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ABSTRACT

A major challenge in applying reinforcement learning (RL) to real-world scenar-
ios is managing high-dimensional, noisy perception input signals. Identifying
and utilizing representations that contain sufficient and essential information for
decision-making tasks is key to computational efficiency and generalization of RL
by reducing bias in decision-making processes. In this paper, we present a new
RL framework, named Causal State Representation under Asynchronous Diffu-
sion Model (CSR-ADM), which accommodates and enhances any RL algorithm
for partially observable Markov decision processes (POMDPs) with perturbed in-
puts. A new asynchronous diffusion model is proposed to denoise both reward
and observation spaces, and integrated with the bisimulation technology to capture
causal state representations in POMDPs. Notably, the causal state is the coarsest
partition of the denoised observations. We link the causal state to a causal fea-
ture set and provide theoretical guarantees by deriving the upper bound on value
function approximation between the noisy observation space and the causal state
space, demonstrating equivalence to bisimulation under the Lipschitz assumption.
To the best of our knowledge, CSR-ADM is the first framework to approximate
causal states with diffusion models, substantiated by a comprehensive theoretical
foundation. Extensive experiments on Roboschool tasks show that CSR-ADM
outperforms state-of-the-art methods, significantly improving the robustness of
existing RL algorithms under varying scales of random noise.

1 INTRODUCTION

Reinforcement learning (RL), a method for autonomous learning, has demonstrated extensive appli-
cations (Schrittwieser et al.,|2020; [Silver et al., |2017), where an agent learns by interacting with the
environment to maximize long-term cumulative rewards through trial and error. However, classical
RL methods face challenges when the state of the environment cannot be fully observed. Partially
observable Markov decision processes (POMDPs) were introduced to handle the situations with in-
complete observations. A major challenge of POMDPs is the robustness of observations against
such perturbation on the state space, which may result from sensor errors or mismatches between
statistic datasets and the real environment. Enhancing the robustness of the trained RL policy against
state perturbations is crucial for improving the interpretability and efficiency of making decisions,
leading to a causal representation of states.

Recently, research for causal state representation (CSR) learning has been developed to extract ab-
stract features from perturbed observations. Utilizing these abstract representations rather than the
raw data has demonstrated more efficient decision-making capability for Markov decision processes
(MDPs) (Lesort et al.,[2018) and POMDPs (Zhang et al.l 2019). Representative methods along this
line include bisimulation-based methods (Zhang et al.l 2020), Kalman filters (Zois et al., [2014), or-
dinary differential equations (ODE)-based recurrent models (Zhao et al.,[2024), world models (Ha &
Schmidhuber; 2018]), a connection between predictive state representations (PSRs) and bisimulation
via causal states (Zhang et al.,|2019), and others (Lanier et al.,[2024} |Chen et al.| 2023a). However,
these methods do not consider perturbations, which limits the deployment of relevant representative
algorithms. Therefore, by properly modeling and estimating the underlying transition dynamics and
rewards with noise, it is possible to effectively reduce interactions with the environment, for either
model-based or model-free RL (Hafner et al., 20195 2020)).
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Despite the effectiveness of the above methods, existing state representations for RL tend to output
an unimodal distribution over the action space, which is likely trapped in a locally optimal solution
with poor performance due to its limited expressiveness of complex distributions. Given that gen-
erative models are powerful in learning complicated multimodal distributions, several algorithms
with generative models for CSR in POMDPs have emerged, such as deep variational reinforcement
learning (Igl et al., 2018)) and structured sequential variational auto-encoder (Huang et al.||[2022).

However, methods aligned with generative models, such as variational autoencoder typically gener-
ate samples by learning the latent representations of data, rather than directly addressing noise, thus
their effectiveness in handling noise may be relatively limited. In contrast, the diffusion model (Sohl-
Dickstein et al., 2015} [Song et al.| 2020; Ho et al.| 2020) can remove noise better while preserving
important features in data by iteratively transforming noisy samples into high-quality real samples.
The diffusion model offers a better choice when the simultaneous denoising and preservation of im-
portant features are required. Recently, diffusion-based generative models have been increasingly
used in decision-making problems as trajectory generators or state representation (Janner et al.,
2022; |Ajay et al., |2022; [Zhihe & Xul [2023a). Although the diffusion model shows its promising
and potential applications to POMDP tasks, previous works have overlooked the causal relation-
ships (e.g., bisimulation). Moreover, it is a matter of deliberation whether it is reasonable to achieve
diffusion model-based denoising by the same step. Thus, a natural question arising is:

How can we apply diffusion models to enhance causal state representation for
reducing decision-making biases in perturbed POMDPs?

1.1 CONTRIBUTION

In this paper, we aim to enhance decision-making in deep reinforcement learning (DRL) for per-
turbed POMDPs, characterized by partial and noisy observations. We introduce an innovative ap-
proach, Causal State Representation under Asynchronous Diffusion Model (CSR-ADM), which is
applicable to any RL algorithm. Our contributions are summarized as follows:

Algorithm Design: We develop a new causal state representation for perturbed POMDPs to im-
prove DRL decision-making amidst noisy and incomplete observations. This representation extends
bisimulation, traditionally applied in MDPs, to POMDPs, facilitating the evaluation of causality
in DRL inputs. We also propose a novel diffusion model that characterizes the conditional proba-
bility distribution of transition dynamics and rewards under varying noise intensities. This model
serves as a criterion for assessing the causality of bisimulation relationships and mitigates observa-
tion noise through new adjustable asynchronous forward and backward propagation. Notably, our
asynchronous diffusion model is adept at handling disturbances across variables of different scales
and can be implemented as a standalone module for effective denoising.

Theoretical Analysis: We establish the theoretical guarantees of CSR-ADM in perturbed POMDPs
by deriving the upper bound on the value function approximation (VFA) between the noisy observa-
tion and the causal state spaces. By assessing the distribution estimation error using the Wasserstein-
1 distance for the proposed asynchronous diffusion model, we demonstrate that the model tightens
the upper bound on VFA and hence contributes to DRL decision-making for POMDPs.

Extensive Simulation: We conduct extensive simulations across six environments under perturbed
POMDPs to demonstrate the performance of CSR-ADM. Considering that our approach can ac-
commodate any RL algorithm, we present simulations where CSR-ADM is combined with soft
actor-critic (SAC) and compare it against the other four baselines. We also perform ablation studies
to investigate the impact of key parameters, i.e., noise intensity and the magnitude of environmental
noise. Experimental results show that CSR-ADM enhances RL’s decision-making under incomplete
and noisy observations and rewards.

1.2 RELATED WORK

Causal state representation To enhance the performance of decision-making under perturbed
POMDPs, several recent studies have focused on deriving causal state representations for decision-
making generalization through the technique of representation learning. For instance, Zhang et al.
(2019) proposed an algorithm to approximate causal states in POMDPs. Utilizing domain-invariant
causal features, Bica et al.| (2021) proposed Invariant Causal Imitation Learning (ICIL) to address
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distribution shifts. Additionally, some works (Lee et al.,|2019; Menda et al.,[2019; |Loquercio et al.,
2020) proposed ensemble representations that leverage multi-modal sensor inputs to boost general-
izability for self-driving agents under uncertainty quantification. The PlanT framework (Renz et al.,
2023) serves as a learnable planner module grounded in object-centric representations. Moreover,
the realm of RL has witnessed advancements in state representation through self-supervised learning
approaches, including hierarchical skill decomposition (Akrour et al.,2018)), time-contrastive learn-
ing (Sermanet et al.,|2018)), and deep bisimulation metric learning (Zhang et al.,|2020;|Dadashi et al.,
2021). However, there is a lack of consideration of perturbation-based causal state representations.

RL with diffusion model The diffusion model was originally proposed as an generative model
for image generation (Sohl-Dickstein et al.,|2015; |Ho et al.,2020). Recently, it has been adopted in
decision-making for state-based tasks, especially for perturbed states. In RL, diffusion models can
be utilized not only for direct decision-making (Ajay et al.,[2022; Janner et al., 2022} Zhihe & Xul
2023a; [Wang et al., [2022} Zhang et al., [2024; L1 et al., [2023)) but also for effective denoising and
distribution estimation. For instance, DMBP (Zhihe & Xul 2023a)) utilizes the diffusion model as a
denoiser (against state observation perturbations) rather than a generator, for robust training of RL
agents. The DIPO (Yang et al., 2023) utilizes the diffusion model to address the denoising problem
in model-free RL. Moreover, Fu et al.| (2024) presented a sharp statistical theory of distribution
estimation using a conditional diffusion model. However, the current studies do not differentiate
whether data used for training contains noise or not, hence limiting the effectiveness of denoising.

2 PROBLEM FORMULATION

RL in POMDP For RL, some environments are generally modeled as POMDPs in the form
of M = (S§,A4,0,v,F,G, H), where ~ is the discount factor. Assume a sequence of samples
{{oy, ay, ?"t>}tT=1, where o, € O represents the sensory signal (e.g., high-dimensional images) at
time ¢ with O indicting to the observation space. a; € .A represents the action chosen at time ¢
with action space A, and r; € [0,1] denotes the reward. We use s, = {514, 52,4, , 84,1} € Sto
denote the d-dimensional true state, where S is the state space with d dimensions. Therefore, we
can describe the environment model as follows:

o, =F(st,er) < P(o;|sy), (1a)
re =G (si—1,a-1,61) <= P(ry|si—1,a-1), (1b)
st = H (se—1,ai-1,m) <= P(s¢|si—1,a-1), (1o

where F', GG, and H represent the observation function, reward function, and transition function,
respectively; e, ¢, and 7, are the associated independent and identically distributed (i.i.d.) random
noises. The POMDP consists of states s;. Given a;_; and s;_1, s; is independent of the states and
actions that occurred before time ¢ — 1. Additionally, the action a;_; directly affects the state s;,
rather than the observation signal o;. The reward is also influenced by both the state and action. In
particular, the observation signal o, is generated from a base state corrupted by random noises. We
consider noise ¢, in the reward function to capture noise, €.g., measurement errors.

Causal state representation and bisimulation There exist structural relationships among differ-
ent dimensions of s, so that action a;_1 may not affect all dimensions of s; and reward r; may be
unaffected by all dimensions of s;_;. As illustrated in Figure|l} we take d = 3 as an example, i.e.,

T . .
St = [S1.4, 82,4, 83,4) . State s3 ;1 affects sq, but there is no connection between a;_; and s3 5.
Only s2 ;1 has an edge toward 7.

Causal state representation has been explored as a method to differentiate pertinent information from
irrelevant details (Li et al.} |2006), aiming to generate a more compact representation that facilitates
decision-making and planning. As a type of causal state representation, states and observations are
considered bisimilar if they yield the same expected reward and have equivalent distributions over
subsequent bisimilar states and observations (Givan et alJ, 2003). To this end, we assert that they
exhibit a bisimulation relationship, providing a mathematically rigorous definition of how two envi-
ronments can yield the same outcome. Based on the environment’s dynamics P(S;y1,741|St, at),
the similarity between environments can be expressed by the similarity between their state transition
and reward functions. Following (Castro et al.,[2009), we define the equivalence in POMDP as:
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Figure 1: System Model Diagram: Taking d = 3 as an example, solid-line circular nodes represent
observed variables, while dashed-line circular nodes represent unobserved variables; solid lines rep-
resent causal relationships, while dashed lines represent decision dependencies.

Definition 1 (Causal state representation under bisimulation) Given a POMDP M =
(S, A,0,F,G,H) and the function of the state space into observation space F : § — O,
any pair of state and observation {s; € S,0: € O} is F-trajectory equivalent if and only if

« Foranya € A, P(ryy1 | sy,a) = P (riqq | F7'(0y),a),

« Foranya € A, P (s¢y1 |si,a) = P (se41 | F7' (o), a).

Goal By denoising states and rewards, estimating environment dynamics, and extracting causal
states, we aim to represent causal states under perturbed POMDP. We also wish to design a diffusion
model considering the differentiation of noise intensity within data.

3 ALGORITHM DESIGN

In this section, we propose the Causal State Representation under Asynchronous Diffusion Model
(CSR-ADM) framework to achieve effective causal state representation. Specifically, we design an
asynchronous diffusion model to simultaneously denoise the states and rewards through the environ-
ment dynamics estimation. Additionally, we learn an approximate causal state representation based
on bisimulation. Here, we present the procedure for CSR-ADM training in Algorithm |I} A dia-
gram of the proposed approach is shown in Figure [d]in Appendix [A] As a causal state presentation
framework, CSR-ADM can be adapted to any RL algorithm.

Algorithm 1: Hybrid asynchronous diffusion model and bisimulation guided RL (CSR-ADM)

Parameter: Discount factor -y, forward stepsize K, and noise intensity J;

Initialize: Observation denoise model 8, reward denoise model ¢, bisimulation model (, start
observation o1, and empty replay memory D;

for Episodet =1,...,T do

Compute the (approximate) denoised causal state S; from o; using observation denoise
model # and bisimulation model ¢;

Select action a; ~ 7(S;), and obtain reward ;11 and new observation o;1;

Store transition (04, a;, 141, 0¢+1) in replay memory D;

Sample a batch of transitions randomly from D as I5;

Obtain states §; and ;41 from observations o, and 0441 in 5, respectively;

Take gradient descent on ,ésme(e) + ﬁBislale(C );
| Take gradient descent on ﬁRew(¢) + ﬁBiReW(C );
Output: Policy 7
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Asynchronous diffusion model The objective of the asynchronous diffusion model is to derive
P (St41 | 8¢,a¢) and P (7141 | 8¢, a¢) from perturbed sample (04, az, r+41,0¢41), where §; and §;.41
denote the causal states estimated under denoised observations, and 7, represents the denoised
reward at time ¢ + 1. Existing diffusion model-based RL algorithms typically use o;1; and 711 as
the initial training data (Zhihe & Xu, 2023b)), implying that the distribution fitted by the diffusion
model is affected by noise. Consequently, there is a gap for improvement in the existing diffusion
model-based denoising algorithms.

Considering the differentiation of noise intensity, we design an asynchronous diffusion model to
achieve effective denoising of states and rewards and estimate environmental dynamics, assuming
that o441 and 741 are superimposed by d-steps Gaussian noise. For clarity, we use ¢ to indicate the
RL iteration and k to indicate the diffusion model’s step. To obtain the denoised causal state §;1,
we use 7.+ and S;y1 = ((0441) as part of the inputs to the asynchronous diffusion model, along
with §; and o, where S;; 1 represents the causal state with noise. Given the above assumption, we
denote these inputs as x°, corresponding to the results after a d-step forward process. Considering
the initial conditional distribution as P(x%|$;, a;), we proceed to analyze the denoised conditional
distribution P(x°|8;, a;).

For each asynchronous diffusion model update, we consider adding noise progressively, which is
represented by a forward Ornstein—Uhlenbeck (OU) process, as follows:

dx* = —0.5x*dk + dw* with x° ~ P(x°[§;,a;) for k> 6; ()
dxF = —0.5x*dk + dw® with x° = (x‘S —v1-= 0756) /Vas for k>0, 3)
where w* is a Wiener process, (1, 32, - - - , Sk provide a predefined variance schedule, a; =1-p;,

o; = H;.:O o, and € follows a standard normal distribution. In the infinite-time limit, x°° follows

a standard Gaussian distribution. At any finite step k, we denote P(x*|8;, a;) as the marginal con-
ditional distribution of each result x* produced by the forward process conditioned on the denoised
causal states and actions.

The forward process terminates at a sufficiently large step K and the reverse process is defined to
generate samples by reversing results per step in (2)) as

dxF = [0.5%" + Vlog p(X"|8;,a:)] dk + dw" with X0~ P(x"[3;,a), (4)

where W* and X" is a time-reversed Wiener and reverse process, respectively. V log p(X*|3;, a;)
is the unknown conditional score function and needs to be estimated utilizing conditional score
networks. We refer to ((x, §;, a;, t) as such the estimator of the conditional score V log p(x*|8;, a;).

According to classifier-free guidance, a widely adopted method for training ¢ proposed by Ho et al.
(2020), we obtain the loss function for our asynchronous diffusion model, as given by
K
R 1 . 2
é(X7 St, at; ‘P) = . K — ko ET,kaN(\/akch,UiI) |:||90(Xka T(Sta at)v k) - vx’C logp(Xk|X) ||2:| dk
0

K
1 R
+/5 ﬂET,XkNN(MXan” |:HS0(Xk7T(Staat>7k) - vx7C Ing(Xk|X)H§i| dk) (5)

where p(x*|x) is the Gaussian transition kernel of the forward process , ie., Vlogp(x*|x°) =
—(xF — \Jagxo)/o}. Let 7 ~ Unif{@,id} be a mask signal, where @ means that we ignore the
guidance (8, a;) and id denotes otherwise. We consider the uniform distribution on 7, which means
P(r = @) = P(r = id) = 0.5. Moreover, we consider an early-stopping step k¢ similar to Nichol
& Dhariwal| (2021), in order to prevent the blow-up of score functions.

Recall the assumption of adequate mask signal 7 and sampling on x* in . Consequently, the
classifier-free guidance aims to minimize the empirical risk as follows:
1 n
argmin L(¢) = Eo, a,r 0041} [E(Xis 81,255 0)] = n Z [(xi, 8,25 9)] (6)
® i
with n being the sample size. By substituting $;1 and 6 (resp. r.41 and ¢) for x and ¢ in (), we
can similarly obtain the training objective for the states and rewards, respectively, as follows:

ﬁState(o) = ]E{ot,at,rt,ot+1} [E(C(Ot—&-l), C(Ot)v ag; 0)] ; (7)
Lrew(?) = Efop arr001) L(Tes1,C(08), a8 9)] - ®)
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Bisimulation We extend the concept of bisimulation to POMDPs to achieve effective causal
state representation, specifically estimating P (§; | o¢). Based on the Wasserstein metric (see Ap-
pendix [B.T.T)), a new bisimulation metric is of particular relevance, as defined below:

Definition 2 (Bisimulation metric) Given f, g, and constant cg,ct € (0, 1) for POMDPs, for any
pair of state and observation {s; € S, 0; € O}, the following metric exists and is unique,

d (s¢, F~"(oy)) ::?gfl((cRWp(d) (P(r|s¢,a),P(r| F ' (o)),a))
+erWy(d) (P (s' | si,2), P (s'|[F~ (), a))), ©)
where W, denotes the Wasserstein distance between probability distributions.

A distance of zero for a given pair indicates bisimilarity. We employ a recurrent neural network
(RNN) to fit P (§; | 0¢), i.e., 8 = (o). When the diffusion model accurately predicts the future
observations, §; serves as a sufficient statistic for the latent variables. In practice, we use empirical
implementations to estimate the state representation minimizing the objective loss:

A 1 X A
ACBiSlate(C) = iE{ot,at,rt,otJrl} [Wd (P (StJrl ‘ St, at) 70 (C (Ot) 7at))] (loa)

o 1
Lpirew(¢) = iE{ot,at,rt,otJrl} (Wa (P (re41 | 8¢,a),0 (¢ (0r) ,a))] . (10b)

Consequently, we implement causal state representation and assist reinforcement learning decisions,
by iteratively optimizing Lsue(0) + Lpistate () and Lrew(P) + Lpirew (€)-

4 THEORETICAL GUARANTEES

We proceed to bound the value function difference between any pairs of observations and states
under causal state representation when the proposed asynchronous diffusion model is employed.
We start with some assumptions. Let § denote the noise intensity. We mathematically reformulate
the assumption considering the noise intensity of the input data, as follows:

Assumption 1 The sampled distribution pyai. is the result of the noiseless distribution
P(Xtrue|St, ar) after § steps of the forward process, i.e.,

2
1 || Q§Xtrue — X6 ||
1A o ~ vV
pdata(x |St, at) = /]Rd p(xtrue|st7at)W exp <— 20_? dXtrye- (11)

We further introduce a mild tail condition on the initial conditional data distribution as Assumption[2}
which pertains solely to the regularity of the original data distribution and does not place constraints
on the resulting conditional score function. In other words, we assume an additional bounded Holder
norm condition (see Appendix [B.1.2]for details) on true data distribution, as follows:

Assumption 2 Let Cy and C be two positive constants. For a fixed radius B, define the function
f € HY(RY x [0,1]%, B). We assume f(Xirue,St,a;) > C for all (Xirue, St,;) and the true
conditional density function p(Xtrue|St, at) = exp(—Cs thmeHg /2) - f(Xtrues St, at)-

Since a provable tight relationship implies theoretical guarantees in VFA, a key characteristic of
bisimulation metrics is their connection to value functions. To generalize the VFA bound, we assume
the existence and uniqueness of p-Wasserstein bisimulation metric for any pair of states to measure
their similarity.

Assumption 3 (p-Wasserstein bisimulation metric) For any given cg,cr € (0,1), cr + c1 < 1,
V(si,85) € S X S, and p > 1, we assume that the bisimulation metric in exists and is unique:

d(si,s;) =max (crWy(d)(P(r]|s;,a),P(r|s;j,a))+erW,(d)(P(s'|s;,a),P(s'sj,a))). (12)

Notably, Assumption [3]does not restrict the state, action, or observation spaces to be finite (or any
other conditions). Under Assumptions [IH3] we analyze the theoretical guarantee of CSR-ADM
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under POMDPs. The analysis is divided into four steps, including (i) establishing the upper bound
of VFA for causal states overlooking observations; (ii) refining the upper bound to the observations
and causal states under any model approximations; (iii) analyzing the model approximation under a
specific model, i.e., the asynchronous diffusion model; and (iv) combining the results in (ii) and (iii)
and deriving the upper bound of VFA under the asynchronous diffusion model.

Step 1: p-Wasserstein value difference bound for any pairs of states Similar to the bounds de-
veloped in previous work (Castro, 2020; |[Ferns et al.,[201 1)) for policy-independent bisimulation met-
rics, the following bound holds for on-policy bisimulation metrics: |V7™(s;) — V™ (s;)| < d(s;, s;)
with d(s;, s;) defined in Assumption 3} where V™ (s) = E[>7° ¥*r14i+1|s: = s]. With the proof
provided in Appendix [B.2.T] we can establish the value difference bound as follows.

Theorem 1 (p-Wasserstein value difference bound) For the on-policy bisimulation metric de-
fined in , given any cr € [v,1), cg € (0,1), cg + ¢ < 1, and p > 1, the bisimulation
distance between two states provides the upper bound on the discrepancy in their values:

cr|V7(si) = V™ (s;)| < d(si,sj), V(si,85) €S % S. (13)
In this sense, the bisimulation metric in represents the upper bound of the value gap.

Step 2: Value difference bound for any pairs of observation and state Consider p = 1 for our
analysis. We demonstrate the validity of Assumption [3]in Remark [T} with the proof provided in
Appendix More general cases will be proved in our future research.

Remark 1 If both the policy and the environment are deterministic or p = 1, Assumption 3| holds.

Recall the definitions of reward function and transition function are independent of ¢ and 6. We
consider the influence of the model errors on the value function with the optimal policy-dependent
bisimulation distance, as summarized in Theorem [2| with the proof provided in Appendix

Theorem 2 (Value difference bound with model errors) Let the reward function be bounded as
r € [0,1] and ¢ : S S8a function mapping estimated states (i.e., denoised observations) to causal
states such that ((8;) = ((8;) is equivalent to c?c(éh §;) = [|¢(8:) — ¢(8;)]|, < 2€ Forcg € (0,1),
et € [,1), ecr +er < 1, and p = 1, then:

llq

~ “ 1 —~ 2CR 2CT
VT(s)—-VT < — (2 & & E),VseS
V76 - PO < s (24 b ootk k) W€ S,
(14
where & = HJC —d ’ is the bisimulation metric learning error, &y =
Wi(d) (P (r|s,a),P(r|8a)) is the reward approximation error, and &y =
Wi(d) (P (s' | s,a), P (s'|8,a)) is the state transition model error.

By Theorem [2] we can quantify the upper bound of the value gap under arbitrary model errors. This
can be extended to different probability density estimation models to establish specific convergence
properties. The theorem facilitates analyzing the impact of the proposed asynchronous diffusion
model on the value gap.

Step 3: Distribution estimation under asynchronous diffusion model Since & and &y are
based on the same asynchronous diffusion model architecture, we define the approximation error
of the conditional probability as p(x*, §;, a;, k), where x* can be replaced by either §¥ (1 OF T .
Under Assumption[2] we can measure the asynchronous diffusion model’s distribution estimation by
considering the initialization error, score estimation error, and discretization error, and provide the
sample complexity bounds for each of the three errors using the Wasserstein-1 distance. We present
the approximation theory for estimating the conditional score utilizing ReLU neural networks as the
subsequent theorem, with its proof provided in Appendix

Theorem 3 (Approximation error by asynchronous diffusion model) Under Assumptions|l|and

for any fixed (s*, a*), the terminal step K = ﬁ logn, and the early-stopping step ko =
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N TF AT =1 the estimated error of the conditional probability of noiseless data is given by
. . . R T .
E s 017, WP 81, 80), DOXE 81, 20))| =T (87,27)O (0™ 7770738 (log)ex(19/2:042)/2))

where b is the degree of smoothness in Holder norm; dg and d, represent the dimensions of state
and action, respectively; T (s*,a*) is distribution coefficient.

As n — oo, the distribution estimation measured by Wasserstein-1 distance converges, i.e.,
Eix, 80,0007, [Wl (p(xt|ét,at),ﬁ(xf°|ét,at))] — 0, corroborating the effective distribution esti-
mation capability offered by the proposed asynchronous diffusion model.

Step 4: Wasserstein value difference bound under asynchronous diffusion model The bisim-
ulation metric learning can be achieved by various machine learning models, such as RNN, whose

2PR 8
convergence rate of & is O (n_ TR T (log n)") with the model size pg, as proved by Kohler

& Krzyzak| (2023). According to the results in Theorems [2]and [3] we establish the final theoretical
guarantee as follows.

Theorem 4 (Value difference bound with asynchronous diffusion model) Consider the same
conditions as in Theorems[2|and[3] then: Vs € S,

E VT ‘77" < 9 1 O ) 2+p§ 1 (1, 6
—_ —_— PR s
{ot,a¢,rt,0041} (s) (C(S))‘ <Ze+ er(l—7) (n (logn) )

2cr + 2c7

ERTET gr at)O (nfiwﬁzﬁ% (log n)max{19/2,<b+2>/2}) _a5)
1—cr—cr ’

Therefore, we have established the asymptotic convergence of the proposed algorithm, see Ap-
pendix for details. As n — oo, the estimated causal state V™ (((s)) in converges to
within 2é-neighborhood of the ground-truth causal state V™ (s), i.e., the neighborhood region of
the ground-truth causal state V™ (s) with the radius of €. Specifically, (cr, cr) ensures a trade-off
between the reward approximation error and the state transition model error, while (cg +cr, 1) guar-
antees a balance between the approximation error of the noisy distribution and the approximation
error of bisimulation.

Computational cost. We evaluate the additional computational cost of the CSR-ADM compared
to typical RL algorithms. (Chen et al|(2024) analyzed the computational cost of a diffusion model
to be O(poly log d), where d is the dimension of the input data. Considering our definition of noise
intensity, the loss function of the asynchronous diffusion model (see Eq. (5)) is twice that of a
standard diffusion model, directly doubling the computational cost. Therefore, the computational
cost of the causal state representation is O(poly log max{|.A|,|O|}) in CSR-ADM.

5 EXPERIMENTS

We provide an evaluation of Roboschool environments (Brockman et al) 2016) under standard
POMDP implementation by N1 et al.| (2022), looking at tasks that typically occlude some part of
the observation. There are six environments, i.e., {Hopper, Ant, Walker}-{P, V}, where “-P” stands
for observing positions and angles only, and “-V” stands for observing velocities only. For more
information about environments, see Appendix To demonstrate the robustness of the proposed
CSR-ADM, we train CSR-ADM with the same hyper-parameters for all six tasks, where we provide
the hyper-parameters in Appendix [C.2] Considering that the proposed CSR-ADM framework can
accommodate any RL algorithm, we extend CSR-ADM to a typical RL algorithm, i.e., SAC. We
evaluate all experiments with 600, 000 iterations and apply smoothing operations for each return.

5.1 COMPARISON WITH THE BASELINES

By comparing the results with SAC (Fujimoto et al., 2018), DMBP (Zhihe & Xu, 2023a) (only
considering denoise), and DBC (Zhang et al.,|2021)) (only considering bisimulation), we demonstrate
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Figure 2: Comparison of the performances of CSR-ADM framework in this paper with three base-
lines on six environmsnts including Ant-P, Ant-V, Hopper-P, Hopper-V, Walker-P, and Walker-V.

the scalability and effectiveness of CSR-ADM. Specifically, we set both the reward and observation
to be affected by Gaussian noise with zero mean, a variance of one, and a scale of two. Additionally,
in CSR-ADM, we configure the noise intensity § = 2 to evaluate the impact of the noise.

As shown in Figure[2] the proposed approach demonstrates superior performance across six environ-
ments. Specifically, as compared to DMBP (only considering the denoise functionality in Walker-V)
or DBC (solely focusing on bisimulation in Hopper-P), CSR-ADM exhibits superior generalization
capabilities. In particular, CSR-ADM improves the return compared to SAC, DMBP, and DBC at
least by 14.18%, 29.42%, and 136.63% across the six environments, respectively. Furthermore,
although the proposed approach requires learning more parameters than the other algorithms, it
achieves better performance in the early stages of training in five out of six environments.

5.2 ABLATION STUDY

We conduct ablation studies on all six environments, with three types of modules disabled, i.e., CSR-
ADM without bisimulation, CSR-ADM only with reward denoise (i.e., SAC with reward denoise),
and CSR-ADM only with observation denoise (i.e., SAC with observation denoise). Specifically, the
noise in environments and noise intensity are configured the same as the experiments of comparison
with the baselines above.

As shown in Figure [3] we present the performance of the proposed approach in ablation exper-
iments across six environments. By comparing the performance of four cases, it is evident that
both bisimulation and the asynchronous diffusion model yield positive contributions to the return.
Interestingly, in most environments, the case considering only reward denoising significantly under-
performs compared to the case focusing solely on state denoising. This disparity can be attributed
to the observation having a higher dimensionality than the reward, resulting in its noise having a
greater overall impact. Additionally, the environments of Hopper-V and Walker-P exhibit higher
sensitivity to noise, which is also reflected in Table m

5.3 INFLUENCE ON KEY PARAMETERS

We examine the performance under three noise scales with varying noise intensities across six envi-
ronments, as shown in Table [T} where bold numbers correspond to the optimal results for the same
environment and noise scale. A common conclusion across the six environments is that for noise
scale of 0.1, the optimal noise intensity is 6 = 1; for noise scale of 0.5, the optimal noise intensity is
0 = 2; and if the noise scale increases to 1, the optimal noise intensity becomes unstable, fluctuating
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Figure 3: Ablation studies of CSR-ADM framework in this paper on six environments including
Ant-P, Ant-V, Hopper-P, Hopper-V, Walker-P, and Walker-V.

Table 1: Returns at different noise intensities with various noise scales in six environments including
Ant-P, Ant-V, Hopper-P, Hopper-V, Walker-P, and Walker-V.

Noise scale | Noise intensity | Ant-P | Ant-V | Hopper-P | Hopper-V | Walker-P | Walker-V

0=1 790.8 | 573.8 214 183 285.1 65.44

0.1 0=2 764.2 | 499.1 153.3 161 221.3 52.68
0=3 694 466 122.4 128.7 2154 58.05

0=1 727.7 | 465.4 23.87 45.58 31.04 58.15

0.5 0=2 789.3 | 615.4 24.18 50.17 34.01 65.24
0=3 670.9 | 560.3 21.94 43.3 31.23 61.03

0=1 569.2 | 538.2 2493 45.26 35.25 50.45

1 0=2 597.3 | 533.8 26.2 48.16 358 53.36
0=3 648.3 | 528.4 2553 48.96 333 62.26

between 1 and 3, suggesting that higher noise intensities may be necessary for measurement. This
indicates that noise intensity can reflect the impact of noise. As the noise scale increases from 0.1 to
0.5, half of the environments exhibit relatively stable returns, and when the noise scale rises from 0.5
to 1, the returns of CSR-ADM across all six environments show no significant change. This suggests
that the proposed approach can maintain relatively stable performance in high-noise environments.

6 CONCLUSION

In conclusion, this paper introduces the Causal State Representation under Asynchronous Diffusion
Model (CSR-ADM), a novel framework that effectively addresses the challenges posed by high-
dimessional and noisy input signals in RL applied to POMDPs. By integrating an innovative asyn-
chronous diffusion model for denoising both rewards and observations with bisimulation technology,
CSR-ADM captures essential causal state representations, which are crucial for decision-making
tasks. Our theoretical analysis provides solid guarantees regarding the approximation of value func-
tions between noisy observation spaces and causal state spaces, reinforcing the framework’s robust-
ness. Empirical results from extensive experiments on Roboschool tasks confirm that CSR-ADM
surpasses existing state-of-the-art methods, significantly enhancing the performance and robustness
of RL algorithms in the presence of varying levels of random noise. This work not only contributes
a new approach to improving computational efficiency and generalization in RL but also sets a solid
foundation for future research on causal state representation techniques in noisy environments.
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A CSR-ADM STRUCTURE

The proposed framework consists of three modules and can be extended to any RL algorithm.
Specifically, CSR-ADM employs an asynchronous diffusion model to denoise states and rewards
separately. Subsequently, it approximates causal states based on the denoised states and rewards
with bisimulation. Finally, the approximated causal states and denoised rewards are used as a set
of samples inputted into the RL algorithm for decision-making. It should be noted that the asyn-
chronous diffusion model algorithm denoises observations, which are then input into the bisimu-
lation metric learning model to extract causal states. The detailed structure is shown in Figure 4]
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Figure 4: Overview diagram of the proposed CSR-ADM including dynamics estimating under asyn-
chronous diffusion model and causal state representation under bisimulation.

B THEORETICAL GUARANTEE

B.1 ADDITIONAL NOTATION AND BASIC FACTS

B.1.1 WASSERSTEIN DISTANCES

Definition 3 (Wasserstein metric (Villani, 2008)) Let d : X x X — [0, 00) be a distance function
and <) be the set of all joint distributions with marginals p and )\ over the space X. Then, the
Wasserstein metric is given by

P

W@ ) = (08 B e ldon 2]) (16)

Definition 4 (Dual formulation of the Wasserstein metric (Villani, 2008)) Letr d : X x X —
[0, 00) be a distance function, and p and X be marginals over the space X. Then, a dual formulation
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of the Wasserstein metric is given by
Wyp(d)(p, A) = ( sup  Eq,~p[C(21)] + EEZNA[w(xz)}) ; 17

C@yp<dr

where  ® 1) < dP is equivalent to {(x) + ¥ (y) < d(z,y)’, V(z,y) € X x X.

This dual formulation takes a simple form for p = 1, which is

Wi(d)(p, A) = sup By pl[f(21)] = Expn[f(22)], (18)
feLip; 4(X)

where Lip; ;(X) denotes 1-Lipschitz function f : X — R such that |f(z1) — f(z2)| < d(z1,72).

Note that the 2-Wasserstein metric Ws(||-||,) (or simply W5) has a closed-form for Gaussian distri-
butions (Olkin & Pukelsheim) |1982):

Wa (N (15, 22), N (1, 25))% = [l — pyll5 + 120 — S50 % (19)

where ||-|| = denotes the Frobenius norm. We can observe in (19) that for point masses (i.e., ¥;, ©; —
0), the 2-Wasserstein metric is equivalent to the Euclidean distance between the two points.

Lemma 1 (p-Wasserstein Inequality (Villani, 2008)) For any two distributions i and A, if p < q:
WP(:“‘? )‘) < Wq (Na )‘) (20)

Lemma 2 (Bounds on the Wasserstein distances (Santambrogio, 2015)) For any two distribu-
tions | and X over a space X, for all p > 1:

Wi (11, ) < Wi, A) < diam(X) "5 Wy (, \) 7. 1)

B.1.2 HOLDER NORM

Definition 5 (Holder norm) Let b = m + v > 0 be a degree of smoothness, where m = |b| is an
integer and ~ € [0,1). For a function f : RY — R, its Holder norm is defined as

|05 f(x) — 0° f(z)|
f := max sup|d®f(x)|+ max sup
£l sy = max sup|0"f(x)|+ max sup == s

where s is a multi-index. We say a function f is b-Holder, if and only if Hf”?-tb(]Rd) < 00.
We define a Holder ball of radius B > 0 for some constant B as

H'(RY, B) = {f RY S R‘anHb(Rd) < B} .

B.1.3 NOTATION ABOUT ASYNCHRONOUS DIFFUSION MODEL

Given a score approximator (, we aim to bound the following conditional score:

K 1 2
R :/ ——FE x* y, k) — Vlog p(x* dk
() Kk by |le(x", v, k) gp(x"|y)][;

K

1
# e o0 vk~ Tiogpe ) dk

Due to the structure of classifier-free guidance, we first consider the following mixed score error:
Ko
k k 2
Ru(9) = [ i B 0 7y, ) = T logplatry) | d
k)g 0

K
1 X
+/ X3 5Exk’y,7Hcp(xk,ry,k)—Vlogp(xkhy)szk:R—i—Ro, (22)
5 _
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where the conditional score error R and the unconditional score error R are defined as
IR | k ) 112
R:§ . mExk,y ||<P(X , ¥, k) — Vlogp(x |Y)H2 dk

1/K 1 o By k) — Viog p(x*[y) |12 dk:
t3 | By lett v k) = Viegp(x"ly)l|, dk:

1% [k
Ro =3 /ko e Bt 06" 0. k) = Vlog p(x")|[, dk

1 F .
3 | e e, 0.0 = Vlogp)|

which naturally give rise to the inequality R(¢) < 2R,(¢). Thus, we only need to analyze the
bound of R,(y). In practice, we minimize an equivalent loss of R, denoted by ¢(y), which is
written as
Ko k kio0y (|2
60)i= [ s [Brmeio | oty ) = Tlomplot )|k
ko 0

K
1 2
+ /5 mExé,y |:E7'7xk|x5 |: ||90(Xka TY, k) - VIng(Xk|X§)||2 :| :| dk’ (23)

where %0 = \/%7 (st — /11— 0756) and e follows a standard normal distribution. According to
Lemma C.3 in [Vincent (2011)), @ differs from by a constant independent of s. Now, we
consider training the model with n samples {x;,y;},_; by minimizing the corresponding empirical
loss, i.e.,

n

- 1

i=1

where

K

1 N

é(xay7W) ::/ — ET,xk|ﬁ0[||§0(Xk7Ty7k) - Vlogp(xk|x0)H;]dk
ke K — ko

K
1
+ /(S Ki_(SIEﬁxk‘xs [ ||<p(xk, Ty, k) — Vlogp(xk|x5)||z]dk. (25)

Moreover, in order to derive a bounded covering number of our ReLLU network function class, we
use a truncated loss £** (s, x, y) defined as:

" (x,y;0) = L(x,y; )1 {||x]|, < R}.

Accordingly, we denote the truncated domain of the score function by D = [ R, R]¢ x [0,1]% U
{@}. We consider the truncated loss function class defined as

S(R) = {z(., 59):D =R

s c ]-"} . 26)

B.2 PROOF OF KEY THEOREMS

B.2.1 PROOF OF THEOREMI[I]

We prove (I3) in Theorem I]by mathematical induction. Consider the following updates:

VD (s;) = max (/ 7 (si,a) P (r|s;,a) dr+7/
reR

P(s'|s;,a) V(t)(s’)ds’> (7)
acA s’'eS

d)(s;,s;) = max (W, (d") (P (r | s1,2) P (r | s;,2))
ac

+exWy(d) (P (s | si,a) P (s’ |55,2)) ). 28)
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We need to show that the following holds V¢ € N:

CR ’V(t)(si) — V(t)(sj)’ < d(t)(si,sj), V(si,85) €S % S. (29)
Then, (T3)) holds when ¢ — oo. The base case for mathematical induction, ¢ = 0, holds since:

]v<0> (s:) — V<0>(sj)‘ = dO(s;,s;) = 0, ¥(si,8;) € S x S.
Assuming (29) holds at ¢. Then, in the general case for ¢ + 1:

cr|VIE (5;) — VI (s))]

=cR| max </ r(s;,a) P(r|s;a) err’y/ P(s'|si,a) V(t)(s’)ds')
acA re€R s'eS

— max (/ r(sj7a)P(r|sj7a)dr+’y/ P(s |sj,a)V(t)(s/)ds/) ‘
acA \ Jrer s'€S

<cr

acA

max(/ r(si,a)P(r\si7a)dr—/ r(sj,a) P (r|s;,a)dr
reR reR

+ 7//65 (P(s' | siva) = P(s' | 5;,2)) V{(s)as')

<cr max / r(si7a)P(r|si,a)dr—/ r(sj,a) P (r|s;,a)dr
ac€A | Jrer reR

+ cry max
a

/ (P(s'|s;,a)— P(s'|sj,a)) VO (s")ds'

=cR max / r(si,a)P(r|si,a)dr—/ r(sj,a) P (r|s;,a)dr
a€A | )rer reR

/ (P (s | si,a) — P (s | s5,a)) 2L y®(g)ds'| .
s'eS

+ ¢t max
acA cT

(30)

Notice that by the induction hypothesis, cr V(¥ (s) is a 1-Lipschitz function with respect to the
distance function d*), i.e., cg V) (s) € Lip; 4. Since v < cr by assumption, %V(t) (s) is also
1-Lipschitz. With the assumption of r (s,a) € Lip; 4, using the dual form of the WW; metric in

(18):
cr|[VEFD (s;) = VI (s)))|
<ermax (Wi (d)(P (rs;,a),P (r | s;,a))) +er max (Wi (d) (P (s'|si,a).P (5 |s;.2)))
31)
() ) , (t) e, M.
<emax (W, (dD)(P (r[s;,a),P (r | 5;,)) ) +er max (W, (d)(P (' |s5,2),P (8|55, 2)))
—q+1)

where the last inequality is due to Lemmal[T]

B.2.2 PROOF OF THEOREM[2]

To prove Theorem 2] we start with the following lemmas.

Lemma 3 (Value difference bound with causal state) Let ( : S Sbea Sfunction mapping esti-
mated states (i.e., denoised observations) to causal states such that ((8;) = ((8;) is equivalent to
d(8;,85) < 2e. For cr,cr € [0,1) and cg + cr < 1:

2e

V7 (si) = VT(C(8:))] < o

Vs, €8, 32)
Proof found in Appendix [B.3.2]

18



Under review as a conference paper at ICLR 2025

Lemma 4 (Boundedness condition for convergence) Assume S is compact. If the support of an
approximate dynamics model P, i.e., S’ = supp(i is a closed subset of S, then there exists a

unique on-policy bisimulation metric d of the form (|12, and this metric is bounded:

CR
l—CT

supp(P) C 8 = diam(S;d) < (Fmax — Tmin)- (33)

Proof found in Appendix

Lemma 5 (Bisimulation distance error) Let ¢t € [0,1) and cg > 0. Assume supp(P) C S and
1 —(cr + cr)ay, > 0. Then,

2 2 —
deEH < L g4 rton)a
o~ 1—(cr+cr)ay 1—(cr +cr)ay

D) Giomn(S:
1~ (on + cr)ay diam(S;d), (34)

where a, = 2(r=1/P and diam(S; d) < 8~ (Fmax — Tmin) based on Lemma

176T

Proof found in Appendix
For the remainder of this section, we assume p = 1.

Corollary 1 (Bisimulation distance error with p = 1) Let p = 1, with the remaining conditions
as in Lemmal3dl Then

26R 26’1‘

a-d| = £ E. 35
H o  l—cr—cr ¢+]—*CR*CT9 (33)

When p = 1, we have a;, = a; = 1, giving the expression above.

Corollary |I{bounds the error between the true on-policy bisimulation distance and the optimal ap-
proximate bisimulation distance (i.e., the best distance function we can achieve with our encoder,
given the error in our forward dynamics model). However, we wish to bound the error in the value
function in terms of d¢, not just d (to take the error of the encoder ¢ into account, as well as that of
the dynamics model).

First, we can bound the true bisimulation distance in terms of the encoder and model error. Using
Corollary E] and the definition of bisimulation encoder, there is

-~ -~ 2CR 2CT
d—d H < Hd—ﬂ‘ Hd —JH < £ S+ E. (36
H Cooi oo+ ¢ ooil—CR—CT ¢+1_CR_CT ot ¢ ( )

Thus, if we can relate d to the value function, we can also do so for cfg, as a function of model error.

Finally, we look at bounding the difference in the state value function, using the approximate bisim-
ulation distance defined through the learned encoder. Let € be the aggregation radius in {-space

(meaning the maximum diameter with respect to d¢ per partition subset, or equivalence class, is at
most 2€):

sup [[C(si) = ((sy)llq < 2€

Sq',,SjE

Notice that € bounds the maximal diameter of the partition cells with respect to the learned metric,
using ¢, rather than the ground truth bisimulation distance.
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From the proof of Lemma 3] it readily follows that

1=V - V) < ;i [ dlsz)de(a)

z€((8)

<_‘m /Jg(s,z)+|d(s,z)—Eg(s,z)|oodg(z)

z€((8) As

R e+ As dé(z
S E) / 2t Az dilz)
z€((8)

1 2 2
< — (2€+ Eo+—B g4 — = 59),
CR lfchcT 176R76T

where the last inequality exists due to (36).

B.2.3 PROOF OF THEOREM[3]

For conciseness, we denote y = (§;, a;). Notice that we have the following decomposition:

Wi(p(x]y), p(x*]y)) < Wi(p(x]y), p(x*[y))+ Wi (p(x"[y), ' (x"y))
AW (x*ly), p(x"[y)). (37)
Here, Wi (p(x|y), p(x*°|y)) follows from the correspondence between the forward and backward

processes, Wi (p(x*|y), p’(x*0|y)) follows from the definitions of x and x’ (with the only differ-
ence in the initial distribution), where the latter denotes the result obtained by the true distribution.

We use another backward process as a transition term between x; and iﬁc, which is defined as
1
dx), = 5?2 + Viogpr—k(Xly) | dk + dwy  with X[ ~ N(0,I). (38)

We denote the conditional distribution of Xj, on y as p,_,(-|y). We then bound the three terms in

(37D, as follows.
Bound the first term W, (p(x|y), p(x*°|y)). Let X ~ p(x|y)and Z ~ N(0, ). Then,

Wi(p(xly), p(x™y)) < E[|X — /ar, X + or, Z|]] < (1 = v/arE[|X|] + o, E[[| Z]]]
< (1 = ar)Vd + oy, Vd < ko, (39)

where the last inequality holds due to \‘/7;7 =0 (\/E) when k = o(1).

Bound the second term W, (p(x*|y),p’(x*|y)). Since X}, and X are obtained through the
same backward SDE, but with different initial distributions, by Data Processing Inequality and
Pinsker’s Inequality (see e.g., Lemma 2 in|Canonne| (2022))), we have

Wa(p(xly). 7' (<)) < TV(p(x"]y). o/ (*2ly)) £ \/KL(p(cboly)|[p/(xFoly))

S \/KL(p(XK\Y)IIN(OJ)) < VEKL(p(x[y)[[N(0, 1)) exp(~K).

Therefore, we obtain

Wi(p(x*y),p' (x*|y)) < exp(—K). (40)
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Bound the last term W, (p/(x*|y), p(x*|y)). Although Assumption [2| does not ensure the
Novikov’s condition holds, according to |Chen et al.| (2023b), as long as we have a bounded sec-
ond moment for the score estimation error and finite KL divergence w.r.t. the standard Gaussian,
we can still adopt Girsanov’s Theorem and bound the KL divergence between any two distributions
produced from the same SDE. We restate the lemma in Fu et al.|(2024) as follows:

Lemma 6 (Lemma D.4 in Fu et al.[(2024)) Let py be a probability distribution, and let Y =
{Yitiepo, i and Y’ = {Yk/}ke[() ) be two stochastic processes that satisfy the following SDEs:

dYy = s(Yg, k)dt + dWy, Yy ~ po;
dyy = §'(Yy, k)dk + dWy, Yy ~ po.

We further define the distributions of Yy, and Y}, as py, and p),, respectively. Suppose that
/pk(x) I(s— ) (x,k)2dx < C,  Vke[0,K]. @1)

Then, we have
/ K 1 / 2
KL(cloi) < [ 5 [ muGo s = o))
0 x

Therefore, we obtain

Wi (x™[y), p(x"[y)) < TV (x"[y). p(x"[y)) < \/KL(p’(XkOIY),ﬁ(XkOIY))

K
1 A
N \// by /k pr(xFly) [|o(xF,y, k) — VIng(xkb/)”Q dxkdk.
ko xk
(42)

Given the state and action y* = (s*,a*), we can generate an estimated conditional distribution
p(x*o|s*, a*) using the backward diffusion process, arriving at

K
1
Wi (<), D" y)) S \/ |5 ptlsan) ot st k) - Viogplacst, ) e
ko X

S B [0, 5%, 2%, k) =V log plc¥|s*, %) || dk
= A/ 5 R(P)
fkfj Exk sa [Haﬁ(xk,s,a, k)—Vlogp(Xk|s7a)H2} dk 2

K
< (a0 5 RS), 3)

where R () is defined in Appendix Besides, the distribution coefficient 7 (s*, a*) is related
to the widely used concentrability coefficient — L., density ratio — in RL (Fan et al., 2020). Since
we use the score network F as a smoothing factor, i.e., the network class F may not be sensitive
to certain differences between the query (s*, a*) and the training data, 7 (s*, a*) is always smaller
than the concentrability coefficient.

When y = (8¢, a;) is unbounded, we can establish the following lemma:

Lemma 7 Suppose Assumption [2| holds. Given the ReLU neural network F (M, W, k, L, P), by

1
taking the network size parameter N = n™ %+ the early-stopping step ko = n~°Y) and termi-
nal step K = O(logn), the empirical loss minimizer § satisfies

1
Efxyiyy, [R(9)] =0 (log 1?0"7 254,77 (log n)“"“””) . (44)

The proof of LemmalJ]is provided in Appendix [B.3.5]
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Taking expectations w.r.t. the samples {x, s;, a; };—_, and applying , we have

K 1 2
E{xhét,at}?fl[wl (pl (Xfo‘éta at)v ﬁ(XfOBt, at)):| ST(S*aa*) \/210gk4ﬂ‘_ 2d5+dba+2b (IOg n)max(l’nb) .
- 0

4b . .
We take kg = n~ 2@s7da¥2 ! and K = log n to bound the expected total variation by

28
2ds+da+2b

E om0 (5180, 20) OIS, 0)) | =T (5%2)O (0™ 37807 (log ) mex(19/20+2)2)

Putting all this together. We bound the divergence between p(x*°|y) and the ground-truth con-
ditional data distribution p(x|y) as

E{xt,ét,at};;l [Wl( (x|y), p(x k0|y))] < T(s*,a*)O (n—Tdsf‘faJr‘zb (log n)max(lg/Q’(bJr?)/?)) )
This proof is complete.
B.2.4 STATEMENT OF OVERALL CONVERGENCE

To analyze the convergence of E{o, a, ri 0.1} ‘V”(s) - IN/”(g(s))‘ is in essence to analyze

In°l n CON _ _ 2pr :

the conVQergence of ==". This is because ¢; = 6 and c2 = pnrd il 0 in

_ PR .
O(n” #r+4:71 (logn)9); and ¢; = max{%, 22} > 0 and c» m > 0 in

S S
712(‘12:2:; T(S a )O (n 2ds+dq+2b (1og n)max(lQ/Q,(b—i—Q)/Q)).
. STTA e 15 . . c1 . 1

By applying L’Hopital’s rule, it follows that lim, ., 11;62" = lim, % =
lim,, o ‘;12212 = lim, nxb“ﬁ = lim,, Lgncz =0, Ve1,co > 0. As aresult, both terms

___2pR I
O(n™ #r+4:37 (logn)©) and 2L T (s a*)O (n 535 Tda 25 (logn)max{lg/z*(b”)/z}) on the

RHS of Eq. (15) converge to zero, as n — oo. The estimated causal state V™ (((s)) in Eq. (15)
converges to within 2é-neighborhood of the ground-truth causal state V7 (s), i.e., the neighborhood
region of the ground-truth causal state V™ (s) with the radius of é¢. In other words, the asymptotic
convergence of the proposed algorithm is established, as n — co.

B.3 AUXILIARY PROOF

B.3.1 PROOF OF REMARK/]
We first prove that the following fixed-point update is a contraction:

d(si,s;):=max (crWy(d) (P (1 | si,a),P (r | s5,)) +-erWp(d) (P (s" | si,),P (8" | s5,2))).
and invoke the Banach fixed-point theorem to show the existence of a unique metric.

First, consider the case where p = 1:
d(si,sj) — d'(si,sj)
=max (cgWi(d) (P (r|sia), P (r | sj,a)) + cxWi(d) (P (8" | si,), P (s | 55,2)))
- géaj((cRWl(d’) (P(r|s;,a),P(r|s;,a)+ceWi(d)(P(s'|s;,a),P(s'|sj,a)))
<maxcr (Wi(d) (P (r|sia), P(r|s;a)) = Wi(d) (P (r|sia), P (r]s;,a)))
+maxer (Wi(d) (P (s"| si,a), P (s | 55,a)) = Wi(d) (P (s si.a) . P (8" | 85, a)))
=maxcg (Wi(d —d' +d) (P (r]si,a), P(r|s;a)) = Wi(d) (P (r|sia), P(r]s;a)))
+maxer (Wi (d—d'+d)(P (s'[si; )P (s'|sj,a)) = Wi(d') (P (s'[si,a), P ('] 55, 2)))
SmaxrWi[ld=d'| (P (r[si,a),P (r]s;, ) +erWi [[d=d'| o (P (s'|si, a).P ('] s, a)))
<(cr+ecr)|ld—d] ., V(si,sj) €S xS.
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For cg + cT € [0, 1), there exists a unique fixed-point due to the Banach fixed-point theorem.

Next, we consider the case where both P and 7 are deterministic, such that P is a delta distribu-
tion. Observe that for point masses, W, (d)(d(s;),d(s;)) = d(s;,s;), due to Definition [3| of the
Wasserstein metric. Then:

d(si,s;) — d'(si,s;)
=max (cpWi(d) (P (r|sia), P (r | s5,a)) + cxWi(d) (P (8" | si,a) , P (s | 55, 2)))
—max (cRWi(d) (P (r | si,a), P (r | s5,2)) + exWi(d) (P (8" | si,2) . P (s | 55, 2)))
) —d (rir,ry)) +er (d(ri,rj) —d (i, 7j0)))

<(cgr+cr)|ld—d| ., V(si,s;) €S xS.

= max (cg (d (rs, 7y

Then, the fixed point iterations that update the metric as d" TV (s;,s;) + F(d™)(s;,s;) can
eventually converge for finite MDPs.

B.3.2 PROOF OF LEMMA 3]

Let £ be a measure on S. Given a partition ((8) € S, i.e., a set of points in S clustered in an
e-neighborhood such that £({(§)) > 0, we can define the reward function and transition function of
a {-average finite POMDP as £-average finite MDP in Theorem 3.21 of [Ferns et al.| (2011):

POICE).8) = oy | Plrlma)de(a), @s)
zEQﬁ

PEICE) = sy [ PRz )de(a). 6)
zEQﬁ

=|max (/ r(s,a) P (r|s,a)dr+ 'y/ P(s'|s,a) V(s/)ds’>
acA \ Jrer s'es

—max</ r(¢6).) POICE) a)dr 4 [ f(@(@')<<s>,a>v<<<s’>>dc<é'>>\
reER ((8')eS

acA

< max </T€R (r (s,a) P(r|s,a) —r({(8),a) ﬁ(rK(é),a)) dr
+7 (/ P(s"|s,a) V(s')ds’ —/C(él)eéﬁ(((é/)lC@:),a)V(C(é’))dC(é’)>>‘
<max /TGR (r(s.2) P(r [ s,2) = (¢(5),2) P(r[C(s).a) ) dr

Ay

47
/ P(s'|s,2) V(s)ds' - / PEEICE),a)V(CE))A(E)
s'eS ¢(8)€ES

+ max
acA v

Az
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Therefore, we can obtain

Ay =

/TER (r (s,a)P(r|s,a)— r(((é),a)]g(ﬂg(é),a)) dr

IN

dg(z)

/T€R<7’(S,a) (r|s,a)—r(¢(8),a) (‘C() ))dT

1
£(¢(8)) /zec(é)
=E(C3) /Em ceWi(d) (P (r | s,a), P (r|z,a)) dé(z)

AN
o
jv]

S ooy WD (P 5.8), P ) ), s

where the penultimate inequality holds because r (s, a) is 1-Lipschitz and also because of the dual
form of the W7 metric, and the last inequality is due to Lemmal[I] Similarly, we can have

Ay =

! /S,ESP (s"1s,2) V(s)ds' / P(C(E)[6(8), a)V(¢(E)d((&)

¢(8)es

S Lo g P T80 VE [ PG V() aet)
<a g(é))ze Z | | (PE 152 VE) - PEEa)T(C) i ds)
Sg(&é»z@/@ /S/es (P(s' | s,a) V(s') — P(s'|z,a)V(s)) ds'| de(z)

+ f(g(é))ze { | [ (P 128 (vis) = Vc) ) s | (o) “9)

With [|-|| ., defined the supremum norm over S, there is

/ (P(s' | s,) — P (s/|z,a) V(s')ds’
s’'eS

Ay Sﬁ(g(“))/zeg(g) de (z) + HV—\?Hoo

—1
CRr
“ECE) /zqu) o

S0 /zqu) xWi(d) (P (s' | s.2) . P (s/lz.2) de(2) + |V = V| _

—5& )) /zem crWy(d) (P (s' | s,a), P (s'|z,2)) d(z) + HV N VHOO’ 0

where the penultimate inequality holds because <=1V (s) is 1-Lipschitz together with the dual form
of the W metric, and the last inequality is due to Lemmam Hence,

/ (P(¢ | s,a) - P (s]z,2) PLV()ds’
s'eS cT

dé(z) + Hv - VHOO

V(s) = V(¢(E) < max(A; + Az)

-1

< f(zl?é)) /ze<<s> d(s, 2)dE(z) + HV - V/HOO (51)
<2+ |v-7| . (52)

Thus, taking the supremum on the LHS over the state space S:
~ 2¢

V(s) = V(¢(8)] < m, Vs € S. (53)
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B.3.3 PROOF OF LEMMA []
Lemma 8 (Diameter of S is bounded) Lerd : S x S — [0, 00) be any bisimulation metric:

diam(S;d) := sup d(si,s;) < R (Pmax — Tmin)- (54)
si,8;ESXS 1_CT

This lemma is a slight generalization of the distance bounds given in Theorem 3.12 of [Ferns et al.
(2011)), and the proof follows similarly to Ferns et al.| (201 1)):

d(si,s;) = max (crWp(d) (P (r | si,a), P (r | sj,a) + cxWy(d) (P (s | si,a) , P (s' | 55, )
< R (Tmax — Tmin) + crdiam(S; d), VY(s;,s;) € S x S,

due to Lemma 2| (upper bound as p — 00). Then,
CR

diam(S; d) < cr(Tmax — Tmin) + crdiam(S; d) <

(rmax - Tmin) .
T

The existence proof is almost identical to the proof of Remark |1} except that replaces P with an
appr0x1mate dynamics model P. This is possible since S is compact by assumption such that
supp(P ) C S is also compact:

d(si,s;) — d'(si,s;)
= max enWi(@) (P(rsi.2), P (r |s5,2)) +exWi(d) (P(s' | si,a) P (s |'5;,))]
—max [er Wi (@) (P (r | s1,2) P (r [ 5;,2)) + exWi(d) (P (5 | 5:,2), P (s | 55,2) )]
<maxer [Wild) (P(r|sia), P(r|s;) = Wild) (P(r|sia), P(r|s,a))]

acA

+ maxer [Wl(d) (ﬁ(s/|si,a),]3(sl\sj7a)) Wl(d’)< (s | si, )713(s/|sj,a))]
—ma}cR{Wﬂd d’+d’)< (r | si, ),13(1"|sj7 ) Wy ( d’( (r|s;,a) A(r|sj,a)>}
+mach [Wl(d d'+d’)< (s'|si, )7ﬁ(S/|Sj, )) Wl(dl)(ﬁ( |si,a),P ( s, ))}
(P

<ma;\<[cRW1Hd @l (P(rlsia), P (rls;, ) +erWilld—d'|l o (P (s'|si,2).P (s']s;.) ) |
<(er+er) ld=dl . Yisis;) €S xS,

which implies F is a (cg + c1)-contraction. Next, we proceed to prove that the distance is bounded.
First, note that due to Lemma[2}

supp(P) C S = sup W, (d)(P™(|s;,a), P"(-|s;, a)) < diam(S;d), Vp > 1. (55)
s;,8;ESXS

Then, similarly to Lemma@ we have
Y . ) — A D 5 N D / . D ! .
d(si,s;) = r;leaj((cRWp(d) (P (r|si,a), P(r|s;,a )) +erW,(d) (P (s'|si,a), P (s |s],a)))

< R (Tmax — Tmm) + Cleam(S ) (Si,S]‘> eS xS,
which implies that:
CR
1-— CcT

dlam(sa C/l\) S CR(Tmax - Tmin) + chlam(S, (2\) S (rmax - 7"min)-

B.3.4 PROOF OF LEMMA

First, by the Wasserstein triangle inequality (Clement & Desch, 2008), we define the difference for
rewards and transitions, respectively:

Wold) (P (7 |51,2) P (r | s5,2) = Wy(@) (P(r | 82) . P(r[8,2))| <265 (56)

Wo@) (P(s' [ 51,2) P (' | s,2)) = Wy (d) (P (s | 5,2) P (s |8,0))| <28 (5T)
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Second, the convexity of dP implies that,

(||d d||oo+d>( (s' | s,a), ﬁ(sf|s,a))
— (it Bl = A+ a,5)71)

< (it 2 Bl - 2 + dlsis 7]

D=

<a, (|ld = dji%. + W) (P(s' [ s1.2) P (s |s5.2)))

<ay ([l = dlloc + Wy (@) (P | si ),ﬁ(s'|sj,a))r)1/p

=a, (|ld = dllo + Wy(@) (P(5' [ 51,2) P (s 5;.2)) ). (59)
Similarly, we obtain

W, (ld = dlloe +d) (P(r|sia).P(r|sa))

1

~ (80, B el — T+ 57

<[ ; p—1 —dip g VP
< (inf 2 Bl = AR + 5,71

3=

<ay (|ld = dliz, + W) (P (r | si,2), P (r | 5,) ) )

<ap ([la— e + Wola) (P 502 P 50)] )

—ay (Ild = dlloe + Wy(d) (P (r | si;) P (r|s5.2))) . (59)

Third, recall that when supp(f’) C S, due to Lemma we have:
W, (d) (13 (' | s;,a), P (s | sj,a)) < diam(S; d) (60)
W, (d) (13 (r | si,a), P (r| sj,a)) < diam(S; d). 61)

Then, the difference in distances can be bounded by:

W) (P (s' | 51,2) , P (' | 8,2)) = Wy(d) (P (s | si,a)  P(s' |55,2))]
|

<|W,(d) (P(s' |s1,2), P(s' [ 55,a ) o(@) (P(s' | si,2) P (s | 5;,a) (62)
[ Wold) (P (s | si,2) P (s | 55.) = Wy (d) (P (s [ si2) P (s [ 5.))|
<W,(@) (P (' Isi2) P(s'|'5;.0) ) d(ﬁsm P [5.0)) |+ 26
=[Wy(d—d+d) (P(s' [ si,8), P(s' | 5;.8) ) = Wy(d) (P (s | s0.0) P (5| 5,) | + 269
<[Wy(lld — dloc+d) (P(s' | 1,2), P (' | 5,2) )= Wy(d) (P (' | siva), P(s' |'55,2)) | +28
=[Wyld = dltd) (P (s | s1,2) P (8" |'s5,2) ) ~Wy(d) (P(s' [ s1.) P (s | 5.) ) [+260

<Japlld — dlloc + a, Wy (d) (P (8 | si,2) P (' | 5;,)

~W,(d) (P(s'|s1,2) P (s | 5;.) )| + 26
<ap|d— d||OO + (ap — 1)diam(S; d) + 2&s, (63)
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where the second inequality holds due to (57), the penultimate inequality exists with (58), and the
last inequality comes from (60). Similarly, we get

W (d) (P (r | s1,2) P (r [ 55,)) - Wp@ (13 (r|sia) . P(r|s;a))

|
(r|si,a), P (r|s;,a))|

<[Wy(@ (P(r|sia). P(r|s,a ) ) (P(

+ [Wy(d) (P (r | si,a), P (r | s,a) d)( (r | si,2) (r|sj7a))|

<[Wo(@ (P(r|sia), P(r|s;a ) (@ (P(rlsia), P(r|s;a))|+26

=W, (d—d+d) (P(r|si.a).P <r|sj,a>) Wo(d) (P(r|sia) Pr|s;,a))| + 26

< Wo(Ild = dllo +d) (P (r | s5,2), P (r | 55,2) ) = W) (P (r | s5,2), P (r | s,2) )| + 26

~|Wy(lld = dlloc +d) (P (r | 5i,2) P (r [ 85,2)) = Wyld) (P (r | si,2), P (r | 5;,2))| + 28
<Jaylld = dlloc +a,Wy(d) (P (r| s1,2). P(r | 5;.2))

~Wy(d) (P(r|si,2), P(r|sj,a))] + 28,
<aplld — dlj oo + (a, — 1)diam(S; d) + 2E. (64)

We can then plug (63) and (64) into the difference between the true and approximate policy-
dependent bisimulation distances:

[d(si,5;) — d(si,s;)|
<max (er [W,(d) (P (r | s:,2) P (r | 55,2)) = W,(d) (P (r [ s:,2) P (r | 55,2) )|

+ max (cT ’Wp(d) (P(s' | sia), P (s | 57,2)) — W,(d) (13 (s' | si,a),P (s | sj,a))‘)

<er |aylld — dl|os + (a, — 1)diam(S; d) + 25¢‘

+cr

aplld = dll + (ay — 1)diam(S:d) + 28|

|d = dl|oo < 2crEp + 201 + (cr + c1)ay||d — d]joo + (cr + c1)(a, — 1)diam(S; d);

~ 2cg 2cT (cr +er)(ap — 1)
” | 1—(cr+cr)ap o= (cr +cr)ap o (cr +cr)ap

diam(S;d),
where the second-last inequality follows by taking the supremum over states for both sides.

B.3.5 PROOF OF LEMMA /]

First, we prove the approximation theory for using ReLU neural networks to approximate the con-
ditional score, that is

Lemma 9 Under Assumption 2} for sufficiently large N and constant C,, > 0, by takmg terminal
step K = Cylog N, there exists s € F(M;, W, r, L, P) such that for all y € [0,1]% and k €
[0, K], it holds that

2
/k I¢(x"*, 5, k1) = Vlog i, (X" [y) 5 - pry (™ ) dx"

2 B2 _ 2
+/ k ||<<xk2,y,k2>VIogpk2<xk2|y>||2-pk2<xk|y>dxk2—<9(Uz N -<logN>"+1>’
xv2 k

(65)
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where § < k1 < K and 0 < ko < K. The hyperparameters in the ReLU neural network class F
satisfy

My =0 (\/logN/crk) W =0 (Nlog” N),
k= exp (O(log* N)), L =0O(log* N), P =0 (Nlog’ N).

The proof of Lemma[J]is provided in Appendix [B23.6] According to Lemma[J} we have:

Lemma 10 Suppose that we configure the network parameters as Lemma[9]

My =0 (\/@/at) W =0 (Nlog' N),
K = exp (O(log4 N)), L= O(log* N), P=0 (Nlog9 N).
We denote my, = My, /\/log N. Then for any s € F(My, W, k, L, P) and (x,y) € D, we have
[4(s,x,y)| < fklj m2dk & M. In particular, if we take ko = n~°1) and K = O(logn), we have
M = O(log ko) for my, = i, 0> ko, and M = O (ki)for my = ‘7%2@’ respectively.

“0

The proof of the lemma is provided in Appendix [B:3:8] Moreover, to convert our approximation
guarantee to statistical theory, we need to calculate the covering number of the loss function class
S(R), which is defined as follows.

Definition 6 We denote N (o, F, ||-||) to be the o—covering number of any function class F w.r.t.
the norm |||, i.e.,

N(o, F,|I]) =min{N : 3{f;i}}_, C F,s.t.Vf € F,Fi € [N], ||fi — f| < o}

The following lemma presents the covering number of S(R):

Lemma 11 Given ¢ > 0, when ||x|| . < R, the o—covering number of the loss function class S(R)
wrt. ||| _p satisfies

(66)

2L2(W max(R, K) + 2)kL WL+l 1og N) 2F

N (e, SR), I Nl,.p) 5 < 0

Here the norm ||-|| 1, is defined as

. = max X, .
1= 1Gy)]

The proof is provided in Appendix[B.3.9} Particularly, under the network configuration in Lemmal9]
we know that log covering number is bounded by

1
log N < Nlog” N (Poly(log log N) + Poly(log log N') log N log R + log® N + log )
0

1
< Nlog’ N <log8 N +1log? Nlog R + log > . (67)
0
With the Lemmas [0} [T0} and [T1]introduced above, we now begin our proof of Lemma[7} We denote

the true score by ¢*(x,y, k) = Vlogp(x*|y) if y # @ and ¢*(x, @, k) = V log p(x*). We create
n number of i.i.d ghost samples, as given by

(X1, Y1), (X5 ¥5)s ooy (X V) ~ Pdata(X°, ¥).

Since R, (¢*) = 0 and R, () differs £() by a constant for any ¢, it suffices to bound

n

Ra($) = Ru(@) = Rulp") = () = Ue") = Epy i % D (Uxt,y1 @) — Lxt i 7))
—1 6
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Define

n n

b= %Z(Z(Xt yi; ) = U(xe, vy 97)), 0 = %Z (€ (et y13 ) = €7 (%0, y1307))

t=1 t=1
and
1 . ~ * r 1 - T *
ly = EZ(f(x;yi;s@) —Ux, yi59%), by = gzw (x3, y5: ) — 07 (x4, ¥ 9)) -
t=1 t=1

We decompose Efy, y,in | [R+(2)] into

Egxyayi, Re(@)) =Epxoyar, [ =] + By, [Eoonr, (-6 ©9

B pe
By, (B, (6] - 4] 70
C
+ E{xt7yt}tr‘:1 [él] . (71)
—_————
D

Bounding Terms B; and B;. Since we have for any ¢ € F (¢ can depend on x,y),

Exy [[0(x,y50) — 07 (%, y; 0)|]
K

_ . k . IIMONIE:
- ko K_kO//| H>R}E‘r,xk\x0:x0 |:H(P(X yTY, k) VIOgC(X |X )H2:| p(X|y)p(y)dXdydk

2
/ - 5// . Bk 6 =x [wa Ty, k Vlog((xk\xé)Hg}p(XI.Y)p(.Y)dxdydk

<2 ok [x0—% )5+ V T k dxdydk
= ko//xM oo [t 7y )3+ Vo C o) ] pxly Ip(y)dxdy

2 / 5 L Bl my b [ 1ot ) ] iyt ey

2 k|40 2
</]CO og HXH>RET,xk\xo:ﬁo [mk log N + HVlog((x |x )||2} exp(—Cy ||[x||2 /2)dxdt

K
1 . 2
+/6 log N HxH>RET,xk\xa:x [mi log N + HVIog C(xk|x0)H2} exp(—C, Hng /2)dxdt
Sexp (~CoR*) R midk + exp (—CoR?) / —dk
ko ko Jk

K K 4
+ exp (fC’éRQ)R/(S midk + exp (fC’éRz)/é —dk

<exp <_02R2) RM, (72)
where the second inequality follows from the sub-Gaussian property of p(x|y) under As-
sumptlon and the third inequality invokes the fact E|xo_yx {HVIog p(x"x%)][; } = 1/o}

and Eyk|xs—x [HVlogp (xF|x0 HQ} = I/Uk. Thus, both terms B; and Bs are bounded by
O (exp (—C2R?*) RM).

Bounding Term C. For conciseness, we take z = (x,y). We denote /'"(x,y; @) as /(z)
and (¥ (x,y;¢*) as £*(z). For o > 0 to be chosen later, let J = {l1,02,....,¢x} be a o-
covering of the loss function class S(R) with the minimum cardinality in the L° metric in the

bounded space D, and J be a random variable such that Hf —/ JH < 0. Moreover, we define
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uj = max {A VE.[¢ — 0" (z )]} where z ~ Py y is independent of {z;,z;};_,. Besides, we
define

F = max
1<V

$~ Usta) = £ (20) = () —mm‘.
t=1 Uj
Then we can further bound term C' as follows:

IC = |Eqz,yn, [711 i (é(zt) — 5*(Zt)) — ]E{z;}?:l li (@(zé) - F(%))H |

t=1 t=1

= gy, [ (b2 = *(z)) - (ia0) —ﬁ*(z@))”
i=1

NE

1 . * *
< B, lZ((éJ(Zt) = 0 (z0)) = (by(z) = 7(z1))) | | + 20
i=1
1
< B,y [usE] + 20
1 1
< 5B, [uf] + 53 Bz ), [E?] + 2. (73)

Denote h;(z) = £;(z) — £*(z) and h(z) = {(z) — £*(z). Moreover, we define the truncated popu-
lation loss as R (p) = E, [il} , and define the truncated empirical loss as RY () = IS h(zy).
By (72) we know that |RY(¢) — R.(¢)| < exp (—C2R?) RM. Now we bound By, 5yn  [u3]
and Eg,, 5130 [EQ] separately.

By the definition of u 7, we have
ez, [U5] € A%+ Bgg, ayy, [Bx [hy(2)]]
< A? + Eg, 23 [Ez VL(Z) } + 20
=A%+ Eg, 237, [Rf(cﬁ)} + 2. (74)

Bounding term E,, ,,» [E?]. Denote g; = >, M It is easy to observe that

Es, 2 {M] = 0 for any ¢, j. By independence of {gj} we have

i—=1°

mue, [§ (MY < S, (0 ()]

hy(e) | hﬂz@]

<M E E,,
- 12y 2 2
t=1 U uj
< 2nM.
i hy(ze)—h;(zy) M s . s . s .
Since — <3 and g, is centered, by Bernstein’s Inequality, we have: Vj, there exists
J

n

Zh()_h()>\/g] <Qexp<_h/2>,

Pr [gz- > h] =2Pr
! — j M (2n + I

Thus, we have

Y h/2
Pr[E?2>h] < Pr[¢?>h] <2N S e
(2] < Yo prlst 2 ) < o M(gnw))
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Thus, Vhg > 0, there is

h, oo
Ea., (7] :/O "Pr[E? > ) dh+/h Pr [E? > h] dh

0

o 2
§h0—|—/ 2N exp —Lf dh
ho M@2n+ ¥%)

< + 2 xp| ——— ) +exp| —————
B ho N ho |f3 ( SMTL) ¢ ( 4M )

ho ) n <8M\/% 32M) exp (_314\/%)} .

zi}y

dh

8Mn 3A 9A2 4M
Taking A = /ho/6n and hg = 8Mnlog N/, we have

< hg + 2N {8Mnexp (—

16
2
E{Ztazé}?zl [E ] < 8Mnlog/\f—|—2 (8Mn+ 16 Mn + log./\f>
< Mnlog\. (75)

By applying the bounds @), @ to @, we obtain that
f o 1 N y
‘E{zf,}?:l [Ri(so) —RY (@)} <5 (A2 + B apyr, [RE(D)] + 29) + T log + 20
1 M p
= - . tr/ o~ 71 7,
2 {zt}tzl [R* (@)] + n OgN+ 2@
Thus, we have .
Bray, [RYO)] S e, [RE@)] + 7 1osN + 76 (76)

which means that
ir M
Cs By, [61 ] + o log N/ + 74
M
< Efxpyor, [+ A1l + — log N + 76

M
< D+ exp (—~C2R?*) RM + —log '+ 70.

Bounding Term D For any ¢, define R, (¢) = /(¢) — £(¢*). Then we have /; = R, (8). Since
S minimizes ¢, we obtain that

Thus, we have
D= ]E{zt}?zl [72*(927)} < ]E{zt};"zl [7%*(90)} = R*((P)-
By taking minimum w.r.t. { € F, we have D < minge r R« ().

Balancing the error Now, combining the bounds for term B, Bs, C, and D and plugging the log
covering number (67), we have

K
5 . 1 k k 2
Efuyi, [Re($)] S2rsglg/ko o Broety oGt 7y k) = Vlog p(xct|ry)|, dk

K
1
+ 2m2/5 5Bty [0, 7y k) = Viog p(x*[ry)|, dk

M 1
+0 (Nd+dy log” N <log8 N +log® N log R + log >)
n 0

+ O (exp (—C2R*) RM) + To. (77)
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By taking R = % and o = N—20/(d+dy) and under Assumption we have

K
. . 1 k k 2
E(np, [Re(?)] SZggg/ko T Bty [lo(x", 7y, k) = Viogp(x*lry)|, dk

K
. 1 k k 2
+2min [ By oGt 7y, ) = Viogploctry) | d

M
+0 (Nlog” N) + O (MN—20C7)
n

K
: 1 k k 2
<2 min /ko mEﬂy |:Exk Hgo(x ,TY, k) — Vlog p(x |Ty)H2} dk

K

. 1 )

+ 2151%1}1/6 K3 5E7)y |:Exk, Hcp(xk,ry, k) — Vlogp(xkhy)Hﬂ dk

+0 <MN10g” N> +o (N_idizy) . (78)
n

We invoke the inequality M < % < 1710 = N for the second inequality of . Recall that for
any k > 0 and score approximator {(-, -, k), we have

1
3 [, I66x.0.1) = oz px)x

s 58 | [ e y,) = Tiogp(xly) [ plxly)is|.

Therefore, we can invoke the score approximation error guarantee in Lemma [9] and Assumption
to bound the score estimation error. Particularly, under Assumption we have M = O(1/kgp). By
taking N' = n(#+dv)/(d+dy+b) and invoking Lemmal9} the error is bounded by

E; xky ng(xk,ry, k) — Vlogp(xk\ry)Hz =

1 _
Efay, RO < 2By, [Ru(@)] S on” 07 logn™ 04205 (79)
- N 0

Similarly, under Assumption [2} we have M = O(log %) By taking N = n(d+dy)/(d+dy+2b) apq
invoking Lemma(9] the conditional score error is bounded by

1w
Egayy, [R(9)] S log 7-n 7, 730 Jogmex (1T 1/ . (80)

We complete our proof.

B.3.6 PROOF OF LEMMA[9]
We start with the following assumption:

Assumption 4 Let C and Cy be two positive constants and function f € H°(R? x [0,1]%, B) for
a constant radius B. We assume f(x,y) > C for all (x,y) and the conditional density function

p(x]y) = exp(=Ca ||x[[3 /2) - f(x,y).
Under Assumptiond] we have the following lemma paraphrased from Fu et al|(2024).

Lemma 12 (Fu et al.|(2024)) For sufficiently large N and constants C,,C,, > 0, by taking early-
stopping step Ko = N~%> and terminal step K = C,log N, there exists s € F(M;, W, x, L, P)
such that for all y € [0,1]% and k € [Ky, K], it holds that
B2 %
[ oty ) = S tog (eI ety = 0 (T 57 - g )
k

The hyperparameters in the ReLU neural network class F satisfy

M, =0 (\/logN/Ut> W =0 (Nlog' N),
k=exp (O(log' N)), L =0(log* N), P=0 (Nlog’ N).
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Based on the Assumptions 2] [ and Lemma [I2] the proposed loss function can be divided into the
following two parts:

I = / lo(x*, y, k) — Viog pr(x*y)|3 - pr(x*|y)dx* forall § < k < K, (81a)
xk

Iy = / lo(x*, v, k) — Vlog pr(x*[y)| - pi(xF|y)dx* forall0 < k < K. (81b)
xk

where X ~ Py (x°|y) and x° = \/% (x® — /T = agse) . Next, we analyze [; and [ separately.

as

Part 1: Proof of [; For [, each conditional distribution in the forward process satisfies Assump-
tion 4} leading to the following lemma. The detailed proof can be found in Appendix[B.3.7]

Lemma 13 Under Assumption[2} for any k > 0, let C and C'5 be two positive constants and function
f € H*(R? x [0,1]%, B) for a constant radius B. We assume f(x*,y) > C for all (x*,y) and the

conditional density function p(x*|y) = exp(—C3 kaﬂz /2) - f(xF,y), where

2
1 H\/ OpXtrue — xk H
k —
p(x"ly) = /]Rd p(xtrueb’)W exp <— 207 dX¢rue-

According to Lemma [I3] Assumption {f] holds for any & > 0. Therefore, based on Lemma[I2] by
replacing K with § in (81a), we can derive the following corollary:

Corollary 2 Suppose Assumption[2| holds. For sufficiently large N and constant C,, > 0, by taking
terminal step K = Cy log N, there exists s € F(My, W, k, L, P) such that for all y € [0,1]% and
k € [0, K], it holds that

2

2
=0 (B N~ T . (log N)b“) . (82)
Ok

The hyperparameters in the ReLU neural network class F satisfy

M, = O (\/logN/Ut) W =0 (Nlog” N),
# = exp (O(log" N)), L= O(log* N), P=0 (Nlog9 N).
Part 2: Proof of [, Based on the diffusion model, we have x° = \/%Té (x? — /T = agse), where €
follows a standard normal distribution. Thus, we only need to prove that p(x°|y) satisfies Assump-
tion4] Specifically, we can derive:

§ _ /= oy0
e= X VBX (83)
V1—ag
where
1 €13
p(€) = W exp <— B 2 . (84)
By substituting into (84), we obtain
° — v/asx’||3
plelx®,xy) = (22 €xp (W . (85)
According to the change of variables formula, there is
1 x” — x°//as|13
0|46 2
=—— —_—— . 86
p(x"|x°,y) T3 exp< 202 (86)

Therefore, p(x°|x?, y) follows a normal distribution with mean x° /,/as and covariance oI, where
o5 = /(1 —as)/(as).
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From (86)), it readily follows that
p(X0|Y) = /]Rd p(xo‘xé’ Y)p(xéb’)dxa
1 [x° — x°/\/as |3
s 2
&7
/Rd Pe<ly) od(2m)d/2 P ( (87)

205

As aresult, p(x°|y) satisfies Assumption Then, assuming C,, in Lemma is sufficiently large,
we can replacing Ky with 0 and obtain the final conclusion, that is:

Corollary 3 Suppose Assumption[2 holds. For sufficiently large N and constant Cy, > 0, by takmg
terminal step K = C,, log N, there exists s € F(My, W, k, L, P) such that for all y € [0,1]% and
k € [0, K], it holds that

B2 2 bt
lh=0 (=N T . (log N)!* ) | (88)
O

The hyperparameters in the ReLU neural network class F satisfy

—0 (\/logN/at) W =0 (Nlog” N),

K = exp ((’)(log4N)) , L=0(og*N), P=0 (NloggN) .

Part 3: Summing /; and [, We obtain the final neural network approximation error by summing

(82) and (88). Lemma[9]is proved.

B.3.7 PROOF oF LEMMA [13]

Under Assumption [T} we have

pt(xkb’)
2
R ( /75 =1 > .
:/Rd exp(—CQ”X;rue”;) . f(xtmc,y)ag(;ﬂd/2 exp (_ H\/OTk'X;;%— xk||2> .
f(xtrue, y)m exp (_ | v/ Xtrue — xk2|ii+ Cyo} |Xtrue||§> dXepue

/fxtme,y SR p<_||<ak+cza,:;>xtmemﬂfwzainﬂf)dxtwe

202 (ay + Ca0})

- (_ (02|!xk||2 ) [(Kirue,¥) (_H(awcza,%)xtme—mxﬂf) e

2(a + Co03) ) Jra (2m)4/20¢ 20 (o, + Ca0})

2(a + Co03) ) Jra (2m)4/20¢ 2032 /(cou + Ca0%)

= exp (_ (02 kaH; ) f(xtrue»Y) exp (_ ||Xtrue B \/@xk/(ak + CQUI%)H2> Xt -

fE(xky)
(89)

With f € HY(R? x [0,1]%, B) and f(X¢rue,y) > C'in Assumption there exists two constants B’

and C’, such that f* € HP(R4 x [0, 1]%», B") and f(x*,y) > C” holds. Let C3 = Cy /(v + Ca0?),
Lemma [[3]is proved.
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B.3.8 PROOF OF LEMMA[I0l

By the definition of ¢(x,y; ¢), we have: Vx,y and s € F

(. y: ) <2 / e Ereiomso [y D) + [V dog () ]

+ 2/(s mEr,xfos:x [Hap(xk,ry, k)H; + HVIogpt(xk|x5)Hﬂ dk

T
1
g/ko e B0 [m210g N + ||V 1og pi (x*%")|[] dk

T
Y P T |\v1ogpt<xk|x5>lli} i

K K
< MEdk + 4————dhﬁ/<Mdk+/
ko k ke K —koo? k K 5%

< Mkdk+/ MEdk < M,fdk:M,
]i}() k?O

where we invoke || < my+/log N for the second inequality and 1/0y, < my, for the last inequality.

B.3.9 PROOF OF LEMMA [T1]

We first introduce a standard result of bounding the covering number of a ReLU neural network.

Lemma 14 (Chen et al. (2022), Lemma.7) Suppose o > 0 and the input z satisfies ||z||,, < R,
the o—covering number of the neural network class F (W, k, L, P) w.rt. ||-||, _ satisfies

(90)

QL2(WR + 2)sE WL\ T
N (0, F(W,k, L, P), |l ) < ( ( ) )

4

We remark that our input (x,y,t) is uniformly bounded by O(log N). Now we begin our proof of
Lemma For any two ReLU networks ¢ and ¢ such that |[¢1 — ps]] L.p < € we can bound
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the L error between ¢(-, -, ¢1) and £(-, -, p2). For any (x,y) € D, we have
[0(x,y, 1) = U(x,¥, 2]

Ko k k T k
S /k mET,xk’\xO:f{O |: (Spl(x yTY, k) - SDQ(X yTY, k)) (SDI(X yTY, k)
°0
+ o2 (x,ry, k) — 2p(x"[x°) ) | dk
Ko b b T
+ /5 ﬂET,xklx‘;:x |: (4.01(X yTY, k) - QOZ(X yTY, k))
(gpl(xk, Ty, k) + gog(xk, Ty, k) — 2p(xk|x5))} dk
/ K ]C 'rx’“\x[):x(J [H(p1 x" yTY, k)+(p2(X Ty7k _2p H]
+ 6/5 mEr,xfo?:x [ngl(xk,ry, k) + po(xF, 7y, k) — 2p(xk|x5)||] dk

K
1
S N S
ko K—k‘o '
K
1
Y RN e
5 _

K K K K
€ 1 € 1
< v/ log N m dk—‘r/ —dk | + —— | V1o N/ m dk—l—/ —dk
K — ko ( & ko r ko Ok ) K -6 < s s 5 Ok

“0

<elog N, On
where %0 = \/% (x —V1-as ) and ¢ follows a standard normal distribution. For the second
inequality, we invoke |<p xk 1y, k | myg+/log N. In the last inequality, we invoke
1 1
mp < — <0 (k) when ¢ = o(1) and my, = O(1) when k > 1,
Tk
and the inequality
1 1
— < — d §> k.
K_6~logN ¢ 0=70
Since F is a concatenation of two ReLU neural networks of the same size and the domain of the input
z = (x,y,k) (or z = (x, k) for the unconditional score approximator) satisfies ||(x,y, k)|, <

max (R, K), by Lemma|l4|we have the covering number of F bounded as

9L2(W max(R, K) + 2)sFWwL+1\ "
N(eF . p) S ( ( ( . )*2) ) (92)
Combining this result with , we can bound the covering number of S(R) as
9L2(W max(R, K) + 2)kEWE+ log N\ ¥
N N e =3 3

The proof is complete.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional details about the experiments, including the introduction of
environments and hyper-parameters of all algorithms.

C.1 DETAILS FOR ENVIRONMENTS

To examine the performance of the proposed algorithm in more challenging control tasks with higher
degrees of freedom (DOFs), we evaluated the performance of the proposed algorithm in the OpenAl
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Roboschool environments(Brockman et al., [2016). The Roboschool environments include a num-
ber of continuous robotic control tasks, such as teaching a multiple-joint robot to walk as fast as
possible without falling. The original Roboschool environments are nearly fully observable since
observations include the robot’s coordinates and (trigonometric functions of) joint angles, as well as
(angular and coordinate) velocities.

As in the POMDP classic control tasks, we also performed experiments in the POMDP versions
of the Roboschool environments. In the no-velocities (i.e., “-P”) cases, velocity information was
removed from raw observations; while in the velocities-only (i.e., “-V”) cases, only velocity infor-
mation was retained in raw observations. We summarize key information about each environment
in Table 2] with a maximum of 1000 steps.

Table 2: Information of environments in this paper

Name Dim of observation space | DOF
Roboschool Ant 28 8
RoboschoolAnt-V 11 8
RoboschoolAnt-P 17 8
RoboschoolHopper 15 3
RoboschoolHopper-V 6 3
RoboschoolHopper-P 9 3
RoboschoolWalker2d 22 6
RoboschoolWalker2d-V 9 6
RoboschoolWalker2d-P 13 6

C.2 HYPER-PARAMETERS

In this section, we describe the details of implementing our algorithm as well as its alternatives.
Summaries of hyperparameters can be found in Tables [3]and 4

Table 3: Shared hyperparameters for all algorithms and tasks in this paper

Hyperparameter Description Value
Number of training iterates 600
|D| The size of replay memory 10°
|B| The number of samples for each update 64
¥ Discount factor 0.99
T Fraction of updating the target network per gradient step | 0.005
/ Learning rate for policy and value networks 0.0003
/ Learning rate for the entropy coefficient in SAC 0.0003
/ Target entropy in SAC 0.2
/ MLP layer sizes for policy network 256,256
/ MLP layer sizes for value network 256,256

Table 4: Hyperparameters for CSR-ADM

Hyperparameter Description Value
/ Learning rate of asynchronous diffusion model | 0.0003
/ Learning rate of bisimulation metric learning 0.0003
/ Network for asynchronous diffusion model UNet
/ MLP layer size for bisimulation metric learning | 256,256
K Total diffusion step 500
I} Beta schedule linear
) noise intensity of observation and reward 2
/ The Variance of Gaussian noise 0.5
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