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ABSTRACT

A major challenge in applying reinforcement learning (RL) to real-world scenar-
ios is managing high-dimensional, noisy perception input signals. Identifying
and utilizing representations that contain sufficient and essential information for
decision-making tasks is key to computational efficiency and generalization of RL
by reducing bias in decision-making processes. In this paper, we present a new
RL framework, named Causal State Representation under Asynchronous Diffu-
sion Model (CSR-ADM), which accommodates and enhances any RL algorithm
for partially observable Markov decision processes (POMDPs) with perturbed in-
puts. A new asynchronous diffusion model is proposed to denoise both reward
and observation spaces, and integrated with the bisimulation technology to capture
causal state representations in POMDPs. Notably, the causal state is the coarsest
partition of the denoised observations. We link the causal state to a causal fea-
ture set and provide theoretical guarantees by deriving the upper bound on value
function approximation between the noisy observation space and the causal state
space, demonstrating equivalence to bisimulation under the Lipschitz assumption.
To the best of our knowledge, CSR-ADM is the first framework to approximate
causal states with diffusion models, substantiated by a comprehensive theoretical
foundation. Extensive experiments on Roboschool tasks show that CSR-ADM
outperforms state-of-the-art methods, significantly improving the robustness of
existing RL algorithms under varying scales of random noise.

1 INTRODUCTION

Reinforcement learning (RL), a method for autonomous learning, has demonstrated extensive appli-
cations (Schrittwieser et al., 2020; Silver et al., 2017), where an agent learns by interacting with the
environment to maximize long-term cumulative rewards through trial and error. However, classical
RL methods face challenges when the state of the environment cannot be fully observed. Partially
observable Markov decision processes (POMDPs) were introduced to handle the situations with in-
complete observations. A major challenge of POMDPs is the robustness of observations against
such perturbation on the state space, which may result from sensor errors or mismatches between
statistic datasets and the real environment. Enhancing the robustness of the trained RL policy against
state perturbations is crucial for improving the interpretability and efficiency of making decisions,
leading to a causal representation of states.

Recently, research for causal state representation (CSR) learning has been developed to extract ab-
stract features from perturbed observations. Utilizing these abstract representations rather than the
raw data has demonstrated more efficient decision-making capability for Markov decision processes
(MDPs) (Lesort et al., 2018) and POMDPs (Zhang et al., 2019). Representative methods along this
line include bisimulation-based methods (Zhang et al., 2020), Kalman filters (Zois et al., 2014), or-
dinary differential equations (ODE)-based recurrent models (Zhao et al., 2024), world models (Ha &
Schmidhuber, 2018), a connection between predictive state representations (PSRs) and bisimulation
via causal states (Zhang et al., 2019), and others (Lanier et al., 2024; Chen et al., 2023a). However,
these methods do not consider perturbations, which limits the deployment of relevant representative
algorithms. Therefore, by properly modeling and estimating the underlying transition dynamics and
rewards with noise, it is possible to effectively reduce interactions with the environment, for either
model-based or model-free RL (Hafner et al., 2019; 2020).
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Despite the effectiveness of the above methods, existing state representations for RL tend to output
an unimodal distribution over the action space, which is likely trapped in a locally optimal solution
with poor performance due to its limited expressiveness of complex distributions. Given that gen-
erative models are powerful in learning complicated multimodal distributions, several algorithms
with generative models for CSR in POMDPs have emerged, such as deep variational reinforcement
learning (Igl et al., 2018) and structured sequential variational auto-encoder (Huang et al., 2022).

However, methods aligned with generative models, such as variational autoencoder typically gener-
ate samples by learning the latent representations of data, rather than directly addressing noise, thus
their effectiveness in handling noise may be relatively limited. In contrast, the diffusion model (Sohl-
Dickstein et al., 2015; Song et al., 2020; Ho et al., 2020) can remove noise better while preserving
important features in data by iteratively transforming noisy samples into high-quality real samples.
The diffusion model offers a better choice when the simultaneous denoising and preservation of im-
portant features are required. Recently, diffusion-based generative models have been increasingly
used in decision-making problems as trajectory generators or state representation (Janner et al.,
2022; Ajay et al., 2022; Zhihe & Xu, 2023a). Although the diffusion model shows its promising
and potential applications to POMDP tasks, previous works have overlooked the causal relation-
ships (e.g., bisimulation). Moreover, it is a matter of deliberation whether it is reasonable to achieve
diffusion model-based denoising by the same step. Thus, a natural question arising is:

How can we apply diffusion models to enhance causal state representation for
reducing decision-making biases in perturbed POMDPs?

1.1 CONTRIBUTION

In this paper, we aim to enhance decision-making in deep reinforcement learning (DRL) for per-
turbed POMDPs, characterized by partial and noisy observations. We introduce an innovative ap-
proach, Causal State Representation under Asynchronous Diffusion Model (CSR-ADM), which is
applicable to any RL algorithm. Our contributions are summarized as follows:

Algorithm Design: We develop a new causal state representation for perturbed POMDPs to im-
prove DRL decision-making amidst noisy and incomplete observations. This representation extends
bisimulation, traditionally applied in MDPs, to POMDPs, facilitating the evaluation of causality
in DRL inputs. We also propose a novel diffusion model that characterizes the conditional proba-
bility distribution of transition dynamics and rewards under varying noise intensities. This model
serves as a criterion for assessing the causality of bisimulation relationships and mitigates observa-
tion noise through new adjustable asynchronous forward and backward propagation. Notably, our
asynchronous diffusion model is adept at handling disturbances across variables of different scales
and can be implemented as a standalone module for effective denoising.

Theoretical Analysis: We establish the theoretical guarantees of CSR-ADM in perturbed POMDPs
by deriving the upper bound on the value function approximation (VFA) between the noisy observa-
tion and the causal state spaces. By assessing the distribution estimation error using the Wasserstein-
1 distance for the proposed asynchronous diffusion model, we demonstrate that the model tightens
the upper bound on VFA and hence contributes to DRL decision-making for POMDPs.

Extensive Simulation: We conduct extensive simulations across six environments under perturbed
POMDPs to demonstrate the performance of CSR-ADM. Considering that our approach can ac-
commodate any RL algorithm, we present simulations where CSR-ADM is combined with soft
actor-critic (SAC) and compare it against the other four baselines. We also perform ablation studies
to investigate the impact of key parameters, i.e., noise intensity and the magnitude of environmental
noise. Experimental results show that CSR-ADM enhances RL’s decision-making under incomplete
and noisy observations and rewards.

1.2 RELATED WORK

Causal state representation To enhance the performance of decision-making under perturbed
POMDPs, several recent studies have focused on deriving causal state representations for decision-
making generalization through the technique of representation learning. For instance, Zhang et al.
(2019) proposed an algorithm to approximate causal states in POMDPs. Utilizing domain-invariant
causal features, Bica et al. (2021) proposed Invariant Causal Imitation Learning (ICIL) to address
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distribution shifts. Additionally, some works (Lee et al., 2019; Menda et al., 2019; Loquercio et al.,
2020) proposed ensemble representations that leverage multi-modal sensor inputs to boost general-
izability for self-driving agents under uncertainty quantification. The PlanT framework (Renz et al.,
2023) serves as a learnable planner module grounded in object-centric representations. Moreover,
the realm of RL has witnessed advancements in state representation through self-supervised learning
approaches, including hierarchical skill decomposition (Akrour et al., 2018), time-contrastive learn-
ing (Sermanet et al., 2018), and deep bisimulation metric learning (Zhang et al., 2020; Dadashi et al.,
2021). However, there is a lack of consideration of perturbation-based causal state representations.

RL with diffusion model The diffusion model was originally proposed as an generative model
for image generation (Sohl-Dickstein et al., 2015; Ho et al., 2020). Recently, it has been adopted in
decision-making for state-based tasks, especially for perturbed states. In RL, diffusion models can
be utilized not only for direct decision-making (Ajay et al., 2022; Janner et al., 2022; Zhihe & Xu,
2023a; Wang et al., 2022; Zhang et al., 2024; Li et al., 2023) but also for effective denoising and
distribution estimation. For instance, DMBP (Zhihe & Xu, 2023a) utilizes the diffusion model as a
denoiser (against state observation perturbations) rather than a generator, for robust training of RL
agents. The DIPO (Yang et al., 2023) utilizes the diffusion model to address the denoising problem
in model-free RL. Moreover, Fu et al. (2024) presented a sharp statistical theory of distribution
estimation using a conditional diffusion model. However, the current studies do not differentiate
whether data used for training contains noise or not, hence limiting the effectiveness of denoising.

2 PROBLEM FORMULATION

RL in POMDP For RL, some environments are generally modeled as POMDPs in the form
of M = (S,A,O, γ, F,G,H), where γ is the discount factor. Assume a sequence of samples
{⟨ot,at, rt⟩}Tt=1, where ot ∈ O represents the sensory signal (e.g., high-dimensional images) at
time t with O indicting to the observation space. at ∈ A represents the action chosen at time t
with action space A, and rt ∈ [0, 1] denotes the reward. We use st = {s1,t, s2,t, · · · , sd,t} ∈ S to
denote the d-dimensional true state, where S is the state space with d dimensions. Therefore, we
can describe the environment model as follows:

ot = F (st, et) ⇐⇒ P (ot | st) , (1a)
rt = G (st−1,at−1, εt) ⇐⇒ P (rt | st−1,at−1) , (1b)
st = H (st−1,at−1, ηt) ⇐⇒ P (st | st−1,at−1) , (1c)

where F , G, and H represent the observation function, reward function, and transition function,
respectively; et, εt, and ηt are the associated independent and identically distributed (i.i.d.) random
noises. The POMDP consists of states st. Given at−1 and st−1, st is independent of the states and
actions that occurred before time t − 1. Additionally, the action at−1 directly affects the state st,
rather than the observation signal ot. The reward is also influenced by both the state and action. In
particular, the observation signal ot is generated from a base state corrupted by random noises. We
consider noise ϵt in the reward function to capture noise, e.g., measurement errors.

Causal state representation and bisimulation There exist structural relationships among differ-
ent dimensions of st, so that action at−1 may not affect all dimensions of st and reward rt may be
unaffected by all dimensions of st−1. As illustrated in Figure 1, we take d = 3 as an example, i.e.,
st = [s1,t, s2,t, s3,t]

T. State s3,t−1 affects s2,t, but there is no connection between at−1 and s3,2.
Only s2,t−1 has an edge toward rt.

Causal state representation has been explored as a method to differentiate pertinent information from
irrelevant details (Li et al., 2006), aiming to generate a more compact representation that facilitates
decision-making and planning. As a type of causal state representation, states and observations are
considered bisimilar if they yield the same expected reward and have equivalent distributions over
subsequent bisimilar states and observations (Givan et al., 2003). To this end, we assert that they
exhibit a bisimulation relationship, providing a mathematically rigorous definition of how two envi-
ronments can yield the same outcome. Based on the environment’s dynamics P (st+1, rt+1|st,at),
the similarity between environments can be expressed by the similarity between their state transition
and reward functions. Following (Castro et al., 2009), we define the equivalence in POMDP as:
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DecisionInteractionDecision

Figure 1: System Model Diagram: Taking d = 3 as an example, solid-line circular nodes represent
observed variables, while dashed-line circular nodes represent unobserved variables; solid lines rep-
resent causal relationships, while dashed lines represent decision dependencies.

Definition 1 (Causal state representation under bisimulation) Given a POMDP M =
(S,A,O, F,G,H) and the function of the state space into observation space F : S → O,
any pair of state and observation {st ∈ S,ot ∈ O} is F -trajectory equivalent if and only if

• For any a ∈ A, P (rt+1 | st,a) = P
(
rt+1 | F−1(ot),a

)
,

• For any a ∈ A, P (st+1 | st,a) = P
(
st+1 | F−1 (ot) ,a

)
.

Goal By denoising states and rewards, estimating environment dynamics, and extracting causal
states, we aim to represent causal states under perturbed POMDP. We also wish to design a diffusion
model considering the differentiation of noise intensity within data.

3 ALGORITHM DESIGN

In this section, we propose the Causal State Representation under Asynchronous Diffusion Model
(CSR-ADM) framework to achieve effective causal state representation. Specifically, we design an
asynchronous diffusion model to simultaneously denoise the states and rewards through the environ-
ment dynamics estimation. Additionally, we learn an approximate causal state representation based
on bisimulation. Here, we present the procedure for CSR-ADM training in Algorithm 1. A dia-
gram of the proposed approach is shown in Figure 4 in Appendix A. As a causal state presentation
framework, CSR-ADM can be adapted to any RL algorithm.

Algorithm 1: Hybrid asynchronous diffusion model and bisimulation guided RL (CSR-ADM)
1 Parameter: Discount factor γ, forward stepsize K, and noise intensity δ;
2 Initialize: Observation denoise model θ, reward denoise model ϕ, bisimulation model ζ, start

observation o1, and empty replay memory D;
3 for Episode t = 1, . . . , T do
4 Compute the (approximate) denoised causal state ŝt from ot using observation denoise

model θ and bisimulation model ζ;
5 Select action at ∼ π(ŝt), and obtain reward rt+1 and new observation ot+1;
6 Store transition (ot,at, rt+1,ot+1) in replay memory D;
7 Sample a batch of transitions randomly from D as B;
8 Obtain states ŝt and ŝt+1 from observations ot and ot+1 in B, respectively;
9 Take gradient descent on L̂State(θ) + L̂BiState(ζ);

10 Take gradient descent on L̂Rew(ϕ) + L̂BiRew(ζ);
Output: Policy π

4
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Asynchronous diffusion model The objective of the asynchronous diffusion model is to derive
P (ŝt+1 | ŝt,at) and P (r̂t+1 | ŝt,at) from perturbed sample (ot,at, rt+1,ot+1), where ŝt and ŝt+1

denote the causal states estimated under denoised observations, and r̂t+1 represents the denoised
reward at time t+ 1. Existing diffusion model-based RL algorithms typically use ot+1 and rt+1 as
the initial training data (Zhihe & Xu, 2023b), implying that the distribution fitted by the diffusion
model is affected by noise. Consequently, there is a gap for improvement in the existing diffusion
model-based denoising algorithms.

Considering the differentiation of noise intensity, we design an asynchronous diffusion model to
achieve effective denoising of states and rewards and estimate environmental dynamics, assuming
that ot+1 and rt+1 are superimposed by δ-steps Gaussian noise. For clarity, we use t to indicate the
RL iteration and k to indicate the diffusion model’s step. To obtain the denoised causal state ŝt+1,
we use rt+1 and s̃t+1 = ζ(ot+1) as part of the inputs to the asynchronous diffusion model, along
with ŝt and ot, where s̃t+1 represents the causal state with noise. Given the above assumption, we
denote these inputs as xδ , corresponding to the results after a δ-step forward process. Considering
the initial conditional distribution as P (xδ|ŝt,at), we proceed to analyze the denoised conditional
distribution P (x0|ŝt,at).
For each asynchronous diffusion model update, we consider adding noise progressively, which is
represented by a forward Ornstein–Uhlenbeck (OU) process, as follows:

dxk = −0.5xkdk + dwk with xδ ∼ P (xδ|ŝt,at) for k ≥ δ; (2)

dxk = −0.5xkdk + dwk with x0 =
(
xδ −

√
1− ᾱδϵ

)
/
√
ᾱδ for k ≥ 0, (3)

where wk is a Wiener process, β1, β2, · · · , βK provide a predefined variance schedule, αj = 1−βj ,
αi =

∏i
j=0 αj , and ϵ follows a standard normal distribution. In the infinite-time limit, x∞ follows

a standard Gaussian distribution. At any finite step k, we denote P (xk|ŝt,at) as the marginal con-
ditional distribution of each result xk produced by the forward process conditioned on the denoised
causal states and actions.

The forward process terminates at a sufficiently large step K and the reverse process is defined to
generate samples by reversing results per step in (2) as

dxk =
[
0.5xk +∇ log p(xk|ŝt,at)

]
dk + dwk with x0 ∼ P (xK |ŝt,at), (4)

where wk and xk is a time-reversed Wiener and reverse process, respectively. ∇ log p(xk|ŝt,at)
is the unknown conditional score function and needs to be estimated utilizing conditional score
networks. We refer to φ̂(x, ŝt,at, t) as such the estimator of the conditional score∇ log p(xk|ŝt,at).
According to classifier-free guidance, a widely adopted method for training φ̂ proposed by Ho et al.
(2020), we obtain the loss function for our asynchronous diffusion model, as given by

ℓ(x, ŝt,at;φ) =

∫ K

k0

1

K − k0
Eτ,xk∼N(

√
αkx̂0,σ2

kI)

[∥∥φ(xk, τ(ŝt,at), k)−∇xk log p(xk|x)
∥∥2
2

]
dk

+

∫ K

δ

1

K − δ
Eτ,xk∼N(

√
αkx,σ2

kI)

[∥∥φ(xk, τ(ŝt,at), k)−∇xk log p(xk|x)
∥∥2
2

]
dk, (5)

where p(xk|x) is the Gaussian transition kernel of the forward process (2), i.e., ∇ log p(xk|x0) =
−(xk − √αkx0)/σ

2
k. Let τ ∼ Unif{Ø, id} be a mask signal, where Ø means that we ignore the

guidance (ŝt,at) and id denotes otherwise. We consider the uniform distribution on τ , which means
P(τ = Ø) = P(τ = id) = 0.5. Moreover, we consider an early-stopping step k0 similar to Nichol
& Dhariwal (2021), in order to prevent the blow-up of score functions.

Recall the assumption of adequate mask signal τ and sampling on xk in (5). Consequently, the
classifier-free guidance aims to minimize the empirical risk as follows:

argmin
φ

L̂(φ) = E{ot,at,rt,ot+1} [ℓ(xi, ŝi,ai;φ)] =
1

n

n∑
i

[ℓ(xi, ŝi,ai;φ)] , (6)

with n being the sample size. By substituting ŝt+1 and θ (resp. rt+1 and ϕ) for x and φ in (6), we
can similarly obtain the training objective for the states and rewards, respectively, as follows:

L̂State(θ) = E{ot,at,rt,ot+1} [ℓ(ζ(ot+1), ζ(ot),at; θ)] ; (7)

L̂Rew(ϕ) = E{ot,at,rt,ot+1} [ℓ(rt+1, ζ(ot),at;ϕ)] . (8)
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Bisimulation We extend the concept of bisimulation to POMDPs to achieve effective causal
state representation, specifically estimating P (ŝt | ot). Based on the Wasserstein metric (see Ap-
pendix B.1.1), a new bisimulation metric is of particular relevance, as defined below:

Definition 2 (Bisimulation metric) Given f , g, and constant cR, cT ∈ (0, 1) for POMDPs, for any
pair of state and observation {st ∈ S,ot ∈ O}, the following metric exists and is unique,

d
(
st, F

−1(ot)
)
:=max

a∈A
(cRWp(d)

(
P (r | st,a) , P

(
r | F−1(ot),a

))
+ cTWp(d)

(
P (s′ | st,a) , P

(
s′ |F−1(ot),a

))
), (9)

where Wp denotes the Wasserstein distance between probability distributions.

A distance of zero for a given pair indicates bisimilarity. We employ a recurrent neural network
(RNN) to fit P (ŝt | ot), i.e., ŝt = ζ(ot). When the diffusion model accurately predicts the future
observations, ŝt serves as a sufficient statistic for the latent variables. In practice, we use empirical
implementations to estimate the state representation minimizing the objective loss:

L̂BiState(ζ) =
1

2
E{ot,at,rt,ot+1} [Wd (P (ŝt+1 | ŝt,at) , θ (ζ (ot) ,at))] (10a)

L̂BiRew(ζ) =
1

2
E{ot,at,rt,ot+1} [Wd (P (rt+1 | ŝt,at) , ϕ (ζ (ot) ,at))] . (10b)

Consequently, we implement causal state representation and assist reinforcement learning decisions,
by iteratively optimizing L̂State(θ) + L̂BiState(ζ) and L̂Rew(ϕ) + L̂BiRew(ζ).

4 THEORETICAL GUARANTEES

We proceed to bound the value function difference between any pairs of observations and states
under causal state representation when the proposed asynchronous diffusion model is employed.
We start with some assumptions. Let δ denote the noise intensity. We mathematically reformulate
the assumption considering the noise intensity of the input data, as follows:

Assumption 1 The sampled distribution pdata is the result of the noiseless distribution
p(xtrue|ŝt,at) after δ steps of the forward process, i.e.,

pdata(x
δ|ŝt,at) =

∫
Rd

p(xtrue|ŝt,at)
1

σdδ (2π)
d/2

exp

(
−
∥∥√αδxtrue − xδ

∥∥2
2σ2

δ

)
dxtrue. (11)

We further introduce a mild tail condition on the initial conditional data distribution as Assumption 2,
which pertains solely to the regularity of the original data distribution and does not place constraints
on the resulting conditional score function. In other words, we assume an additional bounded Hölder
norm condition (see Appendix B.1.2 for details) on true data distribution, as follows:

Assumption 2 Let C2 and C be two positive constants. For a fixed radius B, define the function
f ∈ Hb(Rd × [0, 1]dy , B). We assume f(xtrue, ŝt,at) ≥ C for all (xtrue, ŝt,at) and the true
conditional density function p(xtrue|ŝt,at) = exp(−C2 ∥xtrue∥22 /2) · f(xtrue, ŝt,at).

Since a provable tight relationship implies theoretical guarantees in VFA, a key characteristic of
bisimulation metrics is their connection to value functions. To generalize the VFA bound, we assume
the existence and uniqueness of p-Wasserstein bisimulation metric for any pair of states to measure
their similarity.

Assumption 3 (p-Wasserstein bisimulation metric) For any given cR, cT ∈ (0, 1), cR + cT < 1,
∀(si, sj) ∈ S × S, and p ≥ 1, we assume that the bisimulation metric in (12) exists and is unique:

d (si, sj) :=max
a∈A

(cRWp(d)(P (r |si,a),P (r |sj ,a))+cTWp(d)(P (s
′ |si,a),P (s′ |sj ,a))). (12)

Notably, Assumption 3 does not restrict the state, action, or observation spaces to be finite (or any
other conditions). Under Assumptions 1–3, we analyze the theoretical guarantee of CSR-ADM

6
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under POMDPs. The analysis is divided into four steps, including (i) establishing the upper bound
of VFA for causal states overlooking observations; (ii) refining the upper bound to the observations
and causal states under any model approximations; (iii) analyzing the model approximation under a
specific model, i.e., the asynchronous diffusion model; and (iv) combining the results in (ii) and (iii)
and deriving the upper bound of VFA under the asynchronous diffusion model.

Step 1: p-Wasserstein value difference bound for any pairs of states Similar to the bounds de-
veloped in previous work (Castro, 2020; Ferns et al., 2011) for policy-independent bisimulation met-
rics, the following bound holds for on-policy bisimulation metrics: |V π(si) − V π(sj)| ≤ d(si, sj)
with d(si, sj) defined in Assumption 3, where V π(s) = Eπ[

∑∞
i=0 γ

trt+i+1|st = s]. With the proof
provided in Appendix B.2.1, we can establish the value difference bound as follows.

Theorem 1 (p-Wasserstein value difference bound) For the on-policy bisimulation metric de-
fined in (12), given any cT ∈ [γ, 1), cR ∈ (0, 1), cR + cT < 1, and p ≥ 1, the bisimulation
distance between two states provides the upper bound on the discrepancy in their values:

cR|V π(si)− V π(sj)| ≤ d(si, sj), ∀(si, sj) ∈ S × S. (13)

In this sense, the bisimulation metric in (12) represents the upper bound of the value gap.

Step 2: Value difference bound for any pairs of observation and state Consider p = 1 for our
analysis. We demonstrate the validity of Assumption 3 in Remark 1, with the proof provided in
Appendix B.3.1. More general cases will be proved in our future research.

Remark 1 If both the policy and the environment are deterministic or p = 1, Assumption 3 holds.

Recall the definitions of reward function and transition function are independent of ζ and θ. We
consider the influence of the model errors on the value function with the optimal policy-dependent
bisimulation distance, as summarized in Theorem 2 with the proof provided in Appendix B.2.2.

Theorem 2 (Value difference bound with model errors) Let the reward function be bounded as
r ∈ [0, 1] and ζ : Ŝ → S a function mapping estimated states (i.e., denoised observations) to causal
states such that ζ(ŝi) = ζ(ŝj) is equivalent to d̂ζ(ŝi, ŝj) = ∥ζ(ŝi)− ζ(ŝj)∥q ≤ 2 ϵ̂. For cR ∈ (0, 1),
cT ∈ [γ, 1), cR + cT < 1, and p = 1, then:

|V π(s)− Ṽ π(ζ(ŝ))| ≤ 1

cR(1− γ)

(
2 ϵ̂+ Eζ +

2cR
1− cT − cR

Eϕ +
2cT

1− cT − cR
Eθ
)
,∀s ∈ S,

(14)
where Eζ :=

∥∥∥d̂ζ − d̂∥∥∥
∞

is the bisimulation metric learning error, Eϕ :=

W1(d) (P (r | s,a) , P (r | ŝ,a)) is the reward approximation error, and Eθ :=
W1(d) (P (s′ | s,a) , P (s′ | ŝ,a)) is the state transition model error.

By Theorem 2, we can quantify the upper bound of the value gap under arbitrary model errors. This
can be extended to different probability density estimation models to establish specific convergence
properties. The theorem facilitates analyzing the impact of the proposed asynchronous diffusion
model on the value gap.

Step 3: Distribution estimation under asynchronous diffusion model Since Eθ and Eϕ are
based on the same asynchronous diffusion model architecture, we define the approximation error
of the conditional probability as φ(xk, ŝt,at, k), where xk can be replaced by either ŝkt+1 or rkt+1.
Under Assumption 2, we can measure the asynchronous diffusion model’s distribution estimation by
considering the initialization error, score estimation error, and discretization error, and provide the
sample complexity bounds for each of the three errors using the Wasserstein-1 distance. We present
the approximation theory for estimating the conditional score utilizing ReLU neural networks as the
subsequent theorem, with its proof provided in Appendix B.2.3.

Theorem 3 (Approximation error by asynchronous diffusion model) Under Assumptions 1 and
2, for any fixed (s⋆,a⋆), the terminal step K = 2b

2ds+da+2b log n, and the early-stopping step k0 =

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

n−
4b

2ds+da+2b−1, the estimated error of the conditional probability of noiseless data is given by

E{xt,ŝt,at}n
t=1

[
W1(p(xt|ŝt,at), p̂(xk0t |ŝt,at))

]
=T (s⋆,a⋆)O

(
n−

b
2ds+da+2b (logn)max(19/2,(b+2)/2)

)
,

where b is the degree of smoothness in Hölder norm; ds and da represent the dimensions of state
and action, respectively; T (s⋆,a⋆) is distribution coefficient.

As n → ∞, the distribution estimation measured by Wasserstein-1 distance converges, i.e.,
E{xt,ŝt,at}n

t=1

[
W1(p(xt|ŝt,at), p̂(xk0t |ŝt,at))

]
→ 0, corroborating the effective distribution esti-

mation capability offered by the proposed asynchronous diffusion model.

Step 4: Wasserstein value difference bound under asynchronous diffusion model The bisim-
ulation metric learning can be achieved by various machine learning models, such as RNN, whose

convergence rate of Eζ is O
(
n
− 2pR

2pR+ds+1 (log n)6
)

with the model size pG, as proved by Kohler
& Krzyżak (2023). According to the results in Theorems 2 and 3, we establish the final theoretical
guarantee as follows.

Theorem 4 (Value difference bound with asynchronous diffusion model) Consider the same
conditions as in Theorems 2 and 3, then: ∀s ∈ S,

E{ot,at,rt,ot+1}

∣∣∣V π(s)− Ṽ π(ζ(s))∣∣∣ ≤ 2ϵ̂+
1

cR(1− γ)

(
O
(
n
− 2pR

2pR+ds+1 (log n)6
)

+
2cR + 2cT
1− cT − cR

T (s⋆,a⋆)O
(
n−

b
2ds+da+2b (log n)max{19/2,(b+2)/2}

))
. (15)

Therefore, we have established the asymptotic convergence of the proposed algorithm, see Ap-
pendix B.2.4 for details. As n → ∞, the estimated causal state Ṽ π(ζ(s)) in (15) converges to
within 2ϵ̂-neighborhood of the ground-truth causal state V π(s), i.e., the neighborhood region of
the ground-truth causal state V π(s) with the radius of ϵ̂. Specifically, (cR, cT) ensures a trade-off
between the reward approximation error and the state transition model error, while (cR+cT, 1) guar-
antees a balance between the approximation error of the noisy distribution and the approximation
error of bisimulation.

Computational cost. We evaluate the additional computational cost of the CSR-ADM compared
to typical RL algorithms. Chen et al. (2024) analyzed the computational cost of a diffusion model
to be Õ(poly log d), where d is the dimension of the input data. Considering our definition of noise
intensity, the loss function of the asynchronous diffusion model (see Eq. (5)) is twice that of a
standard diffusion model, directly doubling the computational cost. Therefore, the computational
cost of the causal state representation is Õ(poly logmax{|A|, |O|}) in CSR-ADM.

5 EXPERIMENTS

We provide an evaluation of Roboschool environments (Brockman et al., 2016) under standard
POMDP implementation by Ni et al. (2022), looking at tasks that typically occlude some part of
the observation. There are six environments, i.e., {Hopper, Ant, Walker}-{P, V}, where “-P” stands
for observing positions and angles only, and “-V” stands for observing velocities only. For more
information about environments, see Appendix C.1. To demonstrate the robustness of the proposed
CSR-ADM, we train CSR-ADM with the same hyper-parameters for all six tasks, where we provide
the hyper-parameters in Appendix C.2. Considering that the proposed CSR-ADM framework can
accommodate any RL algorithm, we extend CSR-ADM to a typical RL algorithm, i.e., SAC. We
evaluate all experiments with 600, 000 iterations and apply smoothing operations for each return.

5.1 COMPARISON WITH THE BASELINES

By comparing the results with SAC (Fujimoto et al., 2018), DMBP (Zhihe & Xu, 2023a) (only
considering denoise), and DBC (Zhang et al., 2021) (only considering bisimulation), we demonstrate

8
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Figure 2: Comparison of the performances of CSR-ADM framework in this paper with three base-
lines on six environmsnts including Ant-P, Ant-V, Hopper-P, Hopper-V, Walker-P, and Walker-V.

the scalability and effectiveness of CSR-ADM. Specifically, we set both the reward and observation
to be affected by Gaussian noise with zero mean, a variance of one, and a scale of two. Additionally,
in CSR-ADM, we configure the noise intensity δ = 2 to evaluate the impact of the noise.

As shown in Figure 2, the proposed approach demonstrates superior performance across six environ-
ments. Specifically, as compared to DMBP (only considering the denoise functionality in Walker-V)
or DBC (solely focusing on bisimulation in Hopper-P), CSR-ADM exhibits superior generalization
capabilities. In particular, CSR-ADM improves the return compared to SAC, DMBP, and DBC at
least by 14.18%, 29.42%, and 136.63% across the six environments, respectively. Furthermore,
although the proposed approach requires learning more parameters than the other algorithms, it
achieves better performance in the early stages of training in five out of six environments.

5.2 ABLATION STUDY

We conduct ablation studies on all six environments, with three types of modules disabled, i.e., CSR-
ADM without bisimulation, CSR-ADM only with reward denoise (i.e., SAC with reward denoise),
and CSR-ADM only with observation denoise (i.e., SAC with observation denoise). Specifically, the
noise in environments and noise intensity are configured the same as the experiments of comparison
with the baselines above.

As shown in Figure 3, we present the performance of the proposed approach in ablation exper-
iments across six environments. By comparing the performance of four cases, it is evident that
both bisimulation and the asynchronous diffusion model yield positive contributions to the return.
Interestingly, in most environments, the case considering only reward denoising significantly under-
performs compared to the case focusing solely on state denoising. This disparity can be attributed
to the observation having a higher dimensionality than the reward, resulting in its noise having a
greater overall impact. Additionally, the environments of Hopper-V and Walker-P exhibit higher
sensitivity to noise, which is also reflected in Table 1.

5.3 INFLUENCE ON KEY PARAMETERS

We examine the performance under three noise scales with varying noise intensities across six envi-
ronments, as shown in Table 1, where bold numbers correspond to the optimal results for the same
environment and noise scale. A common conclusion across the six environments is that for noise
scale of 0.1, the optimal noise intensity is δ = 1; for noise scale of 0.5, the optimal noise intensity is
δ = 2; and if the noise scale increases to 1, the optimal noise intensity becomes unstable, fluctuating
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Figure 3: Ablation studies of CSR-ADM framework in this paper on six environments including
Ant-P, Ant-V, Hopper-P, Hopper-V, Walker-P, and Walker-V.

Table 1: Returns at different noise intensities with various noise scales in six environments including
Ant-P, Ant-V, Hopper-P, Hopper-V, Walker-P, and Walker-V.

Noise scale Noise intensity Ant-P Ant-V Hopper-P Hopper-V Walker-P Walker-V

0.1
δ = 1 790.8 573.8 214 183 285.1 65.44
δ = 2 764.2 499.1 153.3 161 221.3 52.68
δ = 3 694 466 122.4 128.7 215.4 58.05

0.5
δ = 1 727.7 465.4 23.87 45.58 31.04 58.15
δ = 2 789.3 615.4 24.18 50.17 34.01 65.24
δ = 3 670.9 560.3 21.94 43.3 31.23 61.03

1
δ = 1 569.2 538.2 24.93 45.26 35.25 50.45
δ = 2 597.3 533.8 26.2 48.16 35.8 53.36
δ = 3 648.3 528.4 25.53 48.96 33.3 62.26

between 1 and 3, suggesting that higher noise intensities may be necessary for measurement. This
indicates that noise intensity can reflect the impact of noise. As the noise scale increases from 0.1 to
0.5, half of the environments exhibit relatively stable returns, and when the noise scale rises from 0.5
to 1, the returns of CSR-ADM across all six environments show no significant change. This suggests
that the proposed approach can maintain relatively stable performance in high-noise environments.

6 CONCLUSION

In conclusion, this paper introduces the Causal State Representation under Asynchronous Diffusion
Model (CSR-ADM), a novel framework that effectively addresses the challenges posed by high-
dimessional and noisy input signals in RL applied to POMDPs. By integrating an innovative asyn-
chronous diffusion model for denoising both rewards and observations with bisimulation technology,
CSR-ADM captures essential causal state representations, which are crucial for decision-making
tasks. Our theoretical analysis provides solid guarantees regarding the approximation of value func-
tions between noisy observation spaces and causal state spaces, reinforcing the framework’s robust-
ness. Empirical results from extensive experiments on Roboschool tasks confirm that CSR-ADM
surpasses existing state-of-the-art methods, significantly enhancing the performance and robustness
of RL algorithms in the presence of varying levels of random noise. This work not only contributes
a new approach to improving computational efficiency and generalization in RL but also sets a solid
foundation for future research on causal state representation techniques in noisy environments.
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A CSR-ADM STRUCTURE

The proposed framework consists of three modules and can be extended to any RL algorithm.
Specifically, CSR-ADM employs an asynchronous diffusion model to denoise states and rewards
separately. Subsequently, it approximates causal states based on the denoised states and rewards
with bisimulation. Finally, the approximated causal states and denoised rewards are used as a set
of samples inputted into the RL algorithm for decision-making. It should be noted that the asyn-
chronous diffusion model algorithm denoises observations, which are then input into the bisimu-
lation metric learning model to extract causal states. The detailed structure is shown in Figure 4.

Environment

Training Batch

Half-way diffusion model

Full-way diffusion model

Half-way diffusion model

Full-way diffusion model

Batch Representation

Decision Making

Figure 4: Overview diagram of the proposed CSR-ADM including dynamics estimating under asyn-
chronous diffusion model and causal state representation under bisimulation.

B THEORETICAL GUARANTEE

B.1 ADDITIONAL NOTATION AND BASIC FACTS

B.1.1 WASSERSTEIN DISTANCES

Definition 3 (Wasserstein metric (Villani, 2008)) Let d : X ×X → [0,∞) be a distance function
and Ω be the set of all joint distributions with marginals µ and λ over the space X . Then, the
Wasserstein metric is given by

Wp(d)(µ, λ) =

(
inf
ω∈Ω

E(x1,x2)∼ω[d(x1, x2)
p]

) 1
p

. (16)

Definition 4 (Dual formulation of the Wasserstein metric (Villani, 2008)) Let d : X × X →
[0,∞) be a distance function, and µ and λ be marginals over the spaceX . Then, a dual formulation

15
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of the Wasserstein metric is given by

Wp(d)(µ, λ) =

(
sup

ζ⊕ψ≤dp
Ex1∼µ[ζ(x1)] + Ex2∼λ[ψ(x2)]

) 1
p

, (17)

where ζ ⊕ ψ ≤ dp is equivalent to ζ(x) + ψ(y) ≤ d(x, y)p, ∀(x, y) ∈ X ×X .

This dual formulation takes a simple form for p = 1, which is

W1(d)(µ, λ) = sup
f∈Lip1,d(X)

Ex1∼µ[f(x1)]− Ex2∼λ[f(x2)], (18)

where Lip1,d(X) denotes 1-Lipschitz function f : X → R such that |f(x1)− f(x2)| ≤ d(x1, x2).
Note that the 2-Wasserstein metric W2(∥·∥2) (or simply W2) has a closed-form for Gaussian distri-
butions (Olkin & Pukelsheim, 1982):

W2(N (µi,Σi),N (µj ,Σj))
2 = ∥µi − µj∥22 + ∥Σi − Σj∥2F , (19)

where ∥·∥F denotes the Frobenius norm. We can observe in (19) that for point masses (i.e., Σi,Σj →
0), the 2-Wasserstein metric is equivalent to the Euclidean distance between the two points.

Lemma 1 (p-Wasserstein Inequality (Villani, 2008)) For any two distributions µ and λ, if p ≤ q:

Wp(µ, λ) ≤Wq(µ, λ). (20)

Lemma 2 (Bounds on the Wasserstein distances (Santambrogio, 2015)) For any two distribu-
tions µ and λ over a space X , for all p ≥ 1:

W1(µ, λ) ≤Wp(µ, λ) ≤ diam(X)
p−1
p W1(µ, λ)

1
p . (21)

B.1.2 HÖLDER NORM

Definition 5 (Hölder norm) Let b = m + γ > 0 be a degree of smoothness, where m = ⌊b⌋ is an
integer and γ ∈ [0, 1). For a function f : Rd → R, its Hölder norm is defined as

∥f∥Hb(Rd) := max
s:∥s∥1<m

sup
x
|∂sf(x)|+ max

s:∥s∥1=s
sup
x̸=z

|∂sf(x)− ∂sf(z)|
∥x− z∥γ∞

,

where s is a multi-index. We say a function f is b-Hölder, if and only if ∥f∥Hb(Rd) <∞.

We define a Hölder ball of radius B > 0 for some constant B as

Hb(Rd, B) =
{
f : Rd → R

∣∣∣∥f∥Hb(Rd) < B
}
.

B.1.3 NOTATION ABOUT ASYNCHRONOUS DIFFUSION MODEL

Given a score approximator φ, we aim to bound the following conditional score:

R(φ) =
∫ K

k0

1

K − k0
Exk,y

∥∥φ(xk,y, k)−∇ log p(xk|y)
∥∥2
2
dk

+

∫ K

δ

1

K − δ
Exk,y

∥∥φ(xk,y, k)−∇ log p(xk|y)
∥∥2
2
dk.

Due to the structure of classifier-free guidance, we first consider the following mixed score error:

R⋆(φ) =
∫ K

k0

1

K − k0
Exk,y,τ

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
dk

+

∫ K

δ

1

K − δ
Exk,y,τ

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
dk = R+R0, (22)
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where the conditional score errorR and the unconditional score errorR0 are defined as

R =
1

2

∫ K

k0

1

K − k0
Exk,y

∥∥φ(xk,y, k)−∇ log p(xk|y)
∥∥2
2
dk

+
1

2

∫ K

δ

1

K − δ
Exk,y

∥∥φ(xk,y, k)−∇ log p(xk|y)
∥∥2
2
dk;

R0 =
1

2

∫ K

k0

1

K − k0
Exk

∥∥φ(xk,Ø, k)−∇ log p(xk)
∥∥2
2
dk

+
1

2

∫ K

δ

1

K − δ
Exk

∥∥φ(xk,Ø, k)−∇ log p(xk)
∥∥2
2
dk,

which naturally give rise to the inequality R(φ) ≤ 2R⋆(φ). Thus, we only need to analyze the
bound of R⋆(φ). In practice, we minimize an equivalent loss of R⋆, denoted by ℓ(φ), which is
written as

ℓ(φ) :=

∫ K

k0

1

K − k0
Ex̂0,y

[
Eτ,xk|x̂0

[ ∥∥φ(xk, τy, k)−∇ log p(xk|x̂0)
∥∥2
2

]]
dk

+

∫ K

δ

1

K − δ
Exδ,y

[
Eτ,xk|xδ

[ ∥∥φ(xk, τy, k)−∇ log p(xk|xδ)
∥∥2
2

]]
dk, (23)

where x̂0 = 1√
ᾱδ

(
xδ −

√
1− ᾱδϵ

)
and ϵ follows a standard normal distribution. According to

Lemma C.3 in Vincent (2011), (22) differs from (23) by a constant independent of s. Now, we
consider training the model with n samples {xi,yi}nt=1 by minimizing the corresponding empirical
loss, i.e.,

ℓ̂(φ) =
1

n

n∑
i=1

ℓ(xi,yi, s), (24)

where

ℓ(x,y;φ) :=

∫ K

k0

1

K − k0
Eτ,xk|x̂0

[ ∥∥φ(xk, τy, k)−∇ log p(xk|x̂0)
∥∥2
2

]
dk

+

∫ K

δ

1

K − δ
Eτ,xk|xδ

[ ∥∥φ(xk, τy, k)−∇ log p(xk|xδ)
∥∥2
2

]
dk. (25)

Moreover, in order to derive a bounded covering number of our ReLU network function class, we
use a truncated loss ℓtr(s,x,y) defined as:

ℓtr(x,y;φ) := ℓ(x,y;φ)I {∥x∥∞ ≤ R} .

Accordingly, we denote the truncated domain of the score function by D = [−R,R]d × [0, 1]dy ∪
{Ø}. We consider the truncated loss function class defined as

S(R) =
{
ℓ(·, ·;φ) : D → R

∣∣∣∣s ∈ F} . (26)

B.2 PROOF OF KEY THEOREMS

B.2.1 PROOF OF THEOREM 1

We prove (13) in Theorem 1 by mathematical induction. Consider the following updates:

V (t+1)(si) = max
a∈A

(∫
r∈R

r (si,a)P (r | si,a) dr + γ

∫
s′∈S

P (s′ | si,a)V (t)(s′)ds′
)

(27)

d(t+1)(si, sj) = max
a∈A

(
cRWp(d

(t)) (P (r | si,a) , P (r | sj ,a))

+ cTWp(d
(t)) (P (s′ | si,a) , P (s′ | sj ,a))

)
. (28)
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We need to show that the following holds ∀t ∈ N:

cR

∣∣∣V (t)(si)− V (t)(sj)
∣∣∣ ≤ d(t)(si, sj), ∀(si, sj) ∈ S × S. (29)

Then, (13) holds when t→∞. The base case for mathematical induction, t = 0, holds since:∣∣∣V (0)(si)− V (0)(sj)
∣∣∣ = d(0)(si, sj) = 0, ∀(si, sj) ∈ S × S.

Assuming (29) holds at t. Then, in the general case for t+ 1:

cR|V (t+1)(si)− V (t+1)(sj)|

=cR

∣∣∣max
a∈A

(∫
r∈R

r (si,a)P (r | si,a) dr + γ

∫
s′∈S

P (s′ | si,a)V (t)(s′)ds′
)

−max
a∈A

(∫
r∈R

r (sj ,a)P (r | sj ,a) dr + γ

∫
s′∈S

P (s′ | sj ,a)V (t)(s′)ds′
) ∣∣∣

≤cR
∣∣∣max
a∈A

(∫
r∈R

r (si,a)P (r | si,a) dr −
∫
r∈R

r (sj ,a)P (r | sj ,a) dr

+ γ

∫
s′∈S

(P (s′ | si,a)− P (s′ | sj ,a))V (t)(s′)ds′
)∣∣∣

≤cR max
a∈A

∣∣∣∣∫
r∈R

r (si,a)P (r | si,a) dr −
∫
r∈R

r (sj ,a)P (r | sj ,a) dr
∣∣∣∣

+ cRγmax
a∈A

∣∣∣∣∫
s′∈S

(P (s′ | si,a)− P (s′ | sj ,a))V (t)(s′)ds′
∣∣∣∣

=cR max
a∈A

∣∣∣∣∫
r∈R

r (si,a)P (r | si,a) dr −
∫
r∈R

r (sj ,a)P (r | sj ,a) dr
∣∣∣∣

+ cT max
a∈A

∣∣∣∣∫
s′∈S

(P (s′ | si,a)− P (s′ | sj ,a))
cRγ

cT
V (t)(s′)ds′

∣∣∣∣ . (30)

Notice that by the induction hypothesis, cRV (t)(s) is a 1-Lipschitz function with respect to the
distance function d(t), i.e., cRV (t)(s) ∈ Lip1,d(t) . Since γ ≤ cT by assumption, cRγcT V (t)(s) is also
1-Lipschitz. With the assumption of r (s,a) ∈ Lip1,d(t) , using the dual form of the W1 metric in
(18):

cR|V (t+1)(si)− V (t+1)(sj)|

≤cRmax
a∈A

(
W1(d

(t))(P (r |si,a),P (r | sj ,a))
)
+cT max

a∈A

(
W1(d

(t))(P (s′ |si,a),P (s′ |sj ,a))
)

(31)

≤cRmax
a∈A

(
Wp(d

(t))(P (r |si,a),P (r | sj ,a))
)
+cT max

a∈A

(
Wp(d

(t))(P (s′ |si,a),P (s′ |sj ,a))
)

=d(t+1),

where the last inequality is due to Lemma 1.

B.2.2 PROOF OF THEOREM 2

To prove Theorem 2, we start with the following lemmas.

Lemma 3 (Value difference bound with causal state) Let ζ : Ŝ → S be a function mapping esti-
mated states (i.e., denoised observations) to causal states such that ζ(ŝi) = ζ(ŝj) is equivalent to
d(ŝi, ŝj) ≤ 2ϵ. For cR, cT ∈ [0, 1) and cR + cT < 1:

|V π(si)− Ṽ π(ζ(ŝi))| ≤
2ϵ

cR(1− γ)
, ∀si ∈ S. (32)

Proof found in Appendix B.3.2.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Lemma 4 (Boundedness condition for convergence) Assume S is compact. If the support of an
approximate dynamics model P̂ , i.e., S ′ = supp(P̂ ), is a closed subset of S, then there exists a
unique on-policy bisimulation metric d̂ of the form (12), and this metric is bounded:

supp(P̂ ) ⊆ S ⇒ diam(S; d̂) ≤ cR
1− cT

(rmax − rmin). (33)

Proof found in Appendix B.3.3.

Lemma 5 (Bisimulation distance error) Let cT ∈ [0, 1) and cR ≥ 0. Assume supp(P̂) ⊆ S and
1− (cR + cT)ap > 0. Then,

∥∥∥d− d̂∥∥∥
∞
≤ 2cR

1− (cR + cT)ap
Eϕ +

2cT
1− (cR + cT)ap

Eθ +
(cR + cT)(ap − 1)

1− (cR + cT)ap
diam(S; d), (34)

where ap = 2(p−1)/p and diam(S; d) ≤ cR
1−cT (rmax − rmin) based on Lemma 4.

Proof found in Appendix B.3.4.

For the remainder of this section, we assume p = 1.

Corollary 1 (Bisimulation distance error with p = 1) Let p = 1, with the remaining conditions
as in Lemma 5. Then ∥∥∥d− d̂∥∥∥

∞
≤ 2cR

1− cR − cT
Eϕ +

2cT
1− cR − cT

Eθ. (35)

When p = 1, we have ap = a1 = 1, giving the expression above.

Corollary 1 bounds the error between the true on-policy bisimulation distance and the optimal ap-
proximate bisimulation distance (i.e., the best distance function we can achieve with our encoder,
given the error in our forward dynamics model). However, we wish to bound the error in the value
function in terms of d̂ζ , not just d̂ (to take the error of the encoder ζ into account, as well as that of
the dynamics model).

First, we can bound the true bisimulation distance in terms of the encoder and model error. Using
Corollary 1 and the definition of bisimulation encoder, there is

∥∥∥d− d̂ζ∥∥∥
∞
≤
∥∥∥d− d̂∥∥∥

∞
+
∥∥∥d̂ζ − d̂∥∥∥

∞
≤ 2cR

1− cR − cT
Eϕ +

2cT
1− cR − cT

Eθ + Eζ . (36)

Thus, if we can relate d to the value function, we can also do so for d̂ζ , as a function of model error.

Finally, we look at bounding the difference in the state value function, using the approximate bisim-
ulation distance defined through the learned encoder. Let ϵ̂ be the aggregation radius in ζ-space
(meaning the maximum diameter with respect to d̂ζ per partition subset, or equivalence class, is at
most 2 ϵ̂ ):

sup
si,sj∈S

∥ζ(si)− ζ(sj)∥q ≤ 2ϵ̂.

Notice that ϵ̂ bounds the maximal diameter of the partition cells with respect to the learned metric,
using ζ, rather than the ground truth bisimulation distance.
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From the proof of Lemma 3, it readily follows that

(1− γ)|V (s)− Ṽ (ζ(ŝ))| ≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

d(s, z)dξ(z)

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

d̂ζ(s, z) + |d(s, z)− d̂ζ(s, z)|∞︸ ︷︷ ︸
A3

dξ(z)

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

2ϵ̂+A3 dξ(z)

= c−1
R (2ϵ̂+A3)

≤ 1

cR

(
2ϵ̂+ Eζ +

2cR
1− cR − cT

Eϕ +
2cT

1− cR − cT
Eθ
)
,

where the last inequality exists due to (36).

B.2.3 PROOF OF THEOREM 3

For conciseness, we denote y = (ŝt,at). Notice that we have the following decomposition:

W1(p(x|y), p̂(xk0 |y)) ≤W1(p(x|y), p(xk0 |y))+W1(p(x
k0 |y), p′(xk0 |y))

+W1(p
′(xk0 |y), p̂(xk0 |y)). (37)

Here, W1(p(x|y), p(xk0 |y)) follows from the correspondence between the forward and backward
processes, W1(p(x

k0 |y), p′(xk0 |y)) follows from the definitions of x and x′ (with the only differ-
ence in the initial distribution), where the latter denotes the result obtained by the true distribution.

We use another backward process as a transition term between x′
k and x′

k, which is defined as

dx′
k =

[
1

2
x′
k +∇ log pK−k(x

′
k|y)

]
dk + dŵk with x′

0 ∼ N(0, I). (38)

We denote the conditional distribution of x′
k on y as p′K−k(·|y). We then bound the three terms in

(37), as follows.

Bound the first term W1(p(x|y), p(xk0 |y)). Let X ∼ p(x|y) and Z ∼ N(0, I). Then,

W1(p(x|y), p(xk0 |y)) ≤ E[∥X −√αk0X + σk0Z∥] ≤ (1−√αk0)E[∥X∥] + σk0E[∥Z∥]

≤ (1−√αk0)
√
d+ σk0

√
d ≲

√
k0, (39)

where the last inequality holds due to σk√
αk

= O
(√

k
)

when k = o(1).

Bound the second term W1(p(x
k0 |y), p′(xk0 |y)). Since x′

k and xk are obtained through the
same backward SDE, but with different initial distributions, by Data Processing Inequality and
Pinsker’s Inequality (see e.g., Lemma 2 in Canonne (2022)), we have

W1(p(x
k0 |y), p′(xk0 |y)) ≲ TV(p(xk0 |y), p′(xk0 |y)) ≲

√
KL(p(xk0 |y)||p′(xk0 |y))

≲
√
KL(p(xK |y)||N(0, I)) ≲

√
KL(p(x|y)||N(0, I)) exp(−K).

Therefore, we obtain

W1(p(x
k0 |y), p′(xk0 |y)) ≲ exp(−K). (40)
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Bound the last term W1(p
′(xk0 |y), p̂(xk0 |y)). Although Assumption 2 does not ensure the

Novikov’s condition holds, according to Chen et al. (2023b), as long as we have a bounded sec-
ond moment for the score estimation error and finite KL divergence w.r.t. the standard Gaussian,
we can still adopt Girsanov’s Theorem and bound the KL divergence between any two distributions
produced from the same SDE. We restate the lemma in Fu et al. (2024) as follows:

Lemma 6 (Lemma D.4 in Fu et al. (2024)) Let p0 be a probability distribution, and let Y =
{Yk}k∈[0,K] and Y ′ = {Y ′

k}k∈[0,K] be two stochastic processes that satisfy the following SDEs:

dYk = s(Yk, k)dt+ dWk, Y0 ∼ p0;
dY ′

k = s′(Y ′
k, k)dk + dWk, Y ′

0 ∼ p0.

We further define the distributions of Yk and Y ′
k as pk and p′k, respectively. Suppose that∫

x

pk(x) ∥(s− s′)(x, k)∥
2
dx ≤ C, ∀k ∈ [0,K]. (41)

Then, we have

KL (pK |p′K) ≤
∫ K

0

1

2

∫
x

pk(x) ∥(s− s′)(x, k)∥
2
dxdk.

Therefore, we obtain

W1(p
′(xk0 |y), p̂(xk0 |y)) ≲ TV(p′(xk0 |y), p̂(xk0 |y)) ≲

√
KL(p′(xk0 |y), p̂(xk0 |y))

≲

√∫ K

k0

1

2

∫
xk

pk(xk|y) ∥φ̂(xk,y, k)−∇ log p(xk|y)∥2 dxkdk.

(42)

Given the state and action y⋆ = (s⋆,a⋆), we can generate an estimated conditional distribution
p(xk0 |s⋆,a⋆) using the backward diffusion process, arriving at

W1(p
′(xk0 |y), p̂(xk0 |y)) ≲

√∫ K

k0

1

2

∫
xk

p(xk|s⋆,a⋆) ∥φ̂(x, s⋆,a⋆, k)−∇ log p(xk|s⋆,a⋆)∥2dxdk

=

√√√√√∫Kk0 Exk

[
∥φ̂(xk, s⋆,a⋆, k)−∇ log p(xk|s⋆,a⋆)∥2

]
dk∫K

k0
Exk,s,a

[
∥φ̂(xk, s,a, k)−∇ log p(xk|s,a)∥2

]
dk
·
√
K

2
R(φ̂)

≤ T (s⋆,a⋆)
√
K

2
R(φ̂), (43)

where R(φ̂) is defined in Appendix B.1.3. Besides, the distribution coefficient T (s⋆,a⋆) is related
to the widely used concentrability coefficient – L∞ density ratio – in RL (Fan et al., 2020). Since
we use the score network F as a smoothing factor, i.e., the network class F may not be sensitive
to certain differences between the query (s⋆,a⋆) and the training data, T (s⋆,a⋆) is always smaller
than the concentrability coefficient.

When y = (ŝt,at) is unbounded, we can establish the following lemma:

Lemma 7 Suppose Assumption 2 holds. Given the ReLU neural network F(Mt,W, κ, L, P ), by
taking the network size parameter N = n

1
d+dy+2b , the early-stopping step k0 = n−O(1) and termi-

nal step K = O(log n), the empirical loss minimizer ŝ satisfies

E{xt,yt}n
t=1

[R(φ̂)] = O

(
log

1

k0
n−

2b
2ds+da+2b (log n)max(17,b)

)
. (44)

The proof of Lemma 7 is provided in Appendix B.3.5.
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Taking expectations w.r.t. the samples {xt, st,at}nt=1 and applying (44), we have

E{xt,ŝt,at}n
t=1

[
W1(p

′(xk0t |ŝt,at), p̂(x
k0
t |ŝt,at))

]
≲T (s⋆,a⋆)

√
K

2
log

1

k0
n−

2b
2ds+da+2b (log n)max(17,b).

We take k0 = n−
4b

2ds+da+2b−1 and K = 2β
2ds+da+2b log n to bound the expected total variation by

E{xt,ŝt,at}n
t=1

[
W1(p

′(xk0t |ŝt,at), p̂(x
k0
t |ŝt,at))

]
=T (s⋆,a⋆)O

(
n−

2b
2ds+da+2b (log n)max(19/2,(b+2)/2)

)
.

Putting all this together. We bound the divergence between p̂(xk0 |y) and the ground-truth con-
ditional data distribution p(x|y) as

E{xt,ŝt,at}n
t=1

[
W1(p(x|y), p̂(xk0 |y))

]
≤ T (s⋆,a⋆)O

(
n−

2b
2ds+da+2b (log n)max(19/2,(b+2)/2)

)
.

This proof is complete.

B.2.4 STATEMENT OF OVERALL CONVERGENCE

To analyze the convergence of E{ot,at,rt,ot+1}

∣∣∣V π(s)− Ṽ π(ζ(s))∣∣∣ is in essence to analyze

the convergence of lnc1 n
nc2

. This is because c1 = 6 and c2 = 2pR
2pR+ds+1 > 0 in

O(n−
2pR

2pR+ds+1 (log n)6); and c1 = max{ 192 ,
b+2
2 } > 0 and c2 = b

2ds+da+2b > 0 in
2cR+2cT
1−cT−cR T (s

⋆,a⋆)O
(
n−

b
2ds+da+2b (log n)max(19/2,(b+2)/2)

)
.

By applying L’Hôpital’s rule, it follows that limn→∞
lnc1 n
nc2

= limn→∞
c1 lnn

n×c2nc2−1 =

limn→∞
c1 lnn
c2nc2

= limn→∞
c1

n×c22nc2−1 = limn→∞
c1

c22n
c2

= 0, ∀c1, c2 > 0. As a result, both terms

O(n−
2pR

2pR+ds+1 (log n)6) and 2cR+2cT
1−cT−cR T (s

⋆,a⋆)O
(
n−

b
2ds+da+2b (log n)max{19/2,(b+2)/2}

)
on the

RHS of Eq. (15) converge to zero, as n → ∞. The estimated causal state Ṽ π(ζ(s)) in Eq. (15)
converges to within 2ϵ̂-neighborhood of the ground-truth causal state V π(s), i.e., the neighborhood
region of the ground-truth causal state V π(s) with the radius of ϵ̂. In other words, the asymptotic
convergence of the proposed algorithm is established, as n→∞.

B.3 AUXILIARY PROOF

B.3.1 PROOF OF REMARK 1

We first prove that the following fixed-point update is a contraction:

d(si, sj) :=max
a∈A

(cRWp(d) (P (r | si,a),P (r | sj ,a))+cTWp(d) (P (s′ | si,a),P (s′ | sj ,a))) ,

and invoke the Banach fixed-point theorem to show the existence of a unique metric.

First, consider the case where p = 1:

d(si, sj)− d′(si, sj)
=max

a∈A
(cRW1(d) (P (r | si,a) , P (r | sj ,a)) + cTW1(d) (P (s′ | si,a) , P (s′ | sj ,a)))

−max
a∈A

(cRW1(d
′) (P (r | si,a) , P (r | sj ,a)) + cTW1(d

′) (P (s′ | si,a) , P (s′ | sj ,a)))

≤max
a∈A

cR (W1(d) (P (r | si,a) , P (r | sj ,a))−W1(d
′) (P (r | si,a) , P (r | sj ,a)))

+ max
a∈A

cT (W1(d) (P (s′ | si,a) , P (s′ | sj ,a))−W1(d
′) (P (s′ | si,a) , P (s′ | sj ,a)))

=max
a∈A

cR (W1(d− d′ + d′) (P (r | si,a) , P (r | sj ,a))−W1(d
′) (P (r | si,a) , P (r | sj ,a)))

+ max
a∈A

cT(W1(d−d′+d′)(P (s′ |si,a),P (s′ |sj ,a))−W1(d
′)(P (s′ |si,a),P (s′ |sj ,a)))

≤max
a∈A

(cRW1∥d−d′∥∞(P (r |si,a),P (r |sj ,a))+cTW1 ∥d−d′∥∞(P (s′ |si,a),P (s′ |sj ,a)))

≤ (cR + cT) ∥d− d′∥∞ , ∀(si, sj) ∈ S × S.
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For cR + cT ∈ [0, 1), there exists a unique fixed-point due to the Banach fixed-point theorem.

Next, we consider the case where both P and π are deterministic, such that P is a delta distribu-
tion. Observe that for point masses, Wp(d)(δ(si), δ(sj)) = d(si, sj), due to Definition 3 of the
Wasserstein metric. Then:

d(si, sj)− d′(si, sj)
=max

a∈A
(cRW1(d) (P (r | si,a) , P (r | sj ,a)) + cTW1(d) (P (s′ | si,a) , P (s′ | sj ,a)))

−max
a∈A

(cRW1(d
′) (P (r | si,a) , P (r | sj ,a)) + cTW1(d

′) (P (s′ | si,a) , P (s′ | sj ,a)))

=max
a∈A

(cR (d (ri′ , rj′)− d′ (ri′ , rj′)) + cT (d (ri′ , rj′)− d′ (ri′ , rj′)))

≤ (cR + cT) ∥d− d′∥∞ , ∀(si, sj) ∈ S × S.

Then, the fixed point iterations that update the metric as d(n+1)(si, sj) ← F(d(n))(si, sj) can
eventually converge for finite MDPs.

B.3.2 PROOF OF LEMMA 3

Let ξ be a measure on S. Given a partition ζ(ŝ) ∈ Ŝ, i.e., a set of points in S clustered in an
ϵ-neighborhood such that ξ(ζ(ŝ)) > 0, we can define the reward function and transition function of
a ξ-average finite POMDP as ξ-average finite MDP in Theorem 3.21 of Ferns et al. (2011):

P̃ (r|ζ(ŝ),a) = 1

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

P (r|z,a)dξ(z), (45)

P̃ (ζ(ŝ′)|ζ(ŝ),a) = 1

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

P (ζ(ŝ′)|z,a)dξ(z). (46)

Then,

|V (s)− Ṽ (ζ(ŝ))|

=

∣∣∣∣max
a∈A

(∫
r∈R

r (s,a)P (r | s,a) dr + γ

∫
s′∈S

P (s′ | s,a)V (s′)ds′
)

−max
a∈A

(∫
r∈R

r (ζ(ŝ),a) P̃ (r|ζ(ŝ),a)dr + γ

∫
ζ(ŝ′)′∈Ŝ

P̃ (ζ(ŝ′)|ζ(ŝ),a)Ṽ (ζ(ŝ′))dζ(ŝ′)

)∣∣∣∣
≤
∣∣∣∣max
a∈A

(∫
r∈R

(
r (s,a)P (r | s,a)− r (ζ(ŝ),a) P̃ (r|ζ(ŝ),a)

)
dr

+ γ

(∫
s′∈S

P (s′ | s,a)V (s′)ds′ −
∫
ζ(ŝ′)∈Ŝ

P̃ (ζ(ŝ′)|ζ(ŝ),a)Ṽ (ζ(ŝ′))dζ(ŝ′)

))∣∣∣∣
≤max

a∈A

∣∣∣∣∫
r∈R

(
r (s,a)P (r | s,a)− r (ζ(ŝ),a) P̃ (r|ζ(ŝ),a)

)
dr

∣∣∣∣︸ ︷︷ ︸
A1

+max
a∈A

γ

∣∣∣∣∣
∫
s′∈S

P (s′ | s,a)V (s′)ds′ −
∫
ζ(ŝ′)∈Ŝ

P̃ (ζ(ŝ′)|ζ(ŝ),a)Ṽ (ζ(ŝ′))dζ(ŝ′)

∣∣∣∣∣︸ ︷︷ ︸
A2

.

(47)
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Therefore, we can obtain

A1 =

∣∣∣∣∫
r∈R

(
r (s,a)P (r | s,a)− r (ζ(ŝ),a) P̃ (r|ζ(ŝ),a)

)
dr

∣∣∣∣
≤ 1

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

∣∣∣∣∫
r∈R

(
r (s,a)P (r | s,a)− r (ζ(ŝ),a) P̃ (r|ζ(ŝ),a)

)
dr

∣∣∣∣ dξ(z)
≤

c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

cRW1(d) (P (r | s,a) , P (r|z,a)) dξ(z)

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

cRWp(d) (P (r | s,a) , P (r|z,a)) dξ(z), (48)

where the penultimate inequality holds because r(s,a) is 1-Lipschitz and also because of the dual
form of the W1 metric, and the last inequality is due to Lemma 1. Similarly, we can have

A2 =γ

∣∣∣∣∣
∫
s′∈S

P (s′ | s,a)V (s′)ds′ −
∫
ζ(ŝ′)∈Ŝ

P̃ (ζ(ŝ′)|ζ(ŝ),a)Ṽ (ζ(ŝ′))dζ(ŝ′)

∣∣∣∣∣
≤ γ

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

∣∣∣∣∣
∫
s′∈S

P (s′ | s,a)V (s′)ds′ −
∫
ζ(ŝ′)∈Ŝ

P (ζ(ŝ′)|z,a)Ṽ (ζ(ŝ′))dζ(ŝ′)

∣∣∣∣∣ dξ(z)
≤ γ

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

∣∣∣∣∫
s′∈S

(
P (s′ | s,a)V (s′)− P (ζ(ŝ′)|z,a)Ṽ (ζ(ŝ′))

)
ds′
∣∣∣∣ dξ(z)

≤ γ

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

∣∣∣∣∫
s′∈S

(P (s′ | s,a)V (s′)− P (s′|z,a)V (s′)) ds′
∣∣∣∣ dξ(z)

+
γ

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

∣∣∣∣∫
s′∈S

(
P (ζ(ŝ′) | z,a)

(
V (s′)− Ṽ (ζ(ŝ′))

))
ds′
∣∣∣∣ dξ(z). (49)

With ∥·∥∞ defined the supremum norm over S, there is

A2 ≤
γ

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

∣∣∣∣∫
s′∈S

(P (s′ | s,a)− P (s′|z,a))V (s′)ds′
∣∣∣∣ dξ(z) + ∥∥∥V − Ṽ ∥∥∥∞

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

cT

∣∣∣∣∫
s′∈S

(P (s′ | s,a)− P (s′|z,a)) cRγ
cT

V (s′)ds′
∣∣∣∣ dξ(z) + γ

∥∥∥V − Ṽ ∥∥∥
∞

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

cTW1(d) (P (s′ | s,a) , P (s′|z,a)) dξ(z) + γ
∥∥∥V − Ṽ ∥∥∥

∞

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

cTWp(d) (P (s′ | s,a) , P (s′|z,a)) dξ(z) + γ
∥∥∥V − Ṽ ∥∥∥

∞
, (50)

where the penultimate inequality holds because cRγ
cT
V (s) is 1-Lipschitz together with the dual form

of the W1 metric, and the last inequality is due to Lemma 1. Hence,

|V (s)− Ṽ (ζ(ŝ))| ≤ max
a∈A

(A1 +A2)

≤
c−1
R

ξ(ζ(ŝ))

∫
z∈ζ(ŝ)

d(s, z)dξ(z) + γ
∥∥∥V − Ṽ ∥∥∥

∞
(51)

≤ c−1
R 2ϵ+ γ

∥∥∥V − Ṽ ∥∥∥
∞
. (52)

Thus, taking the supremum on the LHS over the state space S:

|V (s)− Ṽ (ζ(ŝ))| ≤ 2ϵ

cR(1− γ)
, ∀s ∈ S. (53)
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B.3.3 PROOF OF LEMMA 4

Lemma 8 (Diameter of S is bounded) Let d : S × S → [0,∞) be any bisimulation metric:

diam(S; d) := sup
si,sj∈S×S

d(si, sj) ≤
cR

1− cT
(rmax − rmin). (54)

This lemma is a slight generalization of the distance bounds given in Theorem 3.12 of Ferns et al.
(2011), and the proof follows similarly to Ferns et al. (2011):

d(si, sj) = max
a∈A

(cRWp(d) (P (r | si,a) , P (r | sj ,a)) + cTWp(d) (P (s′ | si,a) , P (s′ | sj ,a)))

≤ cR(rmax − rmin) + cTdiam(S; d), ∀(si, sj) ∈ S × S,
due to Lemma 2 (upper bound as p→∞). Then,

diam(S; d) ≤ cR(rmax − rmin) + cTdiam(S; d) ≤ cR
1− cT

(rmax − rmin).

The existence proof is almost identical to the proof of Remark 1, except that replaces P with an
approximate dynamics model P̂ . This is possible since S is compact by assumption such that
supp(P̂ ) ⊆ S is also compact:

d(si, sj)− d′(si, sj)

=max
a∈A

[
cRW1(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
+ cTW1(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)]
−max

a∈A

[
cRW1(d

′)
(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
+ cTW1(d

′)
(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)]
≤max

a∈A
cR

[
W1(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−W1(d

′)
(
P̂ (r | si,a) , P̂ (r | sj ,a)

)]
+max

a∈A
cT

[
W1(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−W1(d

′)
(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)]
=max

a∈A
cR

[
W1(d− d′ + d′)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−W1(d

′)
(
P̂ (r | si,a) , P̂ (r | sj ,a)

)]
+max

a∈A
cT

[
W1(d−d′+d′)

(
P̂ (s′ |si,a),P̂ (s′ |sj ,a)

)
−W1(d

′)
(
P̂ (s′ |si,a),P̂ (s′ |sj ,a)

)]
≤max

a∈A

[
cRW1∥d−d′∥∞

(
P̂ (r |si,a) , P̂ (r |sj ,a)

)
+cTW1∥d−d′∥∞

(
P̂ (s′ |si,a),P̂ (s′ |sj ,a)

)]
≤ (cR + cT) ∥d− d′∥∞ , ∀(si, sj) ∈ S × S,
which implies F is a (cR+ cT)-contraction. Next, we proceed to prove that the distance is bounded.
First, note that due to Lemma 2:

supp(P̂ ) ⊆ S ⇒ sup
si,sj∈S×S

Wp(d̂)(P̂
π(·|si,a), P̂π(·|sj ,a)) ≤ diam(S; d̂), ∀p ≥ 1. (55)

Then, similarly to Lemma 8, we have

d̂(si, sj) = max
a∈A

(
cRWp(d̂)

(
P̂ (r |si,a) , P̂ (r |sj ,a)

)
+cTWp(d̂)

(
P̂ (s′ |si,a) , P̂ (s′ |sj ,a)

))
≤ cR(rmax − rmin) + cTdiam(S; d̂), ∀(si, sj) ∈ S × S,

which implies that:

diam(S; d̂) ≤ cR(rmax − rmin) + cTdiam(S; d̂) ≤ cR
1− cT

(rmax − rmin).

B.3.4 PROOF OF LEMMA 5

First, by the Wasserstein triangle inequality (Clement & Desch, 2008), we define the difference for
rewards and transitions, respectively:∣∣∣Wp(d) (P (r | si,a) , P (r | sj ,a))−Wp(d)

(
P̂ (r | ŝi,a) , P̂ (r | ŝ,a)

)∣∣∣ ≤ 2Eϕ; (56)∣∣∣Wp(d) (P (s′ | si,a) , P (s′ | sj ,a))−Wp(d)
(
P̂ (s′ | ŝ,a) , P̂ (s′ | ŝ,a)

)∣∣∣ ≤ 2Eθ. (57)
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Second, the convexity of dp implies that,

Wp

(
||d− d̂||∞ + d

)(
P̂ (s′ | s,a) , P̂ (s′ | s,a)

)
=

(
inf
ω∈Ω

E(si,sj)∼ω[(||d− d̂||∞ + d(si, sj))
p]

) 1
p

≤
(
inf
ω∈Ω

2p−1E(si,sj)∼ω[(||d− d̂||
p
∞ + d(si, sj)

p]

) 1
p

≤ap
(
||d− d̂||p∞ +W p

p (d)
(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)) 1
p

≤ap
([
||d− d̂||∞ +Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)]p)1/p
=ap

(
||d− d̂||∞ +Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

))
. (58)

Similarly, we obtain

Wp

(
||d− d̂||∞ + d

)(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
=

(
inf
ω∈Ω

E(si,sj)∼ω[(||d− d̂||∞ + d(si, sj))
p]

) 1
p

≤
(
inf
ω∈Ω

2p−1E(si,sj)∼ω[(||d− d̂||
p
∞ + d(si, sj)

p]

) 1
p

≤ap
(
||d− d̂||p∞ +W p

p (d)
(
P̂ (r | si,a) , P̂ (r | sj ,a)

)) 1
p

≤ap
([
||d− d̂||∞ +Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)]p)1/p
=ap

(
||d− d̂||∞ +Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

))
. (59)

Third, recall that when supp(P̂ ) ⊆ S, due to Lemma 2, we have:

Wp(d)
(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
≤ diam(S; d) (60)

Wp(d)
(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
≤ diam(S; d). (61)

Then, the difference in distances can be bounded by:∣∣Wp(d) (P (s′ | si,a) , P (s′ | sj ,a))−Wp(d̂)
(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣
≤
∣∣Wp(d̂)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣ (62)

+
∣∣Wp(d) (P (s′ | si,a) , P (s′ | sj ,a))−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣
≤
∣∣Wp(d̂)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣+ 2Eθ

=
∣∣Wp(d̂− d+ d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣+ 2Eθ

≤
∣∣Wp(∥d̂− d∥∞+d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣+2Eθ

=
∣∣Wp(∥d− d̂∥∞+d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣+2Eθ

≤
∣∣ap∥d− d̂∥∞ + apWp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)
−Wp(d)

(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣+ 2Eθ

≤ap∥d− d̂∥∞ + (ap − 1)diam(S; d) + 2Eθ, (63)
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where the second inequality holds due to (57), the penultimate inequality exists with (58), and the
last inequality comes from (60). Similarly, we get∣∣Wp(d) (P (r | si,a) , P (r | sj ,a))−Wp(d̂)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣
≤
∣∣Wp(d̂)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣
+
∣∣Wp(d) (P (r | si,a) , P (r | sj ,a))−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣
≤
∣∣Wp(d̂)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣+ 2Eϕ

=
∣∣Wp(d̂− d+ d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣+ 2Eϕ

≤
∣∣Wp(∥d̂− d∥∞ + d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣+ 2Eϕ

=
∣∣Wp(∥d− d̂∥∞ + d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣+ 2Eϕ

≤
∣∣ap∥d− d̂∥∞ + apWp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)
−Wp(d)

(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣+ 2Eϕ

≤ap∥d− d̂∥∞ + (ap − 1)diam(S; d) + 2Eϕ. (64)

We can then plug (63) and (64) into the difference between the true and approximate policy-
dependent bisimulation distances:

|d(si, sj)− d̂(si, sj)|

≤max
a∈A

(
cR

∣∣∣Wp(d) (P (r | si,a) , P (r | sj ,a))−Wp(d̂)
(
P̂ (r | si,a) , P̂ (r | sj ,a)

)∣∣∣)
+max

a∈A

(
cT

∣∣∣Wp(d) (P (s′ | si,a) , P (s′ | sj ,a))−Wp(d̂)
(
P̂ (s′ | si,a) , P̂ (s′ | sj ,a)

)∣∣∣)
≤cR

∣∣∣ap∥d− d̂∥∞ + (ap − 1)diam(S; d) + 2Eϕ
∣∣∣

+ cT

∣∣∣ap∥d− d̂∥∞ + (ap − 1)diam(S; d) + 2Eθ
∣∣∣ ;

∥d− d̂∥∞ ≤ 2cREϕ + 2cTEθ + (cR + cT)ap∥d− d̂∥∞ + (cR + cT)(ap − 1)diam(S; d);

∥d− d̂∥∞ ≤
2cR

1− (cR + cT)ap
Eϕ +

2cT
1− (cR + cT)ap

Eθ +
(cR + cT)(ap − 1)

1− (cR + cT)ap
diam(S; d),

where the second-last inequality follows by taking the supremum over states for both sides.

B.3.5 PROOF OF LEMMA 7

First, we prove the approximation theory for using ReLU neural networks to approximate the con-
ditional score, that is

Lemma 9 Under Assumption 2, for sufficiently large N and constant Cα > 0, by taking terminal
step K = Cα logN , there exists s ∈ F(Mt,W, κ, L, P ) such that for all y ∈ [0, 1]dy and k ∈
[0,K], it holds that∫

xk1

∥ζ(xk1 ,y, k1)−∇ log pk1(x
k1 |y)∥22 · pk1(x

k1 |y)dxk1

+

∫
xk2

∥ζ(xk2 ,y, k2)−∇ log pk2(x
k2 |y)∥22 · pk2(x

k|y)dxk2 =O
(
B2

σ2
k

·N− 2b
d+dy · (logN)b+1

)
,

(65)
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where δ ≤ k1 ≤ K and 0 ≤ k2 ≤ K. The hyperparameters in the ReLU neural network class F
satisfy

Mk = O
(√

logN/σk

)
, W = O

(
N log7N

)
,

κ = exp
(
O(log4N)

)
, L = O(log4N), P = O

(
N log9N

)
.

The proof of Lemma 9 is provided in Appendix B.3.6. According to Lemma 9, we have:

Lemma 10 Suppose that we configure the network parameters as Lemma 9

Mk = O
(√

logN/σt

)
, W = O

(
N log7N

)
,

κ = exp
(
O(log4N)

)
, L = O(log4N), P = O

(
N log9N

)
.

We denote mk = Mk/
√
logN . Then for any s ∈ F(Mk,W, κ, L, P ) and (x,y) ∈ D, we have

|ℓ(s,x,y)| ≲
∫K
k0
m2
kdk ≜ M . In particular, if we take k0 = n−O(1) and K = O(log n), we have

M = O(log k0) for mk = 1
σk

, δ ≥ k0, and M = O
(

1
k0

)
for mk = 1

σ2
k

, respectively.

The proof of the lemma is provided in Appendix B.3.8. Moreover, to convert our approximation
guarantee to statistical theory, we need to calculate the covering number of the loss function class
S(R), which is defined as follows.

Definition 6 We denote N (ϱ,F , ∥·∥) to be the ϱ−covering number of any function class F w.r.t.
the norm ∥·∥, i.e.,

N (ϱ,F , ∥·∥) = min {N : ∃ {fi}nt=1 ⊆ F , s.t. ∀f ∈ F ,∃i ∈ [N ], ∥fi − f∥ ≤ ϱ} .

The following lemma presents the covering number of S(R):

Lemma 11 Given ϱ > 0, when ∥x∥∞ ≤ R, the ϱ−covering number of the loss function class S(R)
w.r.t. ∥·∥L∞D satisfies

N
(
ϱ,S(R), ∥·∥L∞D

)
≲

(
2L2(W max(R,K) + 2)κLWL+1 logN

ϱ

)2P

. (66)

Here the norm ∥·∥L∞D is defined as

∥f(·, ·)∥L∞D = max
x∈[−R,R]d,y∈[0,1]dy∪{Ø}

|f(x,y)| .

The proof is provided in Appendix B.3.9. Particularly, under the network configuration in Lemma 9,
we know that log covering number is bounded by

logN ≲ N log9N

(
Poly(log logN) + Poly(log logN) logN logR+ log8N + log

1

ϱ

)
≲ N log9N

(
log8N + log2N logR+ log

1

ϱ

)
. (67)

With the Lemmas 9, 10, and 11 introduced above, we now begin our proof of Lemma 7. We denote
the true score by φ⋆(x,y, k) = ∇ log p(xk|y) if y ̸= Ø and φ⋆(x,Ø, k) = ∇ log p(xk). We create
n number of i.i.d ghost samples, as given by

(x′
1,y

′
1), (x

′
2,y

′
2), ..., (x

′
n,y

′
n) ∼ pdata(xδ,y).

SinceR⋆(φ⋆) = 0 andR⋆(φ) differs ℓ(φ) by a constant for any φ, it suffices to bound

R⋆(φ̂) = R⋆(φ̂)−R⋆(φ⋆) = ℓ(φ̂)− ℓ(φ⋆) = E{x′
i,y

′
i}nt=1

[
1

n

n∑
t=1

(ℓ(x′
t,y

′
t; φ̂)− ℓ(x′

t,y
′
t;φ

⋆))

]
.

(68)
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Define

ℓ1 =
1

n

n∑
t=1

(ℓ(xt,yt; φ̂)− ℓ(xt,yt;φ⋆)) , ℓtr1 =
1

n

n∑
t=1

(
ℓtr(xt,yt; φ̂)− ℓtr(xt,yt;φ⋆)

)
and

ℓ2 =
1

n

n∑
t=1

(ℓ(x′
t,y

′
t; φ̂)− ℓ(x′

t,y
′
t;φ

⋆)) , ℓtr2 =
1

n

n∑
t=1

(
ℓtr(x′

t,y
′
t; φ̂)− ℓtr(x′

t,y
′
t;φ

⋆)
)
.

We decompose E{xt,yt}n
t=1

[R⋆(φ̂)] into

E{xt,yt}n
t=1

[R⋆(φ̂)] =E{xt,yt}n
t=1

[
ℓtr1 − ℓ1

]︸ ︷︷ ︸
B1

+E{xt,yt}n
t=1

[
E{x′

t,y
′
t}

n
t=1

[
ℓ2 − ℓtr2

]]
︸ ︷︷ ︸

B2

(69)

+ E{xt,yt}n
t=1

[
E{x′

t,y
′
t}

n
t=1

[
ℓtr2
]
− ℓtr1

]
︸ ︷︷ ︸

C

(70)

+ E{xt,yt}n
t=1

[ℓ1]︸ ︷︷ ︸
D

. (71)

Bounding Terms B1 and B2. Since we have for any φ ∈ F (φ can depend on x,y),

Ex,y

[∣∣ℓ(x,y;φ)− ℓtr(x,y;φ)∣∣]
=

∫ K

k0

1

K − k0

∫
y

∫
∥x∥>R

Eτ,xk|x0=x̂0

[∥∥φ(xk, τy, k)−∇ log ζ(xk|x0)
∥∥2
2

]
p(x|y)p(y)dxdydk

+

∫ K

δ

1

K − δ

∫
y

∫
∥x∥>R

Eτ,xk|xδ=x

[∥∥φ(xk, τy, k)−∇ log ζ(xk|xδ)
∥∥2
2

]
p(x|y)p(y)dxdydk

≤2
∫ K

k0

1

K−k0

∫
y

∫
∥x∥>R

Eτ,xk|x0=x̂0

[∥∥φ(xk, τy, k)∥∥2
2
+
∥∥∇ log ζ(xk|x0)

∥∥2
2

]
p(x|y)p(y)dxdydk

+2

∫ K

δ

1

K−δ

∫
y

∫
∥x∥>R

Eτ,xk|xδ=x

[∥∥φ(xk, τy, k)∥∥2
2
+
∥∥∇ log ζ(xk|xδ)

∥∥2
2

]
p(x|y)p(y)dxdydk

≲
∫ K

k0

1

logN

∫
∥x∥>R

Eτ,xk|x0=x̂0

[
m2
k logN +

∥∥∇ log ζ(xk|x0)
∥∥2
2

]
exp(−C2 ∥x∥22 /2)dxdt

+

∫ K

δ

1

logN

∫
∥x∥>R

Eτ,xk|xδ=x

[
m2
k logN +

∥∥∇ log ζ(xk|x0)
∥∥2
2

]
exp(−C ′

2 ∥x∥
2
2 /2)dxdt

≲ exp
(
−C2R

2
)
R

∫ K

k0

m2
kdk + exp

(
−C2R

2
) ∫ K

k0

1

σ2
k

dk

+ exp
(
−C ′

2R
2
)
R

∫ K

δ

m2
kdk + exp

(
−C ′

2R
2
) ∫ K

δ

1

σ2
k

dk

≲ exp
(
−C2R

2
)
RM, (72)

where the second inequality follows from the sub-Gaussian property of p(x|y) under As-
sumption 2, and the third inequality invokes the fact Exk|x0=x

[∥∥∇ log p(xk|x0)
∥∥2
2

]
= 1/σ2

k

and Exk|xδ=x

[∥∥∇ log p(xk|xδ)
∥∥2
2

]
= 1/σ2

k. Thus, both terms B1 and B2 are bounded by

O
(
exp

(
−C2R

2
)
RM

)
.

Bounding Term C. For conciseness, we take z = (x,y). We denote ℓtr(x,y; φ̂) as ℓ̂(z)
and ℓtr(x,y;φ⋆) as ℓ⋆(z). For ϱ > 0 to be chosen later, let J = {ℓ1, ℓ2, ..., ℓN } be a ϱ-
covering of the loss function class S(R) with the minimum cardinality in the L∞ metric in the
bounded space D, and J be a random variable such that

∥∥∥ℓ̂− ℓJ∥∥∥
∞
≤ ϱ. Moreover, we define
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uj = max
{
A,
√
Ez [ℓj(z)− ℓ⋆(z)]

}
, where z ∼ Px,y is independent of {zt, z′t}

n
t=1. Besides, we

define

E = max
1≤j≤N

∣∣∣∣∣
n∑
t=1

(ℓj(zt)− ℓ⋆(zt))− (ℓj(z
′
t)− ℓ⋆(z′t))

uj

∣∣∣∣∣ .
Then we can further bound term C as follows:

|C| =

∣∣∣∣∣E{zi}n
t=1

[
1

n

n∑
t=1

(
ℓ̂(zt)− ℓ⋆(zt)

)
− E{z′

i}nt=1

[
n∑
t=1

(
ℓ̂(z′t)− ℓ⋆(z′t)

)]]∣∣∣∣∣
=

∣∣∣∣∣ 1nE{zt,z′
t}

n
t=1

[
n∑
i=1

((
ℓ̂(zt)− ℓ⋆(zt)

)
−
(
ℓ̂(z′t)− ℓ⋆(z′t)

))]∣∣∣∣∣
≤

∣∣∣∣∣ 1nE{zt,z′
t}

n
t=1

[
n∑
i=1

((ℓJ(zt)− ℓ⋆(zt))− (ℓJ(z
′
t)− ℓ⋆(z′t)))

]∣∣∣∣∣+ 2ϱ

≤ 1

n
E{zt,z′

t}
n
t=1

[uJE] + 2ϱ

≤ 1

2
E{zt,z′

t}
n
t=1

[
u2J
]
+

1

2n2
E{zt,z′

t}
n
t=1

[
E2
]
+ 2ϱ. (73)

Denote hj(z) = ℓj(z) − ℓ⋆(z) and ĥ(z) = ℓ̂(z) − ℓ⋆(z). Moreover, we define the truncated popu-

lation loss asRtr
⋆ (φ̂) = Ez

[
ĥ
]
, and define the truncated empirical loss as R̂tr

⋆(φ̂) =
1
n

∑n
t=1 ĥ(zt).

By (72) we know that |Rtr
⋆ (φ̂)−R⋆(φ̂)| ≲ exp

(
−C2R

2
)
RM . Now we bound E{zt,z′

t}
n
t=1

[
u2J
]

and E{zt,z′
t}

n
t=1

[
E2
]

separately.

By the definition of uJ , we have

E{zt,z′
t}

n
t=1

[
u2J
]
≤ A2 + E{zt,z′

t}
n
t=1

[Ez [hJ(z)]]

≤ A2 + E{zt,z′
t}

n
t=1

[
Ez

[
ĥ(z)

]]
+ 2ϱ

= A2 + E{zt,z′
t}

n
t=1

[
Rtr
⋆ (φ̂)

]
+ 2ϱ. (74)

Bounding term E{zt,z′
t}

n
t=1

[
E2
]
. Denote gj =

∑n
t=1

hj(zt)−hj(z
′
t)

uj
. It is easy to observe that

Ezt,z′
t

[
hj(zt)−hj(z

′
t)

uj

]
= 0 for any t, j. By independence of {gj}Nj=1, we have

E{zt,z′
t}

n
t=1

[
n∑
t=1

(
hj(zt)− hj(z′t)

uj

)2
]
≤

n∑
t=1

Ezt,z′
t

[(
hj(zt)

uj

)2

+

(
hj(z

′
t)

uj

)2
]

≤M
n∑
t=1

Ezt,z′
t

[
hj(zt)

u2j
+
hj(z

′
t)

u2j

]
≤ 2nM.

Since
∣∣∣hj(zt)−hj(z

′
t)

uj

∣∣∣ ≤ M
A and gj is centered, by Bernstein’s Inequality, we have: ∀j, there exists

Pr
[
g2j ≥ h

]
= 2Pr

[
n∑
t=1

hj(zt)− hj(z′t)
uj

≥
√
h

]
≤ 2 exp

(
− h/2

M(2n+
√
h

3A )

)
.

Thus, we have

Pr
[
E2 ≥ h

]
≤

N∑
j=1

Pr
[
g2j ≥ h

]
≤ 2N exp

(
− h/2

M(2n+
√
h

3A )

)
.
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Thus, ∀h0 > 0, there is

E{zt,z′
t}

n
t=1

[
E2
]
=

∫ h0

0

Pr
[
E2 ≥ h

]
dh+

∫ ∞

h0

Pr
[
E2 ≥ h

]
dh

≤ h0 +
∫ ∞

h0

2N exp

(
− h/2

M(2n+
√
h

3A )

)
dh

≤ h0 + 2N
∫ ∞

h0

[
exp

(
− h

8Mn

)
+ exp

(
−3A

√
h

4M

)]
dh

≤ h0 + 2N
[
8Mn exp

(
− h0
8Mn

)
+

(
8M
√
h0

3A
+

32M

9A2

)
exp

(
−3A

√
h0

4M

)]
.

Taking A =
√
h0/6n and h0 = 8Mn logN , we have

E{zt,z′
t}

n
t=1

[
E2
]
≤ 8Mn logN + 2

(
8Mn+ 16Mn+

16

logN

)
≲Mn logN . (75)

By applying the bounds (74), (75) to (73), we obtain that∣∣∣E{zt}n
t=1

[
R̂tr
⋆(φ̂)−Rtr

⋆ (φ̂)
]∣∣∣ ≲ 1

2

(
A2 + E{zt,z′

t}
n
t=1

[
Rtr
⋆ (φ̂)

]
+ 2ϱ

)
+
M

n
logN + 2ϱ

=
1

2
E{zt}n

t=1

[
Rtr
⋆ (φ̂)

]
+
M

n
logN +

7

2
ϱ.

Thus, we have

E{zt}n
t=1

[
Rtr
⋆ (φ̂)

]
≲ 2E{zt}n

t=1

[
R̂tr
⋆(φ̂)

]
+
M

n
logN + 7δ, (76)

which means that

C ≲ E{xt,yt}n
t=1

[
ℓtr1
]
+
M

n
logN + 7δ

≤ E{xt,yt}n
t=1

[ℓ1] + |A1|+
M

n
logN + 7δ

≲ D + exp
(
−C2R

2
)
RM +

M

n
logN + 7δ.

Bounding Term D For any φ, define R̂⋆(φ) = ℓ̂(φ) − ℓ̂(φ⋆). Then we have ℓ1 = R̂⋆(ŝ). Since
ŝ minimizes ℓ̂, we obtain that

R̂⋆(φ̂) = ℓ̂(ŝ)− ℓ̂(φ⋆) ≤ ℓ̂(φ)− ℓ̂(φ⋆) = R̂⋆(φ).
Thus, we have

D = E{zt}n
t=1

[
R̂⋆(φ̂)

]
≤ E{zt}n

t=1

[
R̂⋆(φ)

]
= R⋆(φ).

By taking minimum w.r.t. ζ ∈ F , we have D ≤ mins∈F R⋆(φ).

Balancing the error Now, combining the bounds for term B1, B2, C, and D and plugging the log
covering number (67), we have

E{zt}n
t=1

[R⋆(φ̂)] ≤2min
s∈F

∫ K

k0

1

K − k0
Eτ,xk,y

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
dk

+ 2min
s∈F

∫ K

δ

1

K − δ
Eτ,xk,y

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
dk

+O

(
M

n
Nd+dy log9N

(
log8N + log2N logR+ log

1

ϱ

))
+O

(
exp

(
−C2R

2
)
RM

)
+ 7ϱ. (77)
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By taking R =
√

(Cσ+2b) logN
C2(d+dy)

and ϱ = N−2b/(d+dy) and under Assumption 2, we have

E{zt}n
t=1

[R⋆(φ̂)] ≤2min
s∈F

∫ K

k0

1

K − k0
Eτ,xk,y

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
dk

+ 2min
s∈F

∫ K

δ

1

K − δ
Eτ,xk,y

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
dk

+O

(
M

n
N log17N

)
+O

(
MN−2b−Cσ

)
≤2min

s∈F

∫ K

k0

1

K − k0
Eτ,y

[
Exk

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2

]
dk

+ 2min
s∈F

∫ K

δ

1

K − δ
Eτ,y

[
Exk

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2

]
dk

+O

(
M

n
N log17N

)
+O

(
N

− 2b
d+dy

)
. (78)

We invoke the inequality M ≲ 1
δ ≤

1
k0

= NCσ for the second inequality of (78). Recall that for
any k > 0 and score approximator ζ(·, ·, k), we have

Eτ,xk,y

∥∥φ(xk, τy, k)−∇ log p(xk|τy)
∥∥2
2
=

1

2

∫
Rd

∥φ(x,Ø, k)−∇ log p(x)∥2 p(x)dx

+
1

2
Ey

[∫
Rd

∥φ(x,y, k)−∇ log p(x|y)∥2 p(x|y)dx
]
.

Therefore, we can invoke the score approximation error guarantee in Lemma 9 and Assumption 2
to bound the score estimation error. Particularly, under Assumption 2, we have M = O(1/k0). By
taking N = n(d+dy)/(d+dy+b) and invoking Lemma 9, the error is bounded by

E{zt}n
t=1

[R(φ̂)] ≤ 2E{zt}n
t=1

[R⋆(φ̂)] ≲
1

t0
n
− b

d+dy+b logmax(17,d+b/2+1) n. (79)

Similarly, under Assumption 2, we have M = O(log 1
k0
). By taking N = n(d+dy)/(d+dy+2b) and

invoking Lemma 9, the conditional score error is bounded by

E{zt}n
t=1

[R(φ̂)] ≲ log
1

t0
n
− 2b

d+dy+2b logmax(17,(b+1)/2) n. (80)

We complete our proof.

B.3.6 PROOF OF LEMMA 9

We start with the following assumption:

Assumption 4 Let C and C2 be two positive constants and function f ∈ Hb(Rd × [0, 1]dy , B) for
a constant radius B. We assume f(x,y) ≥ C for all (x,y) and the conditional density function
p(x|y) = exp(−C2 ∥x∥22 /2) · f(x,y).

Under Assumption 4, we have the following lemma paraphrased from Fu et al. (2024).

Lemma 12 (Fu et al. (2024)) For sufficiently large N and constants Cσ, Cα > 0, by taking early-
stopping step K0 = N−Cσ and terminal step K = Cα logN , there exists s ∈ F(Mt,W, κ, L, P )
such that for all y ∈ [0, 1]dy and k ∈ [K0,K], it holds that∫

Rd

∥φ(x,y, k)−∇ log pk(x|y)∥22 · pk(x|y)dx = O
(
B2

σ2
k

·N− 2b
d+dy · (logN)b+1

)
.

The hyperparameters in the ReLU neural network class F satisfy

Mt = O
(√

logN/σt

)
, W = O

(
N log7N

)
,

κ = exp
(
O(log4N)

)
, L = O(log4N), P = O

(
N log9N

)
.
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Based on the Assumptions 2, 4 and Lemma 12, the proposed loss function can be divided into the
following two parts:

l1 =

∫
xk

∥φ(xk,y, k)−∇ log pk(x
k|y)∥22 · pk(x

k|y)dxk for all δ ≤ k ≤ K, (81a)

l2 =

∫
xk

∥φ(xk,y, k)−∇ log pk(x
k|y)∥22 · pk(x

k|y)dxk for all 0 ≤ k ≤ K. (81b)

where xδ ∼ pdata(x
δ|y) and x0 = 1√

ᾱδ

(
xδ −

√
1− ᾱδϵ

)
. Next, we analyze l1 and l2 separately.

Part 1: Proof of l1 For l1, each conditional distribution in the forward process satisfies Assump-
tion 4, leading to the following lemma. The detailed proof can be found in Appendix B.3.7.

Lemma 13 Under Assumption 2, for any k ≥ 0, letC andC3 be two positive constants and function
f ∈ Hb(Rd× [0, 1]dy , B) for a constant radius B. We assume f(xk,y) ≥ C for all (xk,y) and the
conditional density function p(xk|y) = exp(−C3

∥∥xk∥∥2
2
/2) · f(xk,y), where

p(xk|y) =
∫
Rd

p(xtrue|y)
1

σdk(2π)
d/2

exp

(
−
∥∥√αkxtrue − xk

∥∥2
2σ2

k

)
dxtrue.

According to Lemma 13, Assumption 4 holds for any k ≥ 0. Therefore, based on Lemma 12, by
replacing K0 with δ in (81a), we can derive the following corollary:

Corollary 2 Suppose Assumption 2 holds. For sufficiently large N and constant Cα > 0, by taking
terminal step K = Cα logN , there exists s ∈ F(Mt,W, κ, L, P ) such that for all y ∈ [0, 1]dy and
k ∈ [δ,K], it holds that

l1 = O
(
B2

σ2
k

·N− 2b
d+dy · (logN)b+1

)
. (82)

The hyperparameters in the ReLU neural network class F satisfy

Mt = O
(√

logN/σt

)
, W = O

(
N log7N

)
,

κ = exp
(
O(log4N)

)
, L = O(log4N), P = O

(
N log9N

)
.

Part 2: Proof of l2 Based on the diffusion model, we have x0 = 1√
ᾱδ

(
xδ −

√
1− ᾱδϵ

)
, where ϵ

follows a standard normal distribution. Thus, we only need to prove that p(x0|y) satisfies Assump-
tion 4. Specifically, we can derive:

ϵ =
xδ −

√
ᾱδx

0

√
1− ᾱδ

, (83)

where

p(ϵ) =
1

(2π)d/2
exp

(
−∥ϵ∥

2
2

2

)
. (84)

By substituting (83) into (84), we obtain

p(ϵ|x0,xδ,y) =
1

(2π)d/2
exp

(
−∥x

δ −
√
ᾱδx

0∥22
2(1− ᾱδ)

)
. (85)

According to the change of variables formula, there is

p(x0|xδ,y) = 1

σdδ (2π)
d/2

exp

(
−∥x

0 − xδ/
√
ᾱδ∥22

2σ2
δ

)
. (86)

Therefore, p(x0|xδ,y) follows a normal distribution with mean xδ/
√
ᾱδ and covariance σδI, where

σδ =
√
(1− ᾱδ)/(ᾱδ).
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From (86), it readily follows that

p(x0|y) =
∫
Rd

p(x0|xδ,y)p(xδ|y)dxδ

=

∫
Rd

p(xδ|y) 1

σdδ (2π)
d/2

exp

(
−∥x

0 − xδ/
√
ᾱδ∥22

2σ2
δ

)
dxδ. (87)

As a result, p(x0|y) satisfies Assumption 4. Then, assuming Cσ in Lemma (12) is sufficiently large,
we can replacing K0 with 0 and obtain the final conclusion, that is:

Corollary 3 Suppose Assumption 2 holds. For sufficiently large N and constant Cα > 0, by taking
terminal step K = Cα logN , there exists s ∈ F(Mt,W, κ, L, P ) such that for all y ∈ [0, 1]dy and
k ∈ [0,K], it holds that

l2 = O
(
B2

σ2
k

·N− 2b
d+dy · (logN)b+1

)
. (88)

The hyperparameters in the ReLU neural network class F satisfy

Mt = O
(√

logN/σt

)
, W = O

(
N log7N

)
,

κ = exp
(
O(log4N)

)
, L = O(log4N), P = O

(
N log9N

)
.

Part 3: Summing l1 and l2 We obtain the final neural network approximation error by summing
(82) and (88). Lemma 9 is proved.

B.3.7 PROOF OF LEMMA 13

Under Assumption 1, we have

pt(x
k|y)

=

∫
Rd

p(xtrue|y)
1

σdk(2π)
d/2

exp

(
−
∥∥√αkxtrue − xk

∥∥2
2σ2

k

)
dxtrue

=

∫
Rd

exp(−
C2 ∥xtrue∥22

2
) · f(xtrue,y)

1

σdk(2π)
d/2

exp

(
−
∥∥√αkxtrue − xk

∥∥2
2σ2

k

)
dxtrue

=

∫
Rd

f(xtrue,y)
1

σdk(2π)
d/2

exp

(
−
∥∥√αkxtrue − xk

∥∥2 + C2σ
2
k ∥xtrue∥22

2σ2
k

)
dxtrue

=

∫
Rd

f(xtrue,y)
1

σdk(2π)
d/2

exp

(
−
∥∥(αk + C2σ

2
k)xtrue −

√
αkx

k
∥∥2 + C2σ

2
k

∥∥xk∥∥2
2σ2

k(αk + C2σ2
k)

)
dxtrue

=exp

(
−

C2

∥∥xk∥∥2
2

2(αk + C2σ2
k)

)∫
Rd

f(xtrue,y)

(2π)d/2σdk
exp

(
−
∥∥(αk + C2σ

2
k)xtrue −

√
αkx

k
∥∥2

2σ2
k(αk + C2σ2

k)

)
dxtrue

=exp

(
−

C2

∥∥xk∥∥2
2

2(αk + C2σ2
k)

)∫
Rd

f(xtrue,y)

(2π)d/2σdk
exp

(
−
∥∥xtrue −

√
αkx

k/(αk + C2σ
2
k)
∥∥2

2σ2
k/(αk + C2σ2

k)

)
dxtrue︸ ︷︷ ︸

fk(xk,y)

.

(89)

With f ∈ Hb(Rd× [0, 1]dy , B) and f(xtrue,y) ≥ C in Assumption 2, there exists two constants B′

and C ′, such that fk ∈ Hb(Rd× [0, 1]dy , B′) and f(xk,y) ≥ C ′ holds. Let C3 = C2/(αk+C2σ
2
k),

Lemma 13 is proved.
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B.3.8 PROOF OF LEMMA 10

By the definition of ℓ(x,y;φ), we have: ∀x,y and s ∈ F

ℓ(x,y;φ) ≤2
∫ T

k0

1

K − k0
Eτ,xk|x0=x̂0

[∥∥φ(xk, τy, k)∥∥2
2
+
∥∥∇ log pt(x

k|x̂0)
∥∥2
2

]
dk

+ 2

∫ T

δ

1

K − δ
Eτ,xk|xδ=x

[∥∥φ(xk, τy, k)∥∥2
2
+
∥∥∇ log pt(x

k|xδ)
∥∥2
2

]
dk

≲
∫ T

k0

1

K − k0
Eτ,xk|x0=x̂0

[
m2
t logN +

∥∥∇ log pt(x
k|x̂0)

∥∥2
2

]
dk

+

∫ T

δ

1

K − δ
Eτ,xk|xδ=x

[
m2
t logN +

∥∥∇ log pt(x
k|xδ)

∥∥2
2

]
dk

≲
∫ K

k0

M2
kdk +

∫ K

k0

1

K − k0
1

σ2
k

dk +

∫ K

δ

M2
kdk +

∫ K

δ

1

K − δ
1

σ2
k

dk

≲
∫ K

k0

M2
kdk +

∫ K

δ

M2
kdk ≲

∫ K

k0

M2
kdk =M,

where we invoke |φ| ≲ mk

√
logN for the second inequality and 1/σk ≲ mk for the last inequality.

B.3.9 PROOF OF LEMMA 11

We first introduce a standard result of bounding the covering number of a ReLU neural network.

Lemma 14 (Chen et al. (2022), Lemma.7) Suppose ϱ > 0 and the input z satisfies ∥z∥∞ ≤ R,
the ϱ−covering number of the neural network class F(W,κ,L, P ) w.r.t. ∥·∥L∞

satisfies

N
(
ϱ,F(W,κ,L, P ), ∥·∥L∞

)
≤
(
2L2(WR+ 2)κLWL+1

ϱ

)P
. (90)

We remark that our input (x,y, t) is uniformly bounded by O(logN). Now we begin our proof of
Lemma 11. For any two ReLU networks φ1 and φ2 such that ∥φ1 − φ2∥L∞D ≤ ϵ, we can bound
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the L∞ error between ℓ(·, ·, φ1) and ℓ(·, ·, φ2). For any (x,y) ∈ D, we have

|ℓ(x,y, φ1)− ℓ(x,y, φ2)|

≤
∫ K

k0

1

K − k0
Eτ,xk|x0=x̂0

[ (
φ1(x

k, τy, k)− φ2(x
k, τy, k)

)⊤ (
φ1(x

k, τy, k)

+ φ2(x
k, τy, k)− 2p(xk|x̂0)

)]
dk

+

∫ K

δ

1

K − δ
Eτ,xk|xδ=x

[ (
φ1(x

k, τy, k)− φ2(x
k, τy, k)

)⊤
(
φ1(x

k, τy, k) + φ2(x
k, τy, k)− 2p(xk|xδ)

)]
dk

≲ϵ
∫ K

k0

1

K − k0
Eτ,xk|x0=x̂0

[∥∥φ1(x
k, τy, k) + φ2(x

k, τy, k)− 2p(xk|x̂0)
∥∥] dk

+ ϵ

∫ K

δ

1

K − δ
Eτ,xk|xδ=x

[∥∥φ1(x
k, τy, k) + φ2(x

k, τy, k)− 2p(xk|xδ)
∥∥] dk

≲ϵ
∫ K

k0

1

K − k0
Eτ,xk|x0=x̂0

[∥∥∥mk

√
logN + p(xk|x̂0)

∥∥∥] dk
+ ϵ

∫ K

δ

1

K − δ
Eτ,xk|xδ=x

[∥∥∥mk

√
logN + p(xk|xδ)

∥∥∥] dk
≲

ϵ

K − k0

(√
logN

∫ K

k0

mkdk +

∫ K

k0

1

σk
dk

)
+

ϵ

K − δ

(√
logN

∫ K

δ

mkdk +

∫ K

δ

1

σk
dk

)
≲ϵ logN, (91)

where x̂0 = 1√
ᾱδ

(
xδ −

√
1− ᾱδϵ

)
and ϵ follows a standard normal distribution. For the second

inequality, we invoke
∣∣φ(xk, τy, k)∣∣ ≤ mk

√
logN . In the last inequality, we invoke

mk ≤
1

σ2
k

≤ O
(
1

k

)
when t = o(1) and mk = O(1) when k ≫ 1,

and the inequality
1

K − δ
≲

1

logN
and δ ≥ k0.

SinceF is a concatenation of two ReLU neural networks of the same size and the domain of the input
z = (x,y, k) (or z = (x, k) for the unconditional score approximator) satisfies ∥(x,y, k)∥∞ ≤
max(R,K), by Lemma 14 we have the covering number of F bounded as

N
(
ϱ,F , ∥·∥L∞D

)
≲

(
2L2(W max(R,K) + 2)κLWL+1

ϱ

)2P

. (92)

Combining this result with (91), we can bound the covering number of S(R) as

N
(
ϱ,S(R), ∥·∥L∞D

)
≲

(
2L2(W max(R,K) + 2)κLWL+1 logN

ϱ

)2P

. (93)

The proof is complete.

C ADDITIONAL EXPERIMENTS

In this section, we provide additional details about the experiments, including the introduction of
environments and hyper-parameters of all algorithms.

C.1 DETAILS FOR ENVIRONMENTS

To examine the performance of the proposed algorithm in more challenging control tasks with higher
degrees of freedom (DOFs), we evaluated the performance of the proposed algorithm in the OpenAI
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Roboschool environments(Brockman et al., 2016). The Roboschool environments include a num-
ber of continuous robotic control tasks, such as teaching a multiple-joint robot to walk as fast as
possible without falling. The original Roboschool environments are nearly fully observable since
observations include the robot’s coordinates and (trigonometric functions of) joint angles, as well as
(angular and coordinate) velocities.

As in the POMDP classic control tasks, we also performed experiments in the POMDP versions
of the Roboschool environments. In the no-velocities (i.e., “-P”) cases, velocity information was
removed from raw observations; while in the velocities-only (i.e., “-V”) cases, only velocity infor-
mation was retained in raw observations. We summarize key information about each environment
in Table 2 with a maximum of 1000 steps.

Table 2: Information of environments in this paper
Name Dim of observation space DOF

RoboschoolAnt 28 8
RoboschoolAnt-V 11 8
RoboschoolAnt-P 17 8

RoboschoolHopper 15 3
RoboschoolHopper-V 6 3
RoboschoolHopper-P 9 3
RoboschoolWalker2d 22 6

RoboschoolWalker2d-V 9 6
RoboschoolWalker2d-P 13 6

C.2 HYPER-PARAMETERS

In this section, we describe the details of implementing our algorithm as well as its alternatives.
Summaries of hyperparameters can be found in Tables 3 and 4.

Table 3: Shared hyperparameters for all algorithms and tasks in this paper
Hyperparameter Description Value

/ Number of training iterates 600
|D| The size of replay memory 106

|B| The number of samples for each update 64
γ Discount factor 0.99
τ Fraction of updating the target network per gradient step 0.005
/ Learning rate for policy and value networks 0.0003
/ Learning rate for the entropy coefficient in SAC 0.0003
/ Target entropy in SAC 0.2
/ MLP layer sizes for policy network 256,256
/ MLP layer sizes for value network 256,256

Table 4: Hyperparameters for CSR-ADM
Hyperparameter Description Value

/ Learning rate of asynchronous diffusion model 0.0003
/ Learning rate of bisimulation metric learning 0.0003
/ Network for asynchronous diffusion model UNet
/ MLP layer size for bisimulation metric learning 256,256
K Total diffusion step 500
β Beta schedule linear
δ noise intensity of observation and reward 2
/ The Variance of Gaussian noise 0.5
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