
A Proofs195

A.1 Optimising the ELBOVC w.r.t q196

Rearranging Equation 5, the ELBOVC is optimised by197

argmax
qϕ(z|x)

∫
x

∑
y

p(x, y)

∫
z

qϕ(z|x) log pθ(y|z)

= argmax
qϕ(z|x)

∫
x

p(x)

∫
z

qϕ(z|x)
∑
y

p(y|x) log pθ(y|z)

The integral over z is a qϕ(z|x)-weighted sum of
∑
y p(y|x) log pθ(y|z) terms. Since qϕ(z|x)198

is a probability distribution, the integral is upper bounded by maxz
∑
y p(y|x) log pθ(y|z). This199

maximum is attained iff support of qϕ(z|x) is restricted to z∗ = argmaxz
∑
y p(y|x) log pθ(y|z)200

(which may not be unique). □201

A.2 Optimising the VC objective w.r.t. q202

Setting β = 1 in Equation 6 to simplify and adding a lagrangian term to constrain qϕ(z|x) to a203

probability distribution, we aim to find204

argmax
qϕ(z|x)

∫
x

∑
y

p(x, y)
{∫

z

qϕ(z|x) log pθ(y|z)

−
∫
z

qϕ(z|y) log
qϕ(z|y)
pθ(z|y)

+ log pπ(y)
}
+ λ(1−

∫
z

qϕ(z|x)) .

Recalling that qϕ(z|y) =
∫
x
qϕ(z|x)p(x|y) and using calculus of variations, we set the derivative of205

this functional w.r.t. qϕ(z|x) to zero206 ∑
y

p(x, y)
{
log pθ(y|z)− (log

qϕ(z|y)
pθ(z|y)

+ 1)
}
− λ = 0

Rearranging and diving through by p(x) gives207

Ep(y|x)[log qϕ(z|y)] = Ep(y|x)[log pθ(y|z)pθ(z|y)] + c ,

where c = −(1+ λ
p(x) ). Further, if each label y occurs once with each x, due to sampling or otherwise,208

then this simplifies to209

qϕ(z|y∗)ec = pθ(y
∗|z)pθ(z|y∗) ,

which holds for all classes y∈Y . Integrating over z shows ec =
∫
z
pθ(y|z)pθ(z|y) to give210

qϕ(z|y) = pθ(y|z)pθ(z|y)∫
z pθ(y|z)pθ(z|y)

= pθ(z|y) pθ(y|z)
Epθ(z|y)[pθ(y|z)]

. □

We note, it is straightforward to include β to show211

qϕ(z|y) = pθ(z|y) pθ(y|z)1/β
Epθ(z|y)[pθ(y|z)1/β ]

.
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B Justifying the Latent Prior in Variational Classification212

Choosing Gaussian class priors in Variational classification can be interpreted in two ways:213

Well-specified generative model: Assume data x ∈X is generated from the hierarchical model:214

y→ z→ x, where p(y) is categorical; p(z|y) are analytically known distributions, e.g. N (z;µy,Σy);215

the dimensionality of z is not large; and x=h(z) for an arbitrary invertible function h : Z → X (if216

X is of higher dimension than Z , assume h maps one-to-one to a manifold in X ). Accordingly, p(x)217

is a mixture of unknown distributions. If {pθ(z|y)}θ includes the true distribution p(z|y), variational218

classification effectively aims to invert h and learn the parameters of the true generative model. In219

practice, the model parameters and h−1 may only be identifiable up to some equivalence, but by220

reflecting the true latent variables, the learned latent variables should be semantically meaningful.221

Miss-specified model: Assume data is generated as above, but with z having a large, potentially222

uncountable, dimension with complex dependencies, e.g. details of every blade of grass or strand of223

hair in an image. In general, it is impossible to learn all such latent variables with a lower dimensional224

model. The latent variables of a VC might learn a complex function of multiple true latent variables.225

The first scenario is ideal since the model might learn disentangled, semantically meaningful features226

of the data. However, it requires distributions to be well-specified and a low number of true latent227

variables. For natural data with many latent variables, the second case seems more plausible but228

choosing pθ(z|y) to be Gaussian may nevertheless be justifiable by the Central Limit Theorem.229

C Variational Classification Algorithm230

Algorithm 1 Variational Classification (VC)

1: Input pθ(z|y), qϕ(z|x), pπ(y), Tψ(z); learning rate schedule {ηtθ, ηtϕ, ηtπ, ηtψ}t
2: Initialise θ, ϕ, π, ψ; t← 0
3: while not converged do
4: {xi, yi}mi=1 ∼ D [sample batch from data distribution p(x, y)]
5: for z = {1 ... m} do
6: zi ∼ qϕ(z|xi), z′i ∼ pθ(z|yi) [e.g. qϕ(z|xi)

.
=δz−fω(xi), ϕ

.
=ω ⇒ zi=fω(xi)]

7: pθ(yi|zi) = pθ(zi|yi)pπ(yi)∑
y pθ(zi|y)pπ(y)

8: end for
9: gθ ← 1

m

∑m
i=1∇θ [log pθ(yi|zi) + pθ(zi|yi)]

10: gϕ ← 1
m

∑m
i=1∇ϕ [log pθ(yi|zi)− Tψ(zi)] [e.g. using “reparameterisation trick”]

11: gπ ← 1
m

∑m
i=1∇π log pπ(yi)

12: gψ ← 1
m

∑m
i=1∇ψ [log σ(Tψ(zi)) + log(1−σ(Tψ(z′i))]

13: θ ← θ + ηtθ gθ, ϕ← ϕ+ ηtϕ gϕ, π ← π + ηtπ gπ, ψ ← ψ + ηtψ gψ , t← t+ 1
14: end while

D Calibration Metrics231

One way to measure if a model is calibrated is to compute the expected difference between the232

confidence and expected accuracy of a model.233

EP (ŷ|x)

[
P(ŷ = y|P (ŷ|x) = p)− p

]
(8)

This is known as expected calibration error (ECE) (Naeini et al., 2015). Practically, ECE is estimated234

by sorting the predictions by their confidence scores, partitioning the predictions in M equally spaced235

bins (B1 . . . BM ) and taking the weighted average of the difference between the average accuracy236

and average confidence of the bins. In our experiments we use 20 equally spaced bins.237

ECE =

M∑
m=1

|Bm|
n
|acc(Bm)− conf(Bm)| (9)
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E Further Results238

E.1 Distribution Shift (continued)239

When deployed in the wild, natural distributional shifts may occur in the data due to subtle changes in240

the data generation process, e.g. a change of camera. We test resilience to natural distributional shifts241

on two tasks: Natural Language Inference (NLI) and detecting whether cells are cancerous from242

microscopic images. NLI requires verifying if a hypothesis logically follows from a premise. Models243

are trained on the SNLI dataset (Bowman et al., 2015) and tested on the MNLI dataset (Williams244

et al., 2018) taken from more diverse sources. Cancer detection uses the CAMELYON17 dataset245

(Bandi et al., 2018) from the WILDs datasets (Koh et al., 2021), where the train and eval sets246

contain images from different hospitals.247

Accuracy (↑) Calibration (↓)
CE VC CE VC

NLI 71.2 ± 0.1 71.2 ± 0.1 7.3 ± 0.2 3.4 ± 0.2

CAM 79.2 ± 2.8 84.5 ± 4.0 8.4 ± 2.5 1.8 ± 1.3

Table 2: Accuracy and Calibration (ECE) under distribu-
tional shift (mean, std. err., 5 runs)

Table 2 shows that the VC model248

achieves better calibration under these249

natural distributional shifts (H2). The250

CAMELYON17 (CAM) dataset has a rel-251

atively small number (1000) of train-252

ing samples (hence wide error bars are253

expected), which combines distribution254

shift with a low data setting (H4) and255

shows that the VC model achieves higher (average) accuracy in this more challenging real-world256

setting.257

We also test the ability to detect OOD examples. We compute the AUROC when a model is258

trained on CIFAR-10 and evaluated on the CIFAR-10 validation set mixed (in turn) with SVHN,259

CIFAR-100, and CELEBA (Goodfellow et al., 2013; Liu et al., 2015). We compare the VC and CE260

models using the probability of the predicted class argmaxy pθ(y|x) as a means of identifying OOD261

samples.262

Model SVHN C-100 CelebA
PCE(y|x) 0.92 0.88 0.90
PVC(y|z) 0.93 0.86 0.89

Table 3: AUROC for the OOD detection task.
Models are trained on CIFAR-10 and evalu-
ated on in and out-of-distribution samples.

Table 3 shows that the VC model performs compa-263

rably to the CE model. We also consider p(z) as a264

metric to detect OOD samples and achieve compa-265

rable results, which is broadly consistent with the266

findings of (Grathwohl et al., 2019). Although the267

VC model learns to map the data to a more structured268

latent space and, from the results above, makes more269

calibrated predictions for OOD data, it does not ap-270

pear to be better able to distinguish OOD data than a271

standard softmax classifier (CE) using the metrics tested (we note that “OOD” is a loosely defined272

term).273

E.2 Adversarial Robustness274
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Figure 4: Prediction accuracy as FGSM adversarial attacks
increase (l) MNIST; (r) CIFAR-10

We test model robustness by measur-275

ing performance on adversarially gen-276

erated images using the common Fast277

Gradient Sign Method (FGSM) of adver-278

sarial attack (Goodfellow et al., 2014).279

Perturbations are generated as P =280

ϵ×sign (L(x, y)), where L(x, y) is the281

model loss for data sample x and cor-282

rect class y; and ϵ is the magnitude of283

the attack. We compare all models trained on MNIST and CIFAR-10 against FGSM attacks of284

different magnitudes.285

Results in Figure 4 show that the VC model is consistently more adversarially robust relative to the286

standard CE model, across attack magnitudes on both datasets (H3).287

E.3 Low Data Regime288
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CE GM VC
MNIST 93.1 ± 0.2 94.4 ± 0.1 94.2 ± 0.2

CIFAR-10 52.7 ± 0.5 54.2 ± 0.6 56.3 ± 0.6

AGNEWS 56.3 ± 5.3 61.5± 2.9 66.3 ± 4.6

Table 4: Accuracy in low data regime (mean,
std.err., 5 runs)

In many real-world settings, datasets may have rela-289

tively few data samples and it may be prohibitive or290

impossible to acquire more, e.g. historic data or rare291

medical cases. We investigate model performance292

when data is scarce on the hypothesis that a prior293

over the latent space enables the model to better gen-294

eralise from fewer samples. Models are trained on295

500 samples from MNIST, 1000 samples from CIFAR-10 and 50 samples from AGNEWS.296

Results in Table 4 show that introducing the prior (GM) improves performance in a low data regime297

and that the additional entropy term in the VC model maintains or further improves accuracy (H4),298

particularly on the more complex datasets.299
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Figure 5: Accuracy increase of VC over CE on MedM-
NIST datasets of varying training set size (mean, std.err.,
3 runs)

We further probe the relative benefit of the300

VC model over the CE baseline as the train-301

ing sample size varies (H4) on MedMNIST,302

a collection of real-world medical datasets303

of varying sizes.304

Figure 5 shows the increase in classifica-305

tion accuracy for the VC model relative to306

the CE model against number of training307

samples (log scale). The results show a308

clear trend that the benefit of the additional309

latent structure imposed in the VC model increases exponentially as the number of training samples310

decreases. Together with the results in Table 4, this suggests that the VC model offers most significant311

benefit for small, complex datasets.312

E.4 Classification under Domain Shift313

A comparison of accuracy between the VC and CE models under 16 different synthetic domain shifts.314

We find that VC performs comparably well as CE.315
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Figure 6: Classification accuracy under distributional shift: (left) CIFAR-10-C (middle) CIFAR-
100-C (right) TINY-IMAGENET-C

E.5 OOD Detection316

Figure 7: t-SNE plots of the feature space for a classifier trained on CIFAR-10. (l) Trained using CE.
(r) Trained using VC. We posit that similar to CE, VC model is unable to meaningfully represent
data from an entirely different distribution.
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F Semantics of the latent space317

To try to understand the semantics captured in the latent space, we use a pre-trained MNIST model318

on the Ambiguous MNIST dataset (Mukhoti et al., 2021). We interpolate between ambiguous 7’s that319

are mapped close to the Gaussian clusters of classes of “1” and “2”. It can be observed that traversing320

from the mean of the “7” Gaussian to that on the “1” class, the ambiguous 7’s begin to look more like321

“1”s.322

Figure 8: Interpolating in the latent space: Ambiguous MNIST when mapped on the latent space. (l)
VC, (r) CE
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