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1 OVERVIEW
In the supplementary materials, we provide extra information for
the submitted manuscript.

• We introduce datasets involved in our experiments. (Sec-
tion 2.1)

• We provide more results of different incremental domain
orders on three incremental domain sequences. (Section 2.2)

• We further investigate the impact of the weights of inter-
domain alignment loss function and intra-domain orthogo-
nality loss function on the model performance. (Section 2.3)

• We exhibit visualization comparisons of our DSSP against
other methods in more incremental domain sequences. (Sec-
tion 2.4)

2 EXPERIMENTS
2.1 Experimental Setup
Datasets.We employ unified data argumentation for indoor and
outdoor datasets respectively. Specifically, we first resize the images
to 320×240 pixels and subsequently center crop them into 304×228
for indoor datasets. And for outdoor datasets, we random crop the
images to 480× 320 during training phase and 640× 480 during test
phase.

NYU_v2 [8] has 464 indoor scenes with a resolution of 640×480.
Among them, 249 scenes are used for training, and the rest 215
scenes are used for testing. We use the pre-processed data by [5]
with about 50k samples.

ScanNet [4] is a large-scale indoor RGB-D dataset that contains
2.5 million RGB-D images. According to [5], we use a subset of 50k
samples from the training splits of 1513 scenes for training and
evaluate the models on the test set of another 100 scenes with 17K
samples. The resolution of RGB images is 1296 × 968.

KITTI [9] is collected by car-mounted cameras and a LIDAR
sensor which is an outdoor dataset. We use the official KITTI depth
prediction dataset with the official split of scenes for training and
validation. The training and validation set has 138 and 18 driving
sequences, respectively. The resolution is about 1216× 352 for most
images.

Virtual Kitti_v2 (vKITTI_v2) [1] is a synthetic dataset for
urban driving outdoor environments. It contains 6 different scenes
in monocular videos with ground truth depth and different weather
conditions. The total training set contains 85k images. Following [2],
we use a subset of 12k images for training and 600 for testing. The
original resolution is 1242 × 375.

CityScapes [3] is an outdoor autonomous driving dataset that
is recorded in 50 cities in Germany and bordering regions with 5000
clear images. The original resolution is 2048 × 1024.

CityScapes_Foggy [7] has 8975 images for training and 500
for testing. The original resolution of all images is 2048 × 1024. We
compute the depth error metrics using the provided disparity maps.

CityScapes_Rainy [6] has 9432 images for training and 1188
for testing. Same as CityScapes_Foggy, the original resolution of
all images is 2048 × 1024.

DAOD [10] is a large-scaled outdoor dataset with different
weather conditions, including regular, sunny, cloudy, foggy, and
rainy. For the regular subset, there are around 174k images for train-
ing and 7.7K for testing while the remaining subsets only have 500
RGB-D pairs. Therefore, we randomly select 400 pairs for training
and 100 pairs for testing.

2.2 Ablation of the Incremental Domain Orders
To further investigate the impact of incremental domain sequencing
on model adaptability and resistance to forgetting, we train the
model by various incremental domain orders, and the results are
presented in Table 1, Table 2 and Table 3. We report the average
values of corresponding metrics across three datasets along with
the forgetting metrics.

Table 1: Results of different incremental domain orders be-
tween NYU_v2, ScanNet, and KITTI datasets.

Domain Orders Abs_Rel RMSE 𝛿1.25 Forgetting ↓
NYU_v2 → ScanNet → KITTI 0.204 1.919 69.693 0.255
NYU_v2 → KITTI→ ScanNet 0.180 1.817 75.052 0.240
ScanNet → NYU_v2 → KITTI 0.222 1.846 69.021 0.279
ScanNet → KITTI→ NYU_v2 0.201 1.805 73.588 0.211
KITTI→ ScanNet → NYU_v2 0.172 2.259 74.778 0.027
KITTI→ NYU_v2 → ScanNet 0.198 2.436 70.964 0.804

Table 2: Results of different incremental domain orders be-
tween vKITTI_v2, KITTI, and CityScapes datasets.

Domain Orders Abs_Rel RMSE 𝛿1.25 Forgetting ↓
vKITTI_v2→ KITTI→ CityScapes 7.918 9.963 50.865 4.279
vKITTI_v2→ CityScapes → KITTI 6.634 18.0903 49.810 29.39842
CityScapes → vKITTI_v2→ KITTI 13.464 8.965 75.110 2.798
CityScapes → KITTI→ CityScapes 8.684 7.318 79.996 -2.140
KITTI→ CityScapes → vKITTI_v2 3.590 7.686 75.909 -0.096
KITTI→ vKITTI_v2→ CityScapes 5.149 8.145 69.240 0.519

Table 3: Results of different incremental domain orders be-
tween CityScapes, CityScapes_Foggy, and CityScapes_Rainy
datasets.

Domain Orders Abs_Rel RMSE 𝛿1.25 Forgetting ↓
CityScapes → CS_Foggy→ CS_Rainy 14.805 16.283 56.551 -0.295
CityScapes → CS_Rainy→ CS_Foggy 20.584 21.412 43.912 15.799
CS_Foggy→ CityScapes → CS_Rainy 17.383 22.531 41.199 19.204
CS_Foggy→ CS_Rainy → CityScapes 13.0459 19.120 44.306 8.121
CS_Rainy→ CityScapes → CS_Foggy 11.142 13.274 66.440 -5.548
CS_Rainy→ CS_Foggy → CityScapes 11.616 13.954 63.510 -4.530
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2.3 Searching for Loss Weights
We perform a grid search of the weights of inter-domain align-
ment and intra-domain orthogonal loss functions. As illustrated in
Figure 1, we verify 𝛽 = 0.1 and 𝛾 = 10 is the optimal choice.
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Figure 1: Grid search results of 𝛽 for LIDO and 𝛾 for LIDA. We
report the average metric and the forgetting metric of RMSE
on the "NYU_v2→ScanNet→KITTI" incremental domain se-
quence.

2.4 Qualitative Results
We show more qualitative results under the other three additional
incremental settings in Figure 2, Figure 3, and Figrue 4. It can be
observed that DSSP exhibits excellent performance across multi-
ple incremental domain sequences. For the KITTI and vKITTI_v2
datasets, in order to achieve BETTER visualization results, we
present the predictions of all methods of the original resolution.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 2: Qualitative comparison with SOTA methods in the
learning order of vKITTI_v2→KITTI→CityScapes. (a) RGB.
(b) Ground truths. (c) FT. (d) JDT. (e) EWC. (f) LL-MonoDepth.
(g) Ours.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 3: Qualitative comparison with SOTA methods in
the learning order of CityScapes→ CS_Foggy→ CS_Rainy.
(a) RGB. (b) Ground truths. (c) FT. (d) JDT. (e) EWC. (f) LL-
MonoDepth. (g) Ours.
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Figure 4: Qualitative comparison with SOTA methods. From top to bottom are RGB, Ground truths, results of FT, JDT, EWC,
LL-MonoDepth, and Ours.
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