
A Proofs

Lemma 1. Assume that Assumptions 1 and 2 hold, the iterations satisfy the following inequality for

all k 2 N:
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Therefore, the iterations generated by stochastic gradient algorithm satisfy
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Taking expectations in these inequalities with respect to the distribution of ⇠k, and noting that
(Wk+1, Hk+1)—but not (Wk, Hk)—depends on ⇠k, we obtain
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Combine Assumption 2 with Definition 4.6, we have the second moment of g(Wk, Hk; ⇠k) and
q(Wk, Hk; ⇠k) satisfy
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Proof of Theorem 1

Proof. Taking the total expectation of Eq. A.1 and from the condition of 0 < ↵̄  µ
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Summing both sides of this inequality for k 2 {1, ...,K} and recalling Assumption 2 (a) gives

Finf � F (W1, H1)  E[F (WK+1, HK+1)]� F (W1)

 �1
2
µ↵̄

KX

k=1

E
⇥
krFW (Wk, Hk)k22 + krFH(Wk, Hk)k22

⇤
+K↵̄

2
LM.

Rearranging above inequality and dividing further by K yields the result.

Proof of Theorem 2

Proof. The second condition in Eq. 4.10 ensures that lim
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generality, we may assume that ↵kLMG  µ for all k 2 N. Taking the total expectation of Eq. A.1,
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Then, we get the desired result by dividing Ak on the both sides.

B Sufficient Direction Constant

Assumption 2(b) states that, in expectation, the vectors g(Wk, Hk; ⇠k) and q(Wk, Hk; ⇠k) are sufficient
descent directions for F from Wk and Hk with norms comparable to the norms of the gradients. It
guarantees that the model moves towards the descending direction of the loss function. Following the
experimental setup in Section 5.1, we demonstrate that the proposed method empirically satisfies
Assumption 2(b), and visualize in Figure 7 the sufficient direction constant µ for the (partial) convo-
lutional layers of the four models during the end-to-end training using TREC. For SqueezeNet and
ResNet-34, we show one block as the representative, since the other blocks have similar performance.

Several insights can be drawn from Figure 7. (i) The value of µ of each convolutional layer is
consistently greater than zero, indicating that Assumption 2(b) is satisfied, further ensuring the
convergence of the TREC-equipped CNNs. (ii) The lower convolutional layers have smaller µ
compared to the upper ones. (iii) The value of µ gradually increases through iterations. In fact, the
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closer µ is to 1, the more the model moves toward the sufficient direction. Thus the gap between
µ and 1 reflects the difference between the current descent direction of the model and the steepest
descent direction [14]. The smaller values of µ in the lower convolutional layers in the early epochs
indicate a larger difference in the descent direction. It is because the guidance obtained from the loss
in the lower convolutinoal layers comes from back-propagation, which accumulates the disparities.
Small µ values in the early epochs help the model avoid being trapped in local minimums, while
large µ values in the later epochs help the model converge.

Figure 7: Sufficient direction constant µ.

C Single-Layer Performance

C.1 Single-Layer Performance Benefits

Table 3: Single-layer performance benefits. Conf. means configuration, L is the width of sub-
matrices, H is the number of hash functions, rt represents the redundancy ratio, and � Acc is the
accuracy difference.

Network Layer Conf.
rt Speedup �Acc.

(vs. Conventional)
�Acc.

(vs. Deep Reuse)L H

CifarNet Conv1 5 15 0.9429 1.81⇥ -0.0132 0.0428
Conv2 10 10 0.7947 1.52⇥ -0.0077 0.0316

Average 0.8688 1.66⇥ -0.0105 0.0372

ZfNet

Conv1 147 5 0.9997 1.22⇥ -0.0011 0.0457
Conv2 300 5 0.9967 4.69⇥ -0.0037 0.0319
Conv3 432 5 0.9884 4.72⇥ -0.0076 0.0389
Conv4 432 5 0.9982 6.23⇥ -0.0105 0.0228
Conv5 288 5 0.9842 5.58⇥ -0.0068 0.0311

Average 0.9934 4.49⇥ -0.0059 0.0341

Vanilla
SqueezeNet

Conv1 9 5 0.9969 1.27⇥ -0.0066 0.0311
Fire2 - squeeze 96 4 0.9922 1.02⇥ -0.0179 0.0310
Fire2 - 1⇥1 expand 8 5 0.9934 4.61⇥ 0.0006 0.0233
Fire2 - 3⇥3 expand 48 5 0.9875 6.04⇥ 0.0040 0.0182
Fire3 - squeeze 64 4 0.9877 1.30⇥ 0.0029 0.0138
Fire3 - 1⇥1 expand 8 5 0.9932 4.51⇥ 0.0055 0.0132
Fire3 - 3⇥3 expand 72 5 0.9876 6.43⇥ 0.0029 0.0138
Fire4 - squeeze 64 4 0.9980 1.07⇥ -0.0062 0.0337
Fire4 - 1⇥1 expand 16 5 0.9879 3.61⇥ 0.0037 0.0240
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Network Layer Conf.
rt Speedup �Acc.

(vs. Conventional)
�Acc.

(vs. Deep Reuse)L H

Vanilla
SqueezeNet

Fire4 - 3⇥3 expand 144 5 0.9877 5.86⇥ 0.0035 0.0289
Fire5 - squeeze 128 4 0.9844 1.05⇥ 0.0001 0.0139
Fire5 - 1⇥1 expand 4 5 0.9906 4.96⇥ -0.0009 0.0151
Fire5 - 3⇥3 expand 144 5 0.9500 3.25⇥ -0.0064 0.0162
Fire6 - squeeze 32 5 0.9598 1.78⇥ -0.0008 0.1935
Fire6 - 1⇥1 expand 6 5 0.9736 2.84⇥ 0.0064 0.0213
Fire6 - 3⇥3 expand 54 5 0.9504 16.06⇥ -0.0078 0.0159
Fire7 - squeeze 48 5 0.9600 1.39⇥ -0.0023 0.0146
Fire7 - 1⇥1 expand 6 5 0.9754 2.67⇥ 0.0049 0.0224
Fire7 - 3⇥3 expand 216 5 0.9523 16.95⇥ -0.0052 0.0105
Fire8 - squeeze 8 5 0.9784 1.39⇥ -0.0063 0.0805
Fire8 - 1⇥1 expand 4 5 0.9710 4.31⇥ 0.0065 0.0224
Fire8 - 3⇥3 expand 288 5 0.9500 18.66⇥ -0.0042 0.0127
Fire9 - squeeze 256 5 0.9250 1.07⇥ 0.0062 0.2365
Fire9 - 1⇥1 expand 8 5 0.8563 1.10⇥ 0.0037 0.0201
Fire9 - 3⇥3 expand 288 5 0.8156 12.63⇥ 0.0058 0.0148

Conv10 4 5 0.9235 1.32⇥ -0.0084 0.1901
Average 0.9626 4.89⇥ -0.0006 0.0435

SqueezeNet +
Complex Bypass

Conv1 9 5 0.9969 1.27⇥ 0.0122 0.0783
Fire2 - squeeze 96 4 0.9926 1.07⇥ 0.0144 0.0559
Fire2 - 1⇥1 expand 8 5 0.9914 1.41⇥ 0.0023 0.0149
Fire2 - 3⇥3 expand 48 5 0.9897 5.90⇥ 0.0002 0.0156
Bypass1 - 1⇥1 32 5 0.9940 2.45⇥ 0.0071 0.0232
Fire3 - squeeze 64 4 0.9877 1.07⇥ -0.0051 0.0145
Fire3 - 1⇥1 expand 8 5 0.9918 2.30⇥ -0.0033 0.0167
Fire3 - 3⇥3 expand 24 5 0.9876 5.85⇥ -0.0013 0.0222
Fire4 - squeeze 64 5 0.9895 1.00⇥ -0.0040 0.0162
Fire4 - 1⇥1 expand 16 5 0.9881 1.45⇥ -0.0037 0.0171
Fire4 - 3⇥3 expand 48 5 0.9876 6.36⇥ 0.0012 0.0254
Bypass2 - 1⇥1 4 8 0.9933 2.53⇥ -0.0012 0.0277
Fire5 - squeeze 64 4 0.9824 1.84⇥ -0.0036 0.0188
Fire5 - 1⇥1 expand 16 5 0.9531 4.51⇥ 0.0016 0.0163
Fire5 - 3⇥3 expand 48 5 0.9542 11.83⇥ 0.0001 0.0197
Fire6 - squeeze 128 5 0.9719 1.01⇥ -0.0018 0.0213
Fire6 - 1⇥1 expand 32 5 0.9631 4.40⇥ -0.0071 0.0189
Fire6 - 3⇥3 expand 72 5 0.9534 12.50⇥ 0.0002 0.0242
Bypass3 - 1⇥1 32 5 0.9768 5.29⇥ 0.0021 0.0192
Fire7 - squeeze 48 5 0.9648 1.71⇥ 0.0003 0.0257
Fire7 - 1⇥1 expand 24 5 0.9570 4.00⇥ -0.0046 0.0265
Fire7 - 3⇥3 expand 48 5 0.9531 9.36⇥ -0.0025 0.0357
Fire8 - squeeze 64 4 0.9685 1.03⇥ -0.0003 0.0299
Fire8 - 1⇥1 expand 16 5 0.9645 2.15⇥ 0.0012 0.0164
Fire8 - 3⇥3 expand 64 5 0.9550 7.57⇥ -0.0022 0.0188
Bypass4 - 1⇥1 128 5 0.9609 1.12⇥ -0.0045 0.0385
Fire9 - squeeze 128 4 0.8938 1.01⇥ -0.0078 0.0138
Fire9 - 1⇥1 expand 16 5 0.8391 1.53⇥ -0.0019 0.0188
Fire9 - 3⇥3 expand 96 5 0.8406 11.64⇥ -0.0022 0.0235

Conv10 4 5 0.9438 1.29⇥ 0.0057 0.0326
Average 0.9629 3.88⇥ -0.0003 0.0249

ResNet
(ImageNet-64⇥64)

Conv1 25 5 0.8396 7.64⇥ -0.00063 0.0236
Conv2-1 144 5 0.9942 7.69⇥ -0.0010 0.0353
Conv2-2 144 5 0.9876 7.99⇥ -0.0002 0.0255
Conv2-3 144 5 0.9919 7.80⇥ -0.0027 0.0455
Conv2-4 144 5 0.9880 7.98⇥ 0.0008 0.0301
Conv2-5 144 5 0.9884 7.96⇥ -0.0036 0.0201
Conv2-6 144 5 0.9876 7.99⇥ -0.0027 0.0475
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Network Layer Conf.
rt Speedup �Acc.

(vs. Conventional)
�Acc.

(vs. Deep Reuse)L H

ResNet
(ImageNet-64⇥64)

Conv3-1 144 5 0.9510 6.75⇥ -0.0030 0.0250
Conv3-2 144 5 0.9579 7.18⇥ -0.0044 0.0169
Conv3-3 144 5 0.9500 6.87⇥ -0.0007 0.0302
Conv3-4 144 5 0.9537 7.02⇥ -0.0045 0.0190
Conv3-5 144 5 0.9528 6.98⇥ -0.0008 0.0398
Conv3-6 144 5 0.9554 7.09⇥ -0.0023 0.0229
Conv3-7 144 5 0.9557 7.10⇥ 0.0028 0.0262
Conv3-8 144 5 0.995 7.49⇥ -0.0011 0.0195
Conv4-1 288 5 0.9815 1.88⇥ -0.0003 0.0386
Conv4-2 72 5 0.9802 2.99⇥ -0.0036 0.0330
Conv4-3 72 5 0.9804 3.00⇥ -0.0022 0.0168
Conv4-4 72 5 0.9802 2.99⇥ -0.0002 0.0515
Conv4-5 72 5 0.9800 2.99⇥ -0.0015 0.0275
Conv4-6 72 5 0.9802 2.99⇥ -0.0009 0.0607
Conv4-7 72 5 0.9812 3.01⇥ -0.0002 0.0311
Conv4-8 72 5 0.9800 2.99⇥ 0.0001 0.0376
Conv4-9 72 5 0.9803 3.00⇥ 0.0001 0.0196

Conv4-10 72 5 0.9804 3.00⇥ -0.0010 0.0427
Conv4-11 72 5 0.9838 3.06⇥ -0.0009 0.0500
Conv4-12 72 5 0.9800 2.99⇥ -0.0013 0.0271
Conv5-1 36 5 0.9279 1.54⇥ -0.0023 0.0506
Conv5-2 114 5 0.9239 1.20⇥ 0.0005 0.0327
Conv5-3 96 5 0.973 1.01⇥ -0.0011 0.0242
Conv5-4 96 5 0.925 1.01⇥ -0.0023 0.0441
Conv5-5 96 5 0.93 1.04⇥ -0.0007 0.0180
Conv5-6 96 5 0.9268 1.01⇥ -0.0011 0.0420

Average 0.9630 4.64⇥ -0.0013 0.0326

C.2 Sensitivity Study: Performance on Varying Batch Sizes

In this section, we perform an analysis of the impact of batch size on TREC inference performance.
Due to the stringent memory limit of MCU, it is infeasible to run the inferences on larger batch
sizes. We hence use servers for this experiment and focus on the amount of avoided redundancy. We
visualize in Figure 8 the impact of batch size on the average redundancy ratio (rt), the larger the
more redundancy is avoided. It can be seen that as batch sizes increase, the redundancy ratios also
increase. It is intuitive: A larger batch increases the number of neuron vectors in the input matrix,
and hence increases the possibility for reusing the results. This suggests that TREC can bring in more
computational savings at larger batch sizes.

Figure 8: The impact of batch size on remaining ratio(rt).
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