ((1− β)∇fi(xt−1) + βmt−1) ,

mt = (1− β)∇fi(xt−1) + βmt−1 .
(2)

Here, the gradient ∇fi(xt) is unbiased i.e. E[∇fi(xt)] = ∇f(xt) and hence we are guaranteed
convergence. However, this strategy can be communication-intensive and we are likely to spend all
our time waiting for communication with very little time spent on computing the gradients.

FEDAVG approach. To reduce the overall communication rounds required, we need to make more
progress in each round of communication. The FedAvg meta algorithm utilizes a base optimizer, a
client learning rate and a server learning rate. Each client performs K local update steps of SGD
using the client learning rate and communicates the net update (difference between final and initial
parameters) to the server. This difference is then treated as a ‘pseudo-gradient’ and is input into the
optimizer (say momentum or Adam) to update the server parameters using the server learning rate.
When the base optimizer uses momentum, this momentum is computed at the server level using the
pseudo-gradients and is referred to as server momentum.

Starting from y0 = xt−1, FEDAVG [43] runs multiple SGD steps on the sampled client i ∼ C

yk = yk−1 − η∇fi(yk−1) for k ∈ [K] , (3)

and then a pseudo-gradient g̃t = −(yK −xt) replaces∇fi(xt−1) in the SGDm algorithm (2). This
is referred to as server-momentum since it is computed and applied only at the server level [26].
However, such updates give rise to client-drift resulting in performance worse than the naı̈ve server-
only strategy (2). This is because by using multiple local updates, (3) starts over-fitting to the local
client data, optimizing fi(x) instead of the actual global objective f(x). The net effect is that
FEDAVG moves towards an incorrect point (see Fig 2, left). If K is sufficiently large, approximately

yK  x?i , where x?i := arg min
x

fi(x)

⇒ Ei∼C [g̃t] (xt − Ei∼C [x
?
i ]) .

Further, the server momentum is based on g̃t and hence is also biased. Thus, it cannot correct for
the client drift. We next see how a different way of using momentum can mitigate client drift.
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Mime approach. FEDAVG experiences client drift because both the momentum and the client
updates are biased. To fix the former, we compute momentum using only global optimizer state as
in (2) using the sampled client i ∼ C:

mt = (1− β)∇fi(xt−1) + βmt−1 . (4)

To reduce the bias in the local updates, we will apply this unbiased momentum every step k ∈ [K]:

yk = yk−1 − η((1− β)∇fi(yk−1) + βmt−1) . (5)

Note that the momentum term is kept fixed during the local updates i.e. there is no local momentum
used, only global momentum is applied locally. Since mt−1 is a moving average of unbiased gra-
dients computed over multiple clients, it intuitively is a good approximation of the general direction
of the updates. By taking a convex combination of the local gradient with mt−1, the update (5)
is potentially also less biased. In this way MIME combines the communication benefits of taking
multiple local steps and prevents client-drift (see Fig 2, right). Appendix B makes this intuition
precise.

B Proof sketch

In this section, we provide an intuition behind our proof of convergence of MimeMVR. There are
three main components: i) how momentum reduces the effect of client drift, ii) how local steps can
take advantage of Hessian similarity, and iii) why the SVRG correction improves constants.
Improving the statistical term via momentum. Intuitively, using momentum locally at every
client update reduces client drift by incorporating information about other clients from past rounds.
Assume that we sample a single client it in round t and that we use full-batch gradients. Also let the
local client update at step k round t be of the form

y ← y − ηdk . (6)

The ideal choice of update is of course d?k = ∇f(y) but however this is unattainable. Instead,
MIME with momentum β = 1− a uses dSGDm

k = m̃k ← a∇fi(y) + (1− a)mt−1 where mt−1 is
the momentum computed at the server. The variance of this update can then be bounded as

E‖m̃k −∇f(y)‖2 . a2 E‖∇fit(y)−∇f(y)‖2 + (1− a) E‖mt−1 −∇f(y)‖2

≈ a2G2 + (1− a) E‖mt−1 −∇f(xt−2)‖2 ≈ aG2 .

The last step follows by unrolling the recursion on the variance of m. We also assumed that η is
small enough that y ≈ xt−2. This way, momentum can reduce the variance of the update from
G2 to (aG2) by using past gradients computed on different clients. Of course, this also introduces
additional bias into the update. To reduce this bias requires slightly modifying the momentum
algorithm similar to [14]. The full analysis is carried out in Appendix H.

Improving the optimization term via local steps. The optimization (second) term in Theorem IV
is δK+L

εK . In contrast, the optimization term of the server-only methods is L/ε. Since in most cases
δ � L, the former can be significantly smaller than the latter. This rate also suggests that the best
choice of number of local updates is L/δ i.e. we should perform more client updates when they have
more similar Hessians. This generalizes results of [32] from quadratics to all functions.

This improvement is due to a careful analysis of the bias in the gradients computed during the local
update steps. Note that for client parameters yk−1, the gradient E[∇fit(yk−1)] 6= E[∇f(yk−1)]
since yk−1 was also computed using the same loss function fit . In fact, only the first gradient
computed at xt−1 is unbiased. Dropping the subscripts k and t, we can bound this bias as:

E[∇fi(y)−∇f(y)] = E[∇fi(y)−∇fi(x)︸ ︷︷ ︸
≈∇2fi(x)(y−x)

+∇f(x)−∇f(yi)︸ ︷︷ ︸
≈∇2f(x)(x−yi)

] + Ei[∇fi(x)]−∇f(x)︸ ︷︷ ︸
=0 since unbiased

≈ E[(∇2fi(x)−∇2f(x))(yi − x)] ≈ δ E[(yi − x)] .

Thus, the Hessian dissimilarity (A2) control the bias, and hence the usefulness of local updates.
This intuition can be made formal using Lemma 3. Note that this improved analysis is potentially
applicable to any local update methods and is not specific to Mime.
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Mini-batches via SVRG correction. In our previous discussion about momentum and local steps,
we assumed that the clients compute full batch gradients and that only one client is sampled per
round. However, in practice a large number (S) of clients are sampled and further the clients use
mini-batch gradients. The SVRG correction reduces this within-client variance since

Var
(
∇fi(yi; ζ)−∇fi(x; ζ) + 1

|S|
∑
i∈S ∇fi(x)

)
. L2‖yi − x‖2 +

G2

S
≈ G2

S
.

Here, we used the smoothness of fi(·; ζ) and assumed that yi ≈ x since we don’t move too far
within a single round. Thus, the SVRG correction allows us to use minibatch gradients in the local
updates while still ensuring that the variance is of the order G2/S. In practical deep learning, this
SVRG correction may not very effective [15] and so can be dropped, though it is useful to derive the
optimal theoretical rates.

C Experimental setup

C.1 Description of ablation study

We train a 2 hidden layer MLP with 300u-100 neurons on the EMNIST62 (extended MNIST) dataset
[12]. The clients’ data is separated according to the original authors of the characters [10]. All
methods are augmented with momentum–Mime and MimeLite use momentum in the client updates,
and the others use server momentum. The momentum parameter is searched over β ∈ [0, 0.9, 0.99].
For Adam, we fix β1 = 0.9, β2 = 0.99, and ε = 10−3. For both FedProx and SCAFFOLD, β = 0
(no server momentum) yielded the best performance. For FedAvg, Mime, and MimeLite β = 0.9
was the fastest. For FedProx, the regularization parameter µ was searched over [0.1, 0.5, 1] and
µ = 0.1 had highest test accuracy.

C.2 Description of large scale experiments

We perform 4 tasks over 3 datasets: i) On the EMNIST62 dataset [12] we run a convex multi-class
(62 classes) logistic regression model, and ii) a convolution model with two CNN layers and two
dense layers and dropout. iii) On the SHAKESPEARE dataset, we train a single layer LSTM model
with state size of 256 and embedding size of 8 to predict the next character [43]. iv) Finally, on the
STACKOVERFLOW dataset [16], we train a next word prediction language model with embedding
size of 96, a LSTM layer of size 670, and a vocabulary size of 1000. In all cases we report the top-1
test accuracy in our experiments.

All datasets use the metadata indicating the original authors to separate them into multiple clients
yielding naturally partitioned datasets. Table 3 summarizes the statistics about the different
datasets. Note that the average number of rounds a client participates in (computed as sampled
clients×number of rounds/number of clients) provides an indication of how much of the training
data is seen with SHAKESPEARE being closest to the cross-silo setting and STACKOVERFLOW rep-
resenting the most cross-device in nature.

Table 3: Details about the datasets used and experiment setting.
EMNIST62 SHAKESPEARE STACKOVERFLOW

Clients 3,400 715 342,477
Examples 671,585 16,068 135,818,730
Batch size 10 10 10
Number of local epochs 1 1 1
Total number of rounds 1000 1000 1000
Avg. rounds each client participates 5.9 28 0.15

We use Tensorflow federated datasets [60] to generate the datasets. Our federated learning simula-
tion code is written in FedJAX [52, 53] and is open-sourced at github.cm/google/fedjax (see
documentation). Black and white was reversed in EMNIST62 (i.e. subtracted from 1) to make them
similar to MNIST. The preprocessing for SHAKESPEARE and STACKOVERFLOW datasets exactly
matches that of [49].

18

github.cm/google/fedjax
https://fedjax.readthedocs.io/en/latest/fedjax.algorithms.html#module-fedjax.algorithms.mime


Table 4: Effective number of sampled clients.
Total Comm. EMNIST62 SHAKESPEARE STACKOVERFLOW

FedAvg 2× 20 20 50
MimeLiteMom 5× 8 8 20
MimeLiteAdagrad 5× 8 8 20
MimeLiteAdam 6× 6 6 16
MimeMom 6× 6 6 16
MimeAdagrad 6× 6 6 16
MimeAdam 7× 5 5 14

C.3 Practicality of experiments

In the experiments we only cared about the number of communication rounds, ignoring that MIME
actually needs twice the number of bits per round and that the SERVER-ONLY methods have a much
smaller computational requirement. This is standard in the federated learning setting as introduced
by [43] and is justified because most of the time in cross-device FL is spent in establishing connec-
tions with devices rather than performing useful work such as communication or computation. In
other words, latency and not bandwidth or computation are critical in cross device FL. However, one
can certainly envision cases where this is not true. Incorporating communication compression strate-
gies [58, 3, 33, 64] or client-model compression strategies [9, 19, 22] into our MIME framework can
potentially address such issues and are important future research directions.

Regarding the algorithms evaluated, we chose not to include MVR as a base optimizer. This is
because it is not a popular choice is practice even in the centralized setting, and serves more as a
theoretical stand in to explain the benefit of the simpler SGD with momentum algorithm. Hence, we
wouldn’t expect MimeMVR to perform better than MimeMom. In general, our goal was to “mimic”
centralized methods – methods which have better empirical performance (momentum and Adam)
we showed also perform well in the federated setting when combined with Mime, and similarly
methods which have better theoretical rates (MVR) have good rates with Mime as well.

Further, as we noted previously, we believe both the datasets and the tasks being studied here are
close to real world settings since they contain natural heterogeneity. We now discuss our choice of
other parameters in the experiment setup (number of training rounds, sampled clients, batch-size,
etc.) Each round of federated learning takes 3 mins in the real world and is relatively independent
of the size of communication [7] implying that training 1000 rounds takes 2 days even for small
models. In contrast, running a centralized simulation takes about 15 mins. This underscores the
importance of ensuring that the algorithms for federated learning converge in as few rounds as
possible, as well as have very easy to set default hyper-parameters. Thus, in our experimental setup
we keep all parameters other than the learning rate to their default values. In practice, this learning
rate can be set by set using a small centralized dataset on the server (as in [23]). Thus, it is crucial
for federated frameworks to be able to translate algorithms which work well in centralized settings
directly to the federated setting without additinal hyper-parameter tuning. The choice of batch size
being 10 was made both keeping in mind the limited memory available to each client as well as
to match prior work. Finally, while we limit ourselves to sampling 20–50 workers per round due
to computational constraints, in real world FL thousands of devices are often available for training
simultaneously each round [7]. They also note that the probability of each of these devices being
available has clear patterns and is far from uniform sampling. Conducting a large scale experimental
study which mimics these alternate forms of heterogeneity is an important direction for future work.

C.4 Hyperparameter search

We run two hyper-parameter sweeps in our experiments: first a light setup which is reported in
the main paper, and one we believe reflects the real world performance, and second a heavy tuning
setting to showcase the performance of the methods as we vary the hyper-parameters.

Light-sweep setting (9×). For all Momentum methods, we pick momentum β = 0.9. For Adam
methods, we fix β1 = 0.9 and β2 = 0.99, and ε0 = 1× 10−7. For Adagrad we use the default
initialization value of 0.1 and use ε0 = 1× 10−7. None of the algorithms use weight decay, clipping
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etc. The learning rate is then tuned to obtain the best test accuracy. For all experiments, unless
explicitly mentioned otherwise, the learning rate is searched over a grid (9×):

η ∈ [1, 1× 10−0.5, 1× 10−1, 1× 10−1.5, 1× 10−2, 1× 10−2.5, 1× 10−3, 1× 10−3.5, 1× 10−4] .

The server learning rate for all methods is kept at its default value of 1.

Heavy-sweep setting (567×). For all Momentum methods, we pick momentum β = 0.9. For
Adam methods, we fix β1 = 0.9 and β2 = 0.99. For Adagrad we use the default initialization value
of 0.1. None of the algorithms use weight decay, clipping etc. The learning rate is then tuned to
obtain the best test accuracy.

For all experiments, unless explicitly mentioned otherwise, the client learning rate is searched over
a grid (9×):

ηclient ∈ [1, 1× 10−0.5, 1× 10−1, 1× 10−1.5, 1× 10−2, 1× 10−2.5, 1× 10−3, 1× 10−3.5, 1× 10−4] .

Further, we also search for the server learning rate is searched over a grid (9×):

ηserver ∈ [1× 101, 1× 100.5, 1, 1× 10−0.5, 1× 10−1, 1× 10−1.5, 1× 10−2, 1× 10−2.5, 1× 10−3] .

Finally, for the adaptive methods such as Adam and Adagrad, we also tune the ε0 parameter over a
grid (7×):

ε0 ∈ [1, 1× 10−1, 1× 10−2, 1× 10−3, 1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7] .

C.5 Comparison with previous results

As far as we are aware, [49] is the only prior work which conducts a systematic experimental study
of federated learning algorithms over multiple realistic datasets. The algorithms comparable across
the two works (e.g. FedAvgSGD, FedAvgMom, and FedAvgAdam) have qualitatively similar per-
formance except with one exception: FedAvgAdam consistently underperforms FedAvgMom. This
difference, as we show later, is because FedAvgAdam does not work with the default choices of
hyper-parameters such as ε and requires additional tuning. As we explain in Section C.3, we chose
to keep these parameters to the default values of their centralized counterparts to compare methods
in a ‘low-tuning’ setting. We also point that while FedAvgAdam struggles to perform in this setup,
MimeAdam and MimeLiteAdam are very stable and even often outperform their SGD counterparts.

C.6 Additional algorithmic details

Table 5: Decomposing base algorithms into a parameter update (U) and statistics tracking (V).
Algorithm Tracked statistics s Update step U Tracking step V
SGD – x− ηg –

SGDm/Mom m x− η((1− β)g + βm) m = (1− β)g + βm

AdaGrad v x− η
ε+
√
v
g v = g2 + v

Adam m,v x− η
ε+
√
v

((1− β1)g + β1m)
m = (1− β1)g + β1m
v = (1− β2)g2 + β2v
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D Additional Adam experiments
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Figure 3: Mime, MimeLite, FedAvg, and Loc-Mime with Adam using 10 local epochs, run on
EMNIST62 and a 2 hidden layer (300u-100) MLP. (Left) Mime and MimeLite are nearly identical
and outperform FedAvg. (Right) Locally adapting Adam state slows down convergence and makes
it more unstable. Both these results are consistent with the earlier momentum results.

E Stability of methods to hyper-parameters
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Figure 4: Stability of adaptive methods with varying server learning: FedAvg (left), Mime (mid-
dle) and MimeLite (right) with Adam (top) and Adagrad (bottom) as base algorithms are run on
EMNIST62 with CNN. For each value of server learning rate (y-axis) and ε0 (x-axis), the client
learning rate was tuned over the 9× grid and the accuracy reported. The red box highlights the de-
fault configuration in a centralized setting. We see that FedAvgAdam is very sensitive to the server
learning rate and ε0, performing poorly in the default centralized parameter regimes. Mime and
MimeLite acheive their best performance with the centralized parameters. This justifies our claim
that Mime and MimeLite can adapt any centralized method with the same hyper-parameters and
only require tuning of a single learning rate. This, we believe, is crucial for real world deployment.
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Figure 5: Stability of non-adaptive methods with varying server learning: FedAvg, Mime and
MimeLite with SGD and momentum (β = 0.9) as base algorithms are run on EMNIST62 with
CNN. For each value of server learning rate, the client learning rate was tuned over the 9× grid. The
momentum methods are more insensitive to the server learning rate than the SGD methods. Server
learning rate of 1 (default value) seems to work well for all methods.

F Technicalities

We examine some additional definitions and introduce some technical lemmas.

F.1 Assumptions and definitions

We make precise a few definitions and explain some of their implications. We first discuss the
two assumptions on the dissimilarity between the gradients (A1) and the Hessians (A2). Loosely,
these two quantities are an extension of the concepts of variance and smoothness which occur in
centralized SGD analysis to the federated learning setting. Just as the variance and smoothness
are completely orthogonal concepts, we can have settings where G2 (gradient dissimilarity) is large
while δ (Hessian dissimilarity) is small, or vice-versa.

Our assumption about the bound on the G gradient dissimilarity can easily be extended to (G,B)
gradient dissimilarity used by [33]:

Ei‖∇fi(x)‖2 ≤ G2 +B2‖∇f(x)‖2 . (7)

All the proofs in the paper extend in a straightforward manner to the above weaker notion. Since
this notion does not present any novel technical challenge, we omit it in the rest of the proofs. Note
however that the above weaker notion can potentially capture the fact that by increasing the model
capacity, we can reduce G. In the extreme case, by taking a sufficiently over-parameterized model,
it is possible to make G = 0 in certain settings [63]. However, this comes both at a cost of increased
resource requirements (i.e. higher memory and compute requirements per step) but can also result
in other constants increasing (e.g. B and L).

The second crucial definition we use in this work is that of δ bounded Hessian dissimilarity (A2).
This has been used previously in the analyses of distributed [54, 6, 51] and federated learning [32],
but has been restricted to quadratics. Here, we show how to extend both the notion as well as the
analysis to general smooth functions. The main manner we will use this assumption is in Lemma 3
to claim that for any x and y the following holds:

E‖∇fi(y; ζ)−∇fi(x; ζ) +∇f(x)−∇f(y)‖2 ≤ δ2‖y − x‖2 . (8)

Here the expectation is over the choice of client i. To understand what the above condition means,
it is illuminating to define Ψi(z) = fi(z; ζ)− f(z). Then, we can rewrite (A2) and (8) respectively
as

‖∇2Ψi(z)‖ ≤ δ and E‖∇Ψi(y)−∇Ψi(x)‖2 ≤ δ2‖y − x‖2 .
Thus (8) and (A2) are both different notions of smoothness of Ψi(x) (formal definition of smooth-
ness will follow soon). The latter definition closely matches the notion of squared-smoothness used
by [5] and is a promising relaxation of (A2). However, we run into some technical issues since in our
case the variable y can also be a random variable and depend on the choice of the client i. Extending

22



our results to this weaker notion of Hessian-similarity and proving tight non-convex lower bounds
is an exciting theoretical challenge.

Finally note that if the functions fi(x; ζ) are assumed to be smooth as in [54, 6, 32], then Ψi((x) is
2L-smooth. Thus, we always have that δ ≤ 2L. But, as shown in [54], it is possible to have δ � L
if the data distribution amongst the clients is similar. Further, the lower bound from [6] proves that
Hessian-similarity is the crucial quantity capturing the number of rounds of communication required
for distributed/federated optimization.

We next define the terms smoothness and strong-convexity which we repeatedly use in the paper.

(A2*) fi is almost surely L-smooth and satisfies:

‖∇fi(x; ζ)−∇fi(y; ζ)‖ ≤ L‖x− y‖ , for any x,y . (9)

The assumption (A2*) also implies the following quadratic upper bound on fi

fi(y) ≤ fi(x) + 〈∇fi(x),y − x〉+
L

2
‖y − x‖2 . (10)

Further, if fi is twice-differentiable, (A2*) implies that ‖∇2fi(x; ζ)‖ ≤ β for any x.
(A3) We assume that the intra-client gradient variance is bounded by σ2. For any client i, the

following holds almost surely at any fixed x:

Eζi [∇fi(x; ζ)] = ∇fi(x) , and Eζi‖∇fi(x; ζ)−∇fi(x)‖2 ≤ σ2 .

Note that we expect the intra-client variance to be smaller than inter-client variance and so
typically σ2 ≤ G2.

(A4) f satisfies the µ-PL inequality [29] for µ > 0 if:

‖∇f(x)‖2 ≥ 2µ(f(x)− f?) .

Note that PL-inequality is much weaker than the standard notion of strong-convexity, and in
fact is even satisfied by some non-convex functions [29].

F.2 Some technical lemmas

Now we cover some technical lemmas which are useful for computations later on. First, we state a
relaxed triangle inequality true for the squared `2 norm.
Lemma 1 (relaxed triangle inequality). Let {v1, . . . ,vτ} be τ vectors in Rd. Then the following are
true:

1. ‖vi + vj‖2 ≤ (1 + c)‖vi‖2 + (1 + 1
c )‖vj‖2 for any c > 0, and

2. ‖
∑τ
i=1 vi‖2 ≤ τ

∑τ
i=1‖vi‖2.

Proof. The proof of the first statement for any c > 0 follows from the identity:

‖vi + vj‖2 = (1 + c)‖vi‖2 + (1 + 1
c )‖vj‖2 − ‖

√
cvi + 1√

c
vj‖2 .

For the second inequality, we use the convexity of x→ ‖x‖2 and Jensen’s inequality∥∥∥∥1

τ

τ∑
i=1

vi

∥∥∥∥2 ≤ 1

τ

τ∑
i=1

∥∥vi∥∥2 .
Next we state an elementary lemma about expectations of norms of random vectors.
Lemma 2 (separating mean and variance). Let {Ξ1, . . . ,Ξτ} be τ random variables in Rd which are
not necessarily independent. First suppose that their mean is E[Ξi] = ξi and variance is bounded
as E[‖Ξi − ξi‖2] ≤ σ2. Then, the following holds

E[‖
τ∑
i=1

Ξi‖2] ≤ ‖
τ∑
i=1

ξi‖2 + τ2σ2 .
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Now instead suppose that their conditional mean is E[Ξi|Ξi−1, . . .Ξ1] = ξi i.e. the variables {Ξi−
ξi} form a martingale difference sequence, and the variance is bounded by E[‖Ξi − ξi‖2] ≤ σ2 as
before. Then we can show the tighter bound

E[‖
τ∑
i=1

Ξi‖2] ≤ 2‖
τ∑
i=1

ξi‖2 + 2τσ2 .

Proof. For any random variable X , E[X2] = E[(X − E[X])2] + (E[X])2 implying

E[‖
τ∑
i=1

Ξi‖2] = ‖
τ∑
i=1

ξi‖2 + E[‖
τ∑
i=1

Ξi − ξi‖2] .

Expanding the above expression using relaxed triangle inequality (Lemma 1) proves the first claim:

E[‖
τ∑
i=1

Ξi − ξi‖2] ≤ τ
τ∑
i=1

E[‖Ξi − ξi‖2] ≤ τ2σ2 .

For the second statement, ξi is not deterministic and depends on Ξi−1, . . . ,Ξ1. Hence we have to
resort to the cruder relaxed triangle inequality to claim

E[‖
τ∑
i=1

Ξi‖2] ≤ 2‖
τ∑
i=1

ξi‖2 + 2 E[‖
τ∑
i=1

Ξi − ξi‖2]

and then use the tighter expansion of the second term:

E[‖
τ∑
i=1

Ξi − ξi‖2] =
∑
i,j

E
[
(Ξi − ξi)>(Ξj − ξj)

]
=
∑
i

E
[
‖Ξi − ξi‖2

]
≤ τσ2 .

The cross terms in the above expression have zero mean since {Ξi−ξi} form a martingale difference
sequence.

F.3 Properties of functions with bounded Hessian dissimilarity

We now study two lemmas which hold for any functions which satisfy (A2) and (A3). The first is
closely related to the notion of smoothness (A2*).
Lemma 3 (similarity). The following holds for any two functions fi(·) and f(·) satisfying (A2) and
(A3), and any x,y:

‖∇fi(y; ζ)−∇fi(x; ζ) +∇f(x)−∇f(y)‖2 ≤ δ2‖y − x‖2 .

Proof. Consider the function Ψ(z) := fi(z; ζ) − f(z). By the assumption (A2), we know that
‖∇2Ψ(z)‖ ≤ δ for all z i.e. Ψ is δ-smooth. By standard arguments based on taking limits [45], this
implies that

‖∇Ψ(y)−∇Ψ(x)‖ ≤ δ‖y − x‖ .
Plugging back the definition of Ψ into the above inequality proves the lemma.

Next, we see how weakly-convex functions satisfy a weaker notion of “averaging does not hurt”.
This is used to get a handle on the effect of averaging of parameters in FedAvg.
Lemma 4 (averaging). Suppose f is δ-weakly convex. Then, for any γ ≥ δ, and a sequence of
parameters {yi}i∈S and x:

1

|S|
∑
i∈S

f(yi) +
γ

2
‖x− yi‖2 ≥ f(ȳ) +

γ

2
‖x− ȳ‖2 , where ȳ :=

1

|S|
∑
i∈S

yi .

Proof. Since f is δ-weakly convex, Φ(z) := f(z) + γ
2 ‖z − x‖

2 is convex. This proves the claim
since 1

|S|
∑
i∈S Φ(yi) ≥ Φ(ȳ) by convexity.
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G Convergence with a generic base optimizer

Let us rewrite the Mime and MimeLite updates using notation convenient for analysis. In each round
t, we sample clients St such that |St| = S. The server communicates the server parameters xt−1 as
well as the average gradient across the sampled clients ct defined as

ct =
1

S

∑
i∈St

∇fi(xt−1) . (11)

Note that computing ct (required only by Mime but not by MimeLite) itself requires additional
communication. In this proof, we do not make any assumption on how ct is computed as long as it
is unbiased and is computed over S clients. In particular, it can either be computed on the sampled
St or a different set of an independent sampled clients S̃t.
Then each client i ∈ St makes a copy yti,0 = xt−1 and perform K local client updates. In each
local client update k ∈ [K], the client samples a dataset ζti,k and

yti,k = yti,k−1 − ηU(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k) + ct; st−1) (Mime client update)

= yti,k−1 − ηU(∇fi(yti,k−1; ζti,k); st−1) . (MimeLite client update)
After K such local updates, the server then aggregates the new client parameters as

xt =
1

S

∑
i∈St

yti,K (Update server parameters)

st = V(ct, st−1) . (Update server statistics)

G.1 Proof of Theorem I (generic reduction)

Computing server update.
Lemma 5 (Deviation from central update.). For a linear updater U the server update for Mime can
be written as

xt = xt−1 − η̃U

(
1

S

∑
i

∇fi(x) + et ; st−1

)
,

and for MimeLite is becomes

xt = xt−1 − η̃U

 1

KS

∑
i,k

∇fi(x; ζi,k) + et ; st−1

 ,

for η̃ := Kη. The error is defined as et = 1
KS

∑
i,k(∇fi(yi,k−1; ζi,k)−∇fi(x; ζi,k))

Proof. Because the updater U is linear in its first parameter, we can rewrite the update to the server
for MimeLite as

xt − xt−1 =
1

S

∑
i∈St

K∑
k=1

−ηU(∇fi(yti,k−1; ζti,k); st−1)

= ηKU

 1

KS

∑
i,k

∇fi(yti,k−1; ζti,k); st−1


We drop the dependence on t when obvious from context and i by default sums over St and k over
[K] by default. Using our definition of et we have

xt − xt−1 = ηKU

 1

KS

∑
i,k

∇fi(yti,k−1; ζti,k); st−1


= η̃U

 1

KS

∑
i,k

∇fi(x; ζi,k) + et; st−1

 .
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Now let us examine the update of Mime. Again assuming K is a multiple of epoch, we have∑
i,k∇fi(x; ζti,k) = K

∑
i∇fi(x) = KSx. Hence,

xt − xt−1 =
1

S

∑
i∈St

K∑
k=1

−ηU(∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + c; st−1)

= ηKU
(
c+ et; st−1

)
= ηKU

(
1

S

∑
i

∇fi(x) + et; st−1

)
.

Thus we showed the lemma for both Mime and MimeLite.

Lemma 6 (Defining error). For et defined in Lemma 5, assuming all functions fi( · , ζ) are L-
smooth, we have

E‖et‖2 ≤ L2EtK , where EtK :=
1

KS

∑
i,k

E‖yi,k−1 − x‖2 .

Proof. Using the smoothness of the individual functions and the definition of et,

E‖et‖2 = E‖ 1

KS

∑
i,k

(∇fi(yi,k−1; ζi,k)−∇fi(x; ζi,k))‖2

≤ 1

KS

∑
i,k

E‖∇fi(yi,k−1)−∇fi(x; ζi,k)‖2 ≤ L2EtK .

Henceforth, we will call EtK as the error, or as the client-drift following [32].

Bounding error in MimeLite. Now we will try bound the client drift Et for MimeLite.

Lemma 7 (MimeLite error). Suppose that all functions fi( · , ζ) are L-smooth (A2*), σ2 variance
(A3), and (A1) is satisfied, and the updater U has B-Lipschitz updates. Then using step-size η̃ ≤

1
2BL ,

1

18B2η̃2
EK ≤ E‖∇f(x)‖2 +G2 +

σ2

2K
.

Proof. For K = 1, we have E‖yi,1 − x‖2 ≤ B2η2(G2 + σ2) + B2η2 E‖∇f(x)‖2. The lemma
is easily shown to be true. Assuming K ≥ 2 henceforth, and starting from the client update of
MimeLite we have

E‖yi,k − x‖2 = E‖yi,k−1 − ηU(∇fi(yti,k−1; ζti,k); st−1)− x‖2

≤ E‖yi,k−1 − ηU(∇fi(yti,k−1; st−1)− x‖2 +B2η2σ2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2 +Kη2 E‖U(∇fi(yti,k−1; st−1)‖2 +B2η2σ2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2 +KB2η2 E‖∇fi(yi,k−1)±∇fi(x)‖2 +B2η2σ2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2

+ 2KB2η2 E‖∇fi(x)‖2 + 2KB2L2η2 E‖yi,k−1 − x‖2 +B2η2σ2

≤
(

1 +
2

K − 1

)
E‖yi,k−1 − x‖2 + 2KB2η2 E‖∇f(x)‖2 + 2KB2η2G2 +B2η2σ2 .
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Here, we used the condition on our step size that η̃ = Kη ≤ 1
2LB , which implies that 2KB2L2η2 ≤

1
K−1 . Unrolling this recursion, we have

E‖yi,k − x‖2 ≤
(
2KB2η2 E‖∇f(x)‖2 + 2KB2η2G2 +B2η2σ2

) K∑
k=1

(
1 +

2

K − 1

)k
.

Note that
(

1 + 2
K−1

)k
≤ 9. Averaging then over k and i, we get

EtK ≤ 18K2B2η2 E‖∇f(x)‖2 + 18K2B2η2G2 + 9KB2η2σ2 .

Finally, recalling that η̃ = Kη finishes the lemma.

Bounding error in Mime. Next we will try bound the client drift Et for Mime. The additional
SVRG correction term used in Mime improves the bound on the error.

Lemma 8 (Mime Error). Suppose that all functions fi( · , ζ) are L-smooth (A2*), σ2 variance (A3),
and (A1) is satisfied, and the updater U has B-Lipschitz updates. Then using step-size η̃ ≤ 1

2BL ,

EK ≤ 18B2η̃2 E

∥∥∥∥∥ 1

S

∑
i

∇if(x)

∥∥∥∥∥
2

.

Proof. For K = 1, the Mime update loos like

E‖yi,1 − x‖2 = η2 E‖U
(
c; st−1

)
‖2

≤ η2B2 E‖c‖2 .

Assuming K ≥ 2 henceforth, and starting from the client update of Mime we have

E‖yi,k − x‖2 = E‖yi,k−1 − ηU(∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + ct; st−1)− x‖2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2

+Kη2 E‖U(∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + ct; st−1)‖2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2 +Kη2B2 E‖∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k) + ct‖2

≤
(

1 +
1

K − 1

)
E‖yi,k−1 − x‖2

+ 2Kη2B2 E‖∇fi(yi,k−1; ζti,k)−∇fi(x; ζti,k)‖2 + 2Kη2B2 E‖ct‖2

≤
(

1 +
1

K − 1
+ 2Kη2B2L2

)
E‖yi,k−1 − x‖2 + 2Kη2B2 E‖ct‖2

≤
(

1 +
2

K − 1

)
E‖yi,k−1 − x‖2 + 2Kη2B2 E‖ct‖2 .

Here, we used the condition on our step size that η̃ = Kη ≤ 1
2LB , which implies that 2KB2L2η2 ≤

1
K−1 . Unrolling this recursion, we have

E‖yi,k − x‖2 ≤ 2KB2η2 E‖ct‖2
K∑
k=1

(
1 +

2

K − 1

)k
≤ 18K2B2η2 E‖ct‖2 .

Note that
(

1 + 2
K−1

)k
≤ 9. Averaging then over k and i, recalling that η̃ = Kη get

EtK ≤ 18B2η̃2 E‖ct‖2 .
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Putting it together (Theorem I).
Lemma 9. The updates of Mime and MimeLite for gt satisfying E[gt] = ∇f(xt−1), and we have
for η̃ ≤ 1

2BL

xt = xt−1 − η̃U(ct + et; st−1)

st = V(ct; st−1) .

Where, we have

1
18B2L2η̃2 Et‖ et ‖2 ≤

{
E‖ct‖2 MIME ,
E‖∇f(xt)‖2 +G2 + σ2

2K MIMELITE .

Proof. Now, combining Lemmas 5, 6, shows that running Mime or MimeLite is equivalent to

xt = xt−1 − η̃U(gt + et; st−1)

st = V(gt; st−1) ,

where for Mime we use

gtMime =
1

S

∑
i

∇fi(x) with E[gtMime] = ∇f(xt−1) and E‖gtMime −∇f(xt−1)‖2 ≤ G2

S
.

and for MimeLite we use

gtMimeLite =
1

KS

∑
i,k

∇fi(x; ζi,k) with E[gtMime] = ∇f(xt−1) and E‖gtMime−∇f(xt−1)‖2 ≤ G2

S
+
σ2

KS
.

This shows the first part of the theorem. For the second part of the theorem, using the bound from
Lemma 8 for Mime,

E‖et‖ ≤ L2EtK ≤ 18L2B2η̃2 E‖ct‖2 .

For MimeLite, we will instead use the bound from Lemma 7,

E‖etMimeLite‖ ≤ L2EtK +
σ2

KS
≤ 18L2B2η̃2 E‖∇f(xt)‖2 + 18L2B2η̃2G2 +

9L2B2η̃2σ2

K
+

σ2

KS
.

Note that the Lemma we proved here is slightly stronger than the theorem in the main section (up to
constants which were suppressed).

G.2 Convergence of MimeSGD and MimeLiteSGD (Corollary II)

Theorem I shows that Mime and MimeLite mimic a centralized algorithm quite closely up to error
O(η̃2). Then, analyzing the sensitivity of the base algorithm to such perturbation yields specific
rates of convergence. We perform such an analysis using SGD as our base optimizer.

Properties of SGD as the base optimizer:

• st is empty i.e. there are no global statistics used.
• U(g; st−1) = g for any g and B = 1.

With this in mind, we proceed.

Lemma 10 (Progress in one round). Given that f is L-smooth, and for any step-size η̃ ≤ 1
2(B+2)L

for B ≥ 1 we have

f(xt) ≤ f(xt−1)− η̃

4
E‖∇f(xt−1)‖2 + η̃ E‖et‖2 +

Lη̃2G2

S
.
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Proof. Starting from the update equation and the smoothness of f , we have

E f(xt) ≤ E f(xt−1) + E〈∇f(xt−1),xt − xt−1〉+
L

2
E‖xt − xt−1‖2

= E f(xt−1)− η̃ E‖∇f(xt−1)‖2 + η̃〈∇f(xt−1), et〉+
Lη̃2

2
E‖ct + et‖2

≤ E f(xt−1)− η̃

2
E‖∇f(xt−1)‖2 +

η̃

2
‖et‖2 +

2Lη̃2

2
E‖ct‖2 +

2Lη̃2

2
E‖et‖2

≤ E f(xt−1)−
(
η̃

2
− 2Lη̃2

2

)
E‖∇f(xt−1)‖2 +

(
Lη̃2 +

η̃

2

)
E‖et‖2 +

2Lη̃2G2

2S
.

Using the bound on the step size that η̃ ≤ 1
4L yields the lemma.

One round progress for MimeSGD. Next, we specialize the convergence rate for Mime.

Lemma 11. Suppose f is a L-smooth function satisfying PL-inequality for µ ≥ 0 (µ = 0 corre-
sponds to the general case). Running MimeSGD for η̃ ≤ 1

12BL satisfies

η̃

16
E‖∇f(xt−1)‖2 ≤ (1− µη̃

8 )(f(xt−1)− f?)− (f(xt)− f?) +
3Lη̃2G2

S
.

Proof. Recall from Lemma 9 that for Mime,

E‖et‖2 ≤ 18L2B2η̃2 E‖ct‖2 ≤ 18L2B2η̃2 E‖∇f(xt−1)‖2 +
18L2B2η̃2G2

S
.

Combining this with Lemma 10 yields the following progress for Mime

f(xt) ≤ f(xt−1)−
(
η̃

4
− 18L2B2η̃3

)
E‖∇f(xt−1)‖2 +

(Lη̃2 + 18L2B2η̃3)G2

S

≤ f(xt−1)− η̃

8
E‖∇f(xt−1)‖2 +

3Lη̃2G2

S
.

Here, we used the bound on the step size that η̃ ≤ 1
12LB implies 18L2B2η̃2 ≤ 1

8 . Now using
PL-inequality, we can write

f(xt)− f? ≤ f(xt−1)− f? − µη̃

8
(f(xt−1)− f?)− η̃

16
E‖∇f(xt−1)‖2 +

3Lη̃2G2

S
.

This yields the lemma.

We are now ready to derive the convergence rate.

Convergence rate of MimeSGD on general non-convex functions. Set µ = 0 in Lemma 11 and
sum over t

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 16(f(x0)− f?)
η̃T

+
48Lη̃G2

S

≤ 16

√
3LG2(f(x0)− f?)

ST
+

192BL(f(x0)− f?)
T

.

The final step used a step-size of η̃ = min

(
1

12BL ,
1
4L ,
√

S(f(x0)−f?)
3LTG2

)
. Here, we used xout = xτ

where τ is uniformly at random chosen in [T ].
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Convergence rate of MimeSGD on PL-inequality. Multiply Lemma 11 by (1− µη̃
8 )T−t and sum

over t
T∑
t=1

(1− µη̃
8 )T−t E‖∇f(xt−1)‖2 ≤

T∑
t=1

(1− µη̃
8 )T−(t−1)

16(f(xt−1)− f?)
η̃

− (1− µη̃
8 )T−t

16(f(xt)− f?)
η̃

+ (1− µη̃
8 )T−t

48Lη̃G2

S

≤ (1− µη̃
8 )T

16(f(x0)− f?)
η̃

+

T∑
t=1

(1− µη̃
8 )T−t

48Lη̃G2

S
.

Output xout = xτ where τ is chosen with probability proportional to (1− µη̃
8 )T−t. Then, this yields

E‖∇f(xout)‖2 ≤ (1−µη̃8 )T
16(f(x0)− f?)

η̃
+

48Lη̃G2

S
≤ Õ

(
σ2

µT
+ L(f(x0)− f?) exp

(
− µT

12BL

))
.

Using an appropriate step-size η̃ yields the final rate (see Lemma 1 of [32]).

One round progress for MimeLiteSGD. Next, we specialize the convergence rate for MimeLite.

Lemma 12. Suppose f is a L-smooth function satisfying PL-inequality for µ ≥ 0 (µ = 0 corre-
sponds to the general case). Running MimeLiteSGD for η̃ ≤ 1

12BL satisfies

η̃

16
E‖∇f(xt−1)‖2 ≤ (1− µη̃

8 )(f(xt−1)−f?)−(f(xt)−f?)+
Lη̃2G2

S
+18L2B2η̃3

(
G2 + σ2/K

)
.

Proof. Recall from Lemma 9 that,

E‖et‖2 ≤ 18L2B2η̃2 E‖ct‖2 ≤ 18L2B2η̃2 E‖∇f(xt−1)‖2 + 18L2B2η̃2G2 +
9L2B2η̃2σ2

K
.

Combining this with Lemma 10 yields the following progress for Mime

f(xt) ≤ f(xt−1)−
(
η̃

4
− 18L2B2η̃3

)
E‖∇f(xt−1)‖2 +

Lη̃2G2

S
+ 18L2B2η̃3

(
G2 + σ2/K

)
≤ f(xt−1)− η̃

8
E‖∇f(xt−1)‖2 +

Lη̃2G2

S
+ 18L2B2η̃3

(
G2 + σ2/K

)
.

Here, we used the bound on the step size that η̃ ≤ 1
12LB implies 18L2B2η̃2 ≤ 1

8 . Now using
PL-inequality, we can write

f(xt)− f?−(f(xt−1)− f?) ≤

− µη̃

8
(f(xt−1)− f?)− η̃

16
E‖∇f(xt−1)‖2 +

Lη̃2G2

S
+ 18L2B2η̃3

(
G2 + σ2/K

)
.

This yields the lemma.

We are now ready to derive the convergence rate.

Convergence rate of MimeLiteSGD on general non-convex functions. Define G̃2 = G2 +
σ2/K. Set µ = 0 in Lemma 12 and sum over t

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 16(f(x0)− f?)
η̃T

+
16Lη̃G2

S
+ 288L2B2η̃2G̃2

≤ 16

√
LG2(f(x0)− f?)

ST
+ 84

(
LG̃(f(x0)− f?)

T

)2/3

+
192BL(f(x0)− f?)

T
.

The final step used an appropriate step-size of η̃, see Lemma 2 of [32]. Here, we used xout = xτ

where τ is uniformly at random chosen in [T ]. Finally note that if K ≥ σ2

G2 , then G̃2 ≤ 2G2.
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Convergence rate of MimeLiteSGD on PL-inequality. Multiply Lemma 12 by (1− µη̃
8 )T−t and

sum over t
T∑
t=1

(1− µη̃
8 )T−t E‖∇f(xt−1)‖2 ≤

T∑
t=1

(1− µη̃
8 )T−(t−1)

16(f(xt−1)− f?)
η̃

− (1− µη̃
8 )T−t

16(f(xt)− f?)
η̃

+

T∑
t=1

(1− µη̃
8 )T−t

(
16Lη̃G2

S
+ 288L2B2η̃2G̃2

)
≤ (1− µη̃

8 )T
16(f(x0)− f?)

η̃

+

T∑
t=1

(1− µη̃
8 )T−t

(
16Lη̃G2

S
+ 288L2B2η̃2G̃2

)
.

Output xout = xτ where τ is chosen with probability proportional to (1− µη̃
8 )T−t. Then, this yields

with appropriate step-size η̃ yields the final rate (see Lemma 1 of [32]).

E‖∇f(xout)‖2 ≤ Õ

(
σ2

µT
+
L2G̃2

µ2T 2
+ L(f(x0)− f?) exp

(
− µT

12BL

))
.

G.3 Convergence of MimeAdam and MimeLiteAdam (Corollary III)

We will largely follow the convergence analysis of [75] for the analysis of Adam. A crucial differ-
ence between their setting and ours is that in our algorithm we use the global statistics (second order
moment) corresponding to t−1 i.e.

√
vt−1 instead of

√
vt where the

√
· operator is applied element

wise. Practically, this does not make a significant difference since the discount (momentum) factor
for the second momentum is very large. Theoretically however, this difference simplifies our proof
significantly removing otherwise hard to handle stochastic dependencies.

In this section, we will use Adam as our base optimizer with ε0 > 0 parameter for stability and
β1 = 0 (i.e. RMSProp). This is identical to the setting in the centralized algorithm analyzed by [75].
The properties of our base optimizer are then:

• st = vt which is a running average estimate of the second moment and satisfies vt > 0.
• U(g;vt−1) = g√

vt−1+ε0
for any g. This update for any vt−1 is B-Lipschitz for B = 1

ε0
.

In this sub-section, all operations on vectors (multiplication, division, addition, comparison) are
applied element-wise with appropriate broad-casting.

One round progress of Adam.
Lemma 13 (Effective step-sizes). Suppose that |∇jfi(x)| ≤ H . Then Adam has effective step-sizes

1

H + ε0
g ≤ U(g;vt−1) ≤ 1

ε0
g .

Proof. Recall that vt = β2v
t−1 + (1− β2)(ct)2 starting from v0 = 0. Thus for any t ≥ 0, we have

vt ≥ 0 and hence
√
vt−1 + ε0 ≥ ε0. For the other side, recall that vt is updated with centralized

stochastic gradients ct = 1
S

∑
i∇fi(x).

[ct]j =
1

S

∑
i

[∇fi(x)]j ≤ H .

Further,
[vt]j = β2[vt−1]j + (1− β2)[ct]2j ≤ β2[vt−1]j + (1− β2)H2 ≤ H2 .

Hence
√
vt−1 + ε0 ≤ H + ε0.
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Lemma 14 (One round progress). For one round of Adam with error et in the update U and using
ct for update V , we have

E f(xt) ≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2+

η̃((H + ε0) + ε0/(H + ε0))

2ε20
E‖et‖2+

Lη̃2G2

Sε20
.

Proof. Starting from Lemma 13 and the smoothness of f , we have

E f(xt) ≤ E f(xt−1)− η̃ E〈∇f(xt−1),Et[U
(
ct + et

)
]〉+

Lη̃2

2
E‖U

(
ct + et;vt−1

)
‖2

≤ E f(xt−1)− η̃ E〈∇f(xt−1),Et

[
ct + et√
vt−1 + ε0

]
〉+

Lη̃2

2
E‖U

(
ct + et;vt−1

)
‖2

≤ E f(xt−1)− η̃ E〈∇f(xt−1),

[
∇f(xt−1) + et√

vt−1 + ε0

]
〉+

Lη̃2

2ε20
E‖ct + et‖2

≤ E f(xt−1)− η̃

H + ε0
‖∇f(xt−1)‖2 − η̃ E〈∇f(xt−1),

et√
vt−1 + ε0

〉+
Lη̃2

2ε20
E‖ct + et‖2

≤ E f(xt−1)− η̃

2(H + ε0)
‖∇f(xt−1)‖2 +

η̃(H + ε0)

2
E‖ et√

vt−1 + ε0
‖2 +

Lη̃2

2ε20
E‖ct + et‖2

≤ E f(xt−1)−
(

η̃

2(H + ε0)
− Lη̃2

ε20

)
‖∇f(xt−1)‖2 +

η̃(H + ε0) + 2Lη̃2

2ε20
E‖et‖2 +

Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

η̃((H + ε0) + ε0/(H + ε0))

2ε20
E‖et‖2 +

Lη̃2G2

Sε20

Here we used our bound on the step-size that η̃ ≤ ε0
4L(H+ε0)

.

Convergence of MimeAdam.
Lemma 15. Suppose that assumptions A1–(A3) hold and further |∇jfi(x)| ≤ H . Then, running

MimeAdam with step-size η̃ ≤ ε20
12L(H+ε0)

, we have

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 96L(H + ε0)2(f(x0)− f?)
ε20T

+
2G2

S
.

Combining Lemma 14 with the bound on et from Lemma 9 we get,

E f(xt) ≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

η̃((H + ε0) + ε0/(H + ε0))

2ε20
E‖et‖2 +

Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

9L2η̃3((H + ε0) + ε0/(H + ε0))

ε40
E‖ct‖2

+
Lη̃2G2

Sε20

≤ E f(xt−1)−
(

η̃

4(H + ε0)
− 9L2η̃3((H + ε0) + ε0/(H + ε0))

ε40

)
‖∇f(xt−1)‖2

+
Lη̃2G2

Sε20
+

9L2η̃3((H + ε0) + ε0/(H + ε0))G2

Sε40

≤ E f(xt−1)−
(

η̃

4(H + ε0)
− 18L2η̃3(H + ε0)

ε40

)
‖∇f(xt−1)‖2

+
Lη̃2G2

Sε20
+

18L2η̃3(H + ε0)G2

Sε40

≤ E f(xt−1)− η̃

8(H + ε0)
‖∇f(xt−1)‖2 +

η̃G2

4S(H + ε0)
.
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To simplify computations, here we assumed we assumed (H + ε0)2 ≥ ε0 without loss of generality.
If this is not true, we can replace H by max(H,

√
ε0 − ε0). Assuming η̃ ≤ ε20

12L(H+ε0)
, we have

18L2η̃2(H+ε0)
ε40

≤ 1
8(H+ε0)

. Rearranging the terms and substituting the bounds on the step-size yields
the lemma.

Convergence of MimeLiteAdam.
Lemma 16. Suppose that assumptions A1–(A3) hold and further |∇jfi(x)| ≤ H . Then, running

MimeLiteAdam with step-size η̃ ≤ ε20
12L
√
S(H+ε0)

, we have for G̃2 := G2 + σ2/K,

1

T

T∑
t=1

E‖∇f(xt−1)‖2 ≤ 96L
√
S(H + ε0)2(f(x0)− f?)

ε20T
+

2G̃2

S
.

Combining Lemma 14 with the bound on et from Lemma 9 we get for G̃2 := G2 + σ2/K,

E f(xt) ≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2 +

η̃(H + ε0)

ε20
E‖et‖2 +

Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

4(H + ε0)
‖∇f(xt−1)‖2

+
18L2η̃3(H + ε0)

ε40
E‖∇f(xt−1)‖2 +

18L2η̃3(H + ε0)(G̃2)

ε40
+
Lη̃2G2

Sε20

≤ E f(xt−1)− η̃

8(H + ε0)
‖∇f(xt−1)‖2 +

η̃G̃2

4S(H + ε0)

Again as before to simplify computations, here we assumed (H + ε0)2 ≥ ε0 without loss of gener-
ality. If this is not true, we can replace H by max(H,

√
ε0 − ε0). Assuming η̃ ≤ ε20

12L(H+ε0)
√
S

, we

have 18L2η̃2(H+ε0)
ε40

≤ 1
8S(H+ε0)

. Rearranging the terms and substituting the bounds on the step-size
yields the lemma.

H Circumventing server-only lower bounds

In this section we see how to use momentum based variance reduction [14, 62] to reduce the variance
of the updates and improve convergence. It should be noted that MVR does not exactly fit the
MIME framework (BASEOPT) since it requires computing gradients at two points on the same batch.
However, it is straightforward to extend the idea of MIME to MVR as we will now do. We use MVR
as a theoretical justification for why the usual momentum works well in practice. An interesting
future direction would be to adapt the algorithm and analysis of [13], which does fit the framework
of MIME.

For the sake of convenience, we summarize the notation used in the proof in a table.

Table 6: Summary of all notation used in the MVR proofs
σ2, G2, and δ intra-client gradient, inter-client gradient, and inter-client Hessian variance

η, a step-size, (1− β) momentum parameters
T , t total number, index of communication rounds
K, k total number, index of client local update steps

St, S, and i sampled set, size, and index of clients in round t
xt aggregated server model after round t
mt server momentum computed after round t
ct control variate of server after round t (only MIME)
yti,k model parameters of ith client in round t after step k
ζti,k mini-batch data used by ith client in round t and step k
dti,k parameter update by ith client in round t, step k
et error in momentummt −∇f(xt−1)

∆t
i,k, ∆t−1 E‖yti,k − xt−2‖2, E‖xt−1 − xt−2‖2 = ∆t

i,0
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H.1 Algorithm descriptions

Now, we formally describe the MIME MVR and MIMELITE MVR algorithms. In each round t, we
sample clients St such that |St| = S. The server communicates the server parameters xt−1, the past
parameters xt−2, and the momentum mt−1 term. MIME additionally uses a control variate ct−1 as
we describe next.

Control variate in Mime. MIME uses an additional control variate ct−1 to reduce the variance.

ct−1 =
1

S

∑
i∈St

∇fi(xt−2) . (12)

Note that both ct−1 andmt−1 use gradients and parameters from previous rounds (different from the
previous section). A naive implementation of this method requires two steps of communication per
round to implement this algorithm. Alternatively, we can reserve some clients in the previous round
for computing ct−1 which can then be used in the current round, removing the need for two steps
of communication. In particular, it can be computed on a different set of an independent sampled
clients S̃t−1. In fact, all our theoretical results hold even if we use a single client to perform the
local updates and the rest of clients are used only to compute ct−1 each round.

Local client updates. Then each client i ∈ St makes a copy yti,0 = xt−1 and perform K local
client updates. In each local client update k ∈ [K], the client samples a dataset ζti,k. MIME performs
the following update:

yti,k = yti,k−1 − ηdti,k , where

dti,k = a(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k) + ct−1) + (1− a)mt−1

+ (1− a)(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k)) .

(13)

MIMELITE on the other hand uses a very similar but simpler update scheme which does not rely on
ct−1:

yti,k = yti,k−1 − ηdti,k , where

dti,k = a∇fi(yti,k−1; ζti,k) + (1− a)mt−1

+ (1− a)(∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k)) .

(14)

Server updates. After K such local updates, the server then aggregates the new client parameters
as

xt =
1

S

∑
j∈St

ytj,K . (15)

The momentum term is updated at the end of the round for a ≥ 0 as

mt = a( 1
S

∑
j∈St ∇fj(xt−1)) + (1− a)mt−1︸ ︷︷ ︸

Mom

+ (1− a)( 1
S

∑
j∈St ∇fj(xt−1)−∇fj(xt−2))︸ ︷︷ ︸

correction

.

(16)
As we can see, the momentum update of MVR can be broken down into the usual Mom update, and
a correction. Intuitively, this correction term is very small since fi is smooth and xt−1 ≈ xt−2.
Another way of looking at the update (16) is to note that if all functions are identical i.e. fj = fk
for any j, k, then (16) just becomes the usual gradient descent. Thus MimeMVR tries to maintain an
exponential moving average of only the variance terms, reducing its bias. We refer to [14] for more
detailed explanation of MVR.

H.2 Bias in updates

The main difference in MimeMVR from the centralized versions of [62, 14] is the additional local
steps which are biased. In particular, for k ≥ 1 the expected gradient E[∇fi(yti,k)] 6= ∇f(yti,k)

because yti,k also depends on the sample i. This bias is in fact the underlying cause of client drift
and controlling it is a crucial step for our analysis.
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Lemma 17 (Mime bias). For any values of x and yi where yi may depend on i, the following holds
for any client i almost surely given that (A1) and (A2) hold:

ES,ζ

∥∥∥∥∥∥∇fi(yi; ζ) +
1

|S|
∑
j∈S
∇fj(x)−∇fi(x; ζ) − ∇f(yi)

∥∥∥∥∥∥
2

≤ 2δ2 ES‖yi − x‖2 +
2G2

S
.

Proof. We can separate the noise from the rest of the terms and expand as

Eζ,S

∥∥∥∥∥∥∇fi(yi; ζ) +
1

|S|
∑
j∈S
∇fj(x)−∇fi(x; ζ)−∇f(yi)

∥∥∥∥∥∥
2

≤ 2 ES‖∇fi(yi; ζ) +∇f(x)−∇fi(x; ζ)−∇f(yi)‖2 + 2 ES

∥∥∥∥∥∥ 1

|S|
∑
j∈S
∇fj(x)−∇f(x)

∥∥∥∥∥∥
2

≤ 2 ES‖∇fi(yi; ζ) +∇f(x)−∇fi(x; ζ)−∇f(yi)‖2 +
2G2

S

≤ 2 ES δ
2‖yi − x‖2 +

2G2

S
.

The first inequality used Young’s inequality, the second used (A1), and the last used (A2) in the form
of Lemma 3.

We can perform a similar analysis of the bias of local updates encountered by MIMELITE.
Lemma 18 (MimeLite bias). For any values of x and yi where yi may depend on i, the following
holds for any client i randomly chosen from C given that (A1), (A2) and (A3) hold:

Ei,ζ‖∇fi(yi; ζ) − ∇f(yi)‖2 ≤ 2δ2 Ei‖yi − x‖2 + 2G2 + σ2 .

Proof. We can separate the noise from the rest of the terms and expand as

Eζ,i‖∇fi(yi; ζ)−∇f(yi)‖2 = Eζ,i‖∇fi(yi; ζ)±∇fi(x)±∇f(x)−∇f(yi)‖2

≤ Ei‖∇fi(yi)±∇fi(x)±∇f(x)−∇f(yi)‖2 + σ2

≤ 2 Ei‖∇fi(yi) +∇f(x)−∇fi(x)−∇f(yi)‖2

+ 2 Ei‖∇fi(x)−∇f(x)‖2 + σ2

≤ 2 Ei‖∇fi(yi) +∇f(x)−∇fi(x)−∇f(yi)‖2 + 2G2 + σ2

≤ 2δ2 Ei‖yi − x‖2 + 2G2 + σ2 .

The first inequality used (A3), the second used Young’s inequality, the third used (A1), and the last
used (A2) in the form of Lemma 3.

Note that the bias for MimeLite is very similar to that of Mime, except that Mime has dependence
of G2

S , whereas MimeLite has G2 + σ2. Hence, the rate of convergence of MimeLite will depend
on G2 wheras Mime will have the optimal dependency of G2/S. Hence, in the rest of the proof,
we will consider only Mime and simply replace G2/S with (G2 + σ2) to obtain the corresponding
results for MimeLite.

H.3 Change in each client update

Client update variance. Now we examine the variance of our update in each local step dti,k.

Lemma 19. For the client update (13), given (A1) and (A2), the following holds for any a ∈ [0, 1]
where et := mt −∇f(xt−1) and ∆t

i,k := E‖yti,k − xt−2‖2:

E‖dti,k −∇f(yti,k−1)‖2 ≤ 3 E‖et−1‖2 + 3δ2∆t
i,k−1 +

3a2G2

S
.
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Proof. Starting from the client update (13), we can rewrite it as

dti,k −∇f(yti,k−1) = (1− a)et−1

+
(
∇fi(yti,k−1; ζti,k)−∇fi(xt−2; ζti,k))−∇f(yti,k−1) +∇f(xt−2)

)
+ a

 1

S

∑
j∈St

∇fj(xt−2)−∇f(xt−2)

 .

We can use the relaxed triangle inequality Lemma 1 to claim

E‖dti,k −∇f(yti,k−1)‖2

= 3(1− a)2 E‖et−1‖2

+ 3(1− a)2
∥∥(∇fi(yti,k−1; ζti,k)−∇fi(xt−2; ζti,k))− (∇f(yti,k−1)−∇f(xt−2))

∥∥2
+ 3a2

∥∥∥∥∥∥ 1

S

∑
j∈St

∇fj(xt−2)−∇f(xt−2)

∥∥∥∥∥∥
2

≤ 3 E‖et−1‖2 + 3δ2‖yti,k−1 − xt−2‖2 +
3a2G2

S
.

The last inequality used the Hessian similarity Lemma 3 to bound the second term and the hetero-
geneity bound (A1) to bound the last term. Also, (1− a)2 ≤ 1 since a ∈ [0, 1].

Distance moved in each step. We show that the distance moved by a client in each step during
the client update can be controlled.
Lemma 20. For MimeMVR updates (13) with η ≤ 1

6Kδ and given (A1) and (A2), the following
holds

∆t
i,k ≤

(
1 +

1

K

)
∆t
i,k−1 + 18η2Ka2

G2

S
+ 18η2K E‖et−1‖2 + 6η2K‖∇f(yti,k−1)‖2 ,

where we define ∆t
i,k := E‖yti,k − xt−2‖2.

Proof. Starting from the MimeMVR update (13) and the relaxed triangle inequality with c = 2K,

E‖yti,k − xt−2‖2 = E‖yti,k−1 − ηdti,k − xt−2‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−2‖2 + (2K + 1)η2 E‖dti,k‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−2‖2 + 6Kη2 E‖dti,k −∇f(yti,k−1)‖2

+ 6Kη2 E‖∇f(yti,k−1)‖2

≤
(

1 +
1

2K
+ 18Kη2δ2

)
E‖yti,k−1 − xt−2‖2

+ 18Kη2 E‖et−1‖2 +
18Kη2a2G2

S
+ 6Kη2 E‖∇f(yti,k−1)‖2 .

The last inequality used the update variance bound Lemma 19. We can simplify the expression
further since η ≤ 1

6Kδ implies 18Kη2δ2 ≤ 1
2K .

Progress in one step. Now we can compute the progress made in each step.
Lemma 21. For any client update step with step size η ≤ min

(
1
L ,

1
192δK

)
and given that (A1), (A2)

hold, we have

E f(yti,k) + δ

(
1 +

2

K

)K−k
∆t
i,k ≤ E f(yti,k−1) + δ

(
1 +

2

K

)K−(k−1)
∆t
i,k−1

− η

4
E‖∇f(yti,k−1)‖2 + 3η E‖et−1‖2 +

3ηa2G2

S
.
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Proof. The assumption that f is L-smooth implies a quadratic upper bound (10).

f(yti,k)− f(yti,k−1) ≤ −η〈∇f(yti,k−1),dti,k〉+
Lη2

2
‖dti,k‖2

= −η
2
‖∇f(yti,k−1)‖2 +

Lη2 − η
2

‖dti,k‖2 +
η

2
‖dti,k −∇f(yti,k−1)‖2 .

The second equality used the fact that for any a, b, −2ab = (a − b)2 − a2 − b2. The second term
can be removed since η ≤ 1

L . Taking expectation on both sides and using the update variance bound
Lemma 19,

E f(yti,k)− E f(yti,k−1) ≤ −η
2

E‖∇f(yti,k−1)‖2 +
3ηa2G2

2S

+
3η

2
E‖et−1‖2 +

3ηδ2

2
∆t
i,k−1

≤ −η
2

E‖∇f(yti,k−1)‖2 +
3ηa2G2

2S

+
3η

2
E‖et−1‖2 +

3ηδ2

2
∆t
i,k−1

Multiplying the distance bound Lemma 20 by δ
(
1 + 2

K

)K−k
. Note that for anyK ≥ 1 and k ∈ [K],

we have 1 ≤
(
1 + 2

K

)K−k ≤ 8. Then we get

δ

(
1 +

2

K

)K−k
∆t
i,k ≤ δ

(
1 +

2

K

)K−k((
1 +

1

K

)
∆t
i,k−1 + 18η2Ka2

G2

S

+ 18η2K E‖et−1‖2 + 6η2K‖∇f(yti,k−1)‖2
)

≤ δ
(

1 +
2

K

)K−(k−1)
∆t
i,k−1 −

δ

K

(
1 +

2

K

)K−k
∆t
i,k−1

+ 48η2δK E‖∇f(yti,k−1)‖2 +
144η2δKa2G2

S
+ 144η2δK E‖et−1‖2

≤ δ
(

1 +
2

K

)K−(k−1)
∆t
i,k−1 −

δ

K
∆t
i,k−1 + 48η2δK E‖∇f(yti,k−1)‖2

+
144η2δKa2G2

S
+ 144η2δK E‖et−1‖2 .

Adding these two inequalities together yields

E f(yti,k) + δ

(
1 +

2

K

)K−k
∆t
i,k ≤ E f(yti,k−1) + δ

(
1 +

2

K

)K−(k−1)
∆t
i,k−1

−
(η

2
− 48η2δK

)
E‖∇f(yti,k−1)‖2

+

(
3η

2
+ 144η2δK

)
E‖et−1‖2

+

(
3η

2
+ +144η2δK

)
a2G2

S
.

Using our bound on the step-size that η ≤ 1
192δK implies that ηδK ≤ 1

48∗4 .

H.4 Change in each round

We now see how the quantities we defined change across rounds.
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Distance moved in a round.
Lemma 22. For MimeMVR updates (13) with η ≤ 1

6Kδ and given (A1) and (A2), the following
holds

∆t ≤ 54K2η2 E‖et−1‖2 +
54K2η2a2G2

S
+

1

KS

∑
i,k

18K2η2 E‖∇f(yti,k−1)‖2 ,

where we define ∆t := E‖xt − xt−1‖2.

Proof. Starting from the MimeMVR update (13) and following the proof of Lemma 20,

E‖yti,k − xt−1‖2 = E‖yti,k−1 − ηdti,k − xt−1‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−1‖2 + (2K + 1)η2 E‖dti,k‖2

≤
(

1 +
1

2K

)
E‖yti,k−1 − xt−1‖2 + 6Kη2 E‖dti,k −∇f(yti,k−1)‖2

+ 6Kη2 E‖∇f(yti,k−1)‖2

≤
(

1 +
1

K

)
E‖yti,k−1 − xt−1‖2

+ 18Kη2 E‖et−1‖2 +
18Kη2a2G2

S
+ 6Kη2 E‖∇f(yti,k−1)‖2 .

Note that xt = 1
S

∑
i∈S y

t
i,K and so,

E‖xt − xt−1‖2

≤ 1

S

∑
i∈S

E‖yti,K − xt−1‖2

≤ 1

S

∑
i∈S

∑
k

(
18Kη2 E‖et−1‖2 +

18Kη2a2G2

S
+ 6Kη2 E‖∇f(yti,k−1)‖2

)(
1 +

1

K

)K−k
≤ 54K2η2 E‖et−1‖2 +

54K2η2a2G2

S
+

1

KS

∑
i,k

18K2η2 E‖∇f(yti,k−1)‖2 .

Here we used the inequality that for all k,
(
1 + 1

K

)K−k ≤ 3.

Server momentum variance. We compute the error of the server momentum mt−1 defined as
et = mt −∇f(xt−1). Its expected norm can be bounded as follows.

Lemma 23. For the momentum update (16), given (A1) and (A2), the following holds for any
η ≤ 1

51δK and 1 ≥ a ≥ 2592K2δ2η2,

E‖et‖2 ≤ (1− 23a
24 ) E‖et−1‖2 +

3a2G2

S
+

1

KS

∑
i,k

36K2δ2η2 E‖∇f(yti,k−1)‖2 .

Proof. Starting from the momentum update (16),

et = (1− a)et−1

+ (1− a)

 1

S

∑
j∈St

(∇fj(xt−1)−∇fj(xt−2))−∇f(xt−1) +∇f(xt−2)


+ a

 1

S

∑
j∈St

(∇fj(xt−1)−∇f(xt−1)

 .
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Now, the term et−1 does not have any information from round t and hence is statistically indepen-
dent of the rest of the terms. Further, the rest of the terms have mean 0. Hence, we can separate out
the zero mean noise terms from the et−1 following Lemma 2 and then the relaxed triangle inequality
Lemma 1 to claim

E‖et‖2 ≤ (1− a)2 E‖et−1‖2

+ 2(1− a)2

∥∥∥∥∥∥ 1

S

∑
j∈St

(∇fj(xt−1)−∇fj(xt−2))−∇f(xt−1) +∇f(xt−2)

∥∥∥∥∥∥
2

+ 2a2

∥∥∥∥∥∥ 1

S

∑
j∈St

(∇fj(xt−1)−∇f(xt−1)

∥∥∥∥∥∥
2

≤ (1− a)2 E‖et−1‖2 + 2(1− a)2δ2‖xt−1 − xt−2‖2 +
2a2G2

S
.

The inequality used the Hessian similarity Lemma 3 to bound the second term and the heterogeneity
bound (A1) to bound the last term. Finally, note that (1− a)2 ≤ (1− a) ≤ 1 for a ∈ [0, 1]. We can
continue by bounding ∆t−1 using Lemma 22.

E‖et‖2 ≤ (1− a) E‖et−1‖2 + 2δ2∆t−1 +
2a2G2

S

≤ (1− a) E‖et−1‖2 +
2a2G2

S

+ 108K2δ2η2 E‖et−1‖2 +
108K2δ2η2a2G2

S
+

1

KS

∑
i,k

36K2δ2η2 E‖∇f(yti,k−1)‖2

≤ (1− 23a
24 ) E‖et−1‖2 +

3a2G2

S
+

1

KS

∑
i,k

36K2δ2η2 E‖∇f(yti,k−1)‖2 .

The last step used our bound on the momentum parameter that 1 ≥ a ≥ 2592η2δ2K2. Note that
η ≤ 1

51δK ensures that this set is non-empty.

Progress in one round. Finally, we can compute the progress made in a round. Note that we need
a technical condition that f is δ-weakly convex. However, this is only needed because we insist
on running the algorithm on S clients in parallel and then averaging their weights—the averaging
requires weak convexity to ensure that the loss doesn’t blow up. It has been experimentally observed
in [43] that with the right initialization, averaging of the parameters does not increase the loss value
and so weak convexity within this region might be vaalid. Finally note that if we instead simply run
the local updates on a single chosen client with all the rest only being used to compute ct−1, we will
retain all convergence rates without needing weak-convexity.

Lemma 24. For any round of MimeMVR with step size η ≤ min
(
1
L ,

1
864δK

)
and momentum pa-

rameter a ≥ 912η2δ2K2. Then, given that (A1)–(A2) hold and f is δ-weakly convex, we have

η

24KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2 ≤ Φt−1 − Φt +
17ηaδ2K2G2

S
,

where we define the sequence

Φt := 1
K E[f(xt)− f?] +

96η

23a
E‖et‖2 +

8δ

K
∆t .
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Proof. We start by summing over the progress in single client updates as in Lemma 21

∑
k∈[K]

η

4
E‖∇f(yti,0)‖2 ≤ E f(yti,0) + δ

(
1 +

2

K

)K
∆t
i,0

− E f(yti,K)− δ∆t
i,K

+ 3ηK E‖et−1‖2 +
3ηKa2G2

S
≤ E f(yti,0) + 8δ∆t

i,0 − E f(yti,K)− δ∆t
i,K

+ 3ηK E‖et−1‖2 +
3ηKa2G2

S

≤ E f(xt−1) + 8δ∆t−1 − E f(yti,K)− δ∆t
i,K

+ 3ηK E‖et−1‖2 +
3ηKa2G2

S
.

Recall that ∆t
i,k = E‖yti,k − xt−2‖2 and yti,0 = xt−1. This gives the last step above, making

∆t
i,0 = ∆t−1. Then by the averaging Lemma 4, we have

1

S

∑
j∈St

E[f(ytj,K)] + δ∆t
j,K =

1

S

∑
j∈S

E[f(ytj,K)] + δ E‖xt−2 − ytj,K‖2

≥ E[f(xt)] + δ E‖xt−2 − xt‖2 .

So by averaging our inequality over the sampled clients, and diving our summation over the updates
by K, we get

η

4KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2

≤ 1
K E[f(xt−1)] + 3η E‖et−1‖2 +

8δ

K
∆t−1 − 1

K E[f(xt)] +
3ηa2G2

S
.

We can use the bound on ∆t from Lemma 22 to proceed as

η

4KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2

≤ 1
K E[f(xt−1)]− 1

K E[f(xt)] + 3η E‖et−1‖2 +
3ηa2G2

S

+
8δ

K
∆t−1 − 8δ

K
∆t

+ 432Kδη2 E‖et−1‖2 +
432Kδη2a2G2

S
+

1

KS

∑
i,k

144Kδη2 E‖∇f(yti,k−1)‖2

≤ 1
K E[f(xt−1)]− 1

K E[f(xt)] + 4η E‖et−1‖2 +
4ηa2G2

S

+
8δ

K
∆t−1 − 8δ

K
∆t +

η

6KS

∑
i,k

E‖∇f(yti,k−1)‖2

The last step used the bound on the step size that η ≤ 1
864δK . Now, multiplying the error bound

Lemma 23 by 96η
23a gives

96η

23a
E‖et‖2 ≤ 4 ∗ 24η

23a
(1− 23a

24 ) E‖et−1‖2 +
13ηaG2

S
+

1

KS

∑
i,k

38K2δ2η3

a
E‖∇f(yti,k−1)‖2 .
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Adding this to the previously obtained bound yields

η

4KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2 ≤
(

1

6
+

38K2δ2η2

a

)
η

KS

∑
k∈[K],j∈St

E‖∇f(yti,k−1)‖2

+ 1
K E[f(xt−1)]− 1

K E[f(xt)]

+
96η

23a
E‖et−1‖2 − 96η

23a
E‖et‖2

+
8δ

K
∆t−1 − 8δ

K
∆t

− 1
K E[f(xt)]− 4η

a
E‖et‖2

+
(
13ηa+ 3ηa2

)G2

S
.

Since a ≥ 912η2K2δ2, we have 1
4 −

(
1
6 −

38K2δ2η2

a

)
≥ 1

24 . Using this proves the lemma.

H.5 Final convergence rates

Theorem V (Convergence of MimeMVR). Let us run MimeMVR with step size η =

min

(
1
L ,

1
864δK ,

(
S(f(x0)−f?)
6936K3Tδ2G2

)1/3)
and momentum parameter a = max

(
1536η2δ2K2, 1

T

)
.

Then, given that (A1) and (A2) hold, we have

1

KST

∑
t∈[T ]

∑
k∈[K]

∑
j∈St

E‖∇f(yti,k−1)‖2 ≤ O
((δ2G2F

ST 2

)1/3
+
G2

ST
+

(L+ δK)F

KT

)
,

where we define F := f(x0)− f?.

Proof. Unroll the one round progress Lemma 24 and average over T rounds to get

1

KST

∑
t∈[T ]

∑
k∈[K]

∑
j∈St

E‖f(yti,k−1)‖2 ≤ 24(Φ0 − ΦT )

ηT
+

408aG2

S
.

Recall that we defined

Φt := 1
K E[f(xt)− f?] +

96η

23a
E‖et‖2 +

8δ

K
∆t .

Hence, ΦT ≥ 0. Further, note that by definition ∆0 = 0 and E‖e0‖2 := E‖m0 −∇f(x0)‖2. [14]
show that by using time-varying step sizes, it is possible to directly control the error e0. Alterna-
tively, [62] use a large initial accumulation for the momentum term. For the sake of simplicity, we
will follow the latter approach. It is straightforward to extend our techniques to the time-varying
step-size case as well but with additional proof complexity. Note that either way, the total com-
plexity only changes by a factor of 2. Suppose that we run the algorithm for 2T rounds wherein
for the first T rounds, we simply compute m0 = 1

T0S

∑T0

t=1

∑
j∈St ∇fj(x0) . With this, we have

e0 = E‖m0 −∇f(x0)‖2 ≤ G2

ST . Thus, we have for the first round t = 1

Φ0 = 1
K E[f(x0)− f?] +

96η

23a
E‖e0‖2 ≤ 1

K E[f(x0)− f?] +
96ηG2

23aTS
.

Together, this gives

1

KST

∑
t∈[T ]

∑
k∈[K]

∑
i∈St

E‖f(yti,k−1)‖2 ≤ 24(f(x0)− f?)
ηKT

+
96G2

aT 2S
+

408aG2

S
.

The above equation holds for any choice of η ≤ min
(
1
L ,

1
864δK

)
and momentum parameter a ≥

912η2δ2K2. Set the momentum parameter as

a = max

(
912η2δ2K2,

1

T

)
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With this choice, we can simplify the rate of convergence as

24(f(x0)− f?)
ηKT

+
96G2

TS
+

166464η2δ2K2G2

S
+

408G2

ST
.

Now let us pick

η = min

(
1

L
,

1

864δK
,

(
S(f(x0)− f?)
6936K3Tδ2G2

)1/3
)
.

For this combination of step size η and a, the rate simplifies to

504G2

TS
+ 916

(
(f(x0)− f?)δ2G2

ST 2

)1/3

+
24(L+ 864δK)(f(x0)− f?)

KT
.

This finishes the proof of the theorem.

Theorem VI (Convergence of MimeLiteMVR). Let us run MimeLiteMVR with step size η =

min

(
1
L ,

1
864δK ,

(
(f(x0)−f?)

6936K3Tδ2(G2+σ2)

)1/3)
and momentum parameter a = max

(
1536η2δ2K2, 1

T

)
.

Then, given that (A1) and (A2*) hold, we have

1

KST

∑
t∈[T ]

∑
k∈[K]

∑
j∈St

E‖∇f(yti,k−1)‖2 ≤ O
((δ2(G2 + σ2)F

T 2

)1/3
+
G2 + σ2

T
+

(L+ δK)F

KT

)
,

where we define F := f(x0)− f?.

Proof. The proof for MimeLiteMVR is identical to that of MimeMVR, except that as noted in
Lemma 18, the G2

S term in Mime gets replaced by (G2 +σ2) everywhere. Note that MimeLiteMVR
(Lemma 18) requires a weaker Hessian variance condition of ‖∇2fi(x)−∇2f(x)‖ ≤ δ as opposed
to MimeMVR which needs ‖∇2fi(x; ζ)−∇2f(x)‖ ≤ δ.

Note that the final convergence rates of MimeMVR and MimeLiteMVR both include the intermedi-
ate client parameters. To implement this algorithm would require additional communication where
in each round a random client parameter in {yti,1, . . . ,yti,K} is communicated to the server. How-
ever, as is common in non-convex stochastic analysis, we expect the last iterate to converge at a
similar rate as well in practice.

I Algorithm pseudocodes

Algorithm 2 FedAvg framework

input: initial x and s, server learning rate ηg , client learning rate ηl, and base optimizer B =
(U ,V)
for each round t = 1, · · · , T do

sample subset S of clients
communicate x to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
update yi ← yi − ηl∇fi(yi; ζ)

end for
communicate yi

end on client
compute aggregate pseudo-gradient g ← 1

|S|
∑
i∈S(x− yi)

x← ηgU(g, s) (update server parameters)
s← V(g, s) (update optimizer state)

end for
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Algorithm 3 MimeMom and MimeLiteMom

input: initial x, and hyperparameters η, β. optional ηg (default = 1)
initializem← 0, c← 0
for each round t = 1, · · · , T do

sample subset S of clients
communicate (x, s = m) and c (only Mime) to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
gi ← ∇fi(yi; ζ)−∇fi(x; ζ) + c (Mime)

gi ← ∇fi(yi; ζ) (MimeLite)
update using server momentum yi ← yi − η((1− β1)gi + β1m)

end for
compute full local-batch gradient∇fi(x)
communicate (yi,∇fi(x))

end on client
compute c← 1

|S|
∑
i∈S ∇fi(x)

m← ((1− β1)c+ β1m) (update server momentum)
x← x− ηg 1

|S|
∑
i∈S(x− yi) (update server parameters)

end for

Algorithm 4 MimeAdam and MimeLiteAdam

input: initial x, and hyperparameters η, β1, β2, ε0. optional ηg (default = 1)
initializem← 0, v ← 0, c← 0
for each round t = 1, · · · , T do

sample subset S of clients
communicate (x, s = (m,v)) and c (only Mime) to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yi ← x
for k = 1, · · · ,K do

sample mini-batch ζ from local data
gi ← ∇fi(yi; ζ)−∇fi(x; ζ) + c (Mime)

gi ← ∇fi(yi; ζ) (MimeLite)
update yi ← yi − η((1− β1)gi + β1m)/

(
(
√
v + ε0)(1− βt1)

)
end for
compute full local-batch gradient∇fi(x)
communicate (yi,∇fi(x))

end on client
compute c← 1

|S|
∑
i∈S ∇fi(x)

m← ((1− β1)c+ β1m)/(1− βt1)
v ← ((1− β2)c2 + β2v)/(1− βt2)
x← x− ηg 1

|S|
∑
i∈S(x− yi) (update server parameters)

end for
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Algorithm 5 MimeMVR pseudocode

input: initial x0, learning rate η
initialize c0 ← 0,m0 ← 0
for each round t = 1, · · · , T do

sample subset S of clients
communicate xt−1,xt−2,mt−1, ct−1 to all clients i ∈ S
on client i ∈ S in parallel do

initialize local model yti,0 ← xt−1

for k = 1, · · · ,K do
sample mini-batch ζti,k from local data
compute SVRG gradient gti,k ← ∇fi(yti,k−1; ζti,k)−∇fi(xt−1; ζti,k) + ct−1

compute corrected momentum dti,k ← agti,k+(1−a)mt−1+(1−a)(∇fi(yti,k−1; ζti,k)−
∇fi(xt−1; ζti,k))

update yti,k = yti,k−1 − ηdti,k
end for
compute full local-batch gradients∇fi(xt−1),∇fi(xt−2)
communicate (yti,K ,∇fi(xt−1),∇fi(xt−2))

end on client
compute new aggregate pseudo-gradient ct ← 1

|S|
∑
i∈S ∇fi(xt−1)

compute old aggregate pseudo-gradient c̃t ← 1
|S|
∑
i∈S ∇fi(xt−2)

update server momentummt ← act + (1− a)mt−1 + (1− a)(ct − c̃t)
update server parameters xt ← 1

|S|
∑
i∈S y

t
i,K

end for
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