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APPENDICES

This section aims to offer a comprehensive explanation of the technical concepts and mathemati-
cal formulations discussed in the paper, along with additional examples and case studies to better
illustrate their practical applications.

A DETAILS FOR ENCODER, DECODER AND TRAINING

A.1 E-MLP AND D-MLP STRUCTURE

We denote a five-attribute note as N = [O,D,P, V, I], where O represents the onset time, D stands
for duration, P denotes pitch, V refers to velocity, and I indicates instrument. A vocabulary is
constructed to encompass all possible tokens corresponding to these five attributes.

E-MLP (Encoder MLP). The E-MLP model is responsible for encoding the input tokens of the
note. It consists of a token embedding layer that maps each input token to a dense vector repre-
sentation. Specifically, each token is passed through an embedding layer, followed by a series of
linear transformations and activation functions. The output is a 16-dimensional vector for each note.
Mathematically, the process can be represented as:

EMLP(N) = σ(W2(σ(W1TN + b1)) + b2)

where: TN represents the input token embedding for note N , W1 and W2 are the weight matrices
for the two linear layers, b1 and b2 are the bias terms, and σ denotes the activation function ReLU.
The final output of the E-MLP is a fixed 16-dimensional latent representation of the note N .

D-MLP (Decoder MLP). The D-MLP model aims to reconstruct or predict the five discrete at-
tributes (O,D,P, V, I) from the latent representation generated by the E-MLP. The D-MLP consists
of two linear-activation layers that are stacked together. For each attribute, a separate classifier is
used, as each attribute takes discrete values from predefined categories. The process for predicting
each attribute can be described as follows:

Âi = softmax(Wi · σ(Wi−1 · Z + bi−1) + bi)

where: Z is the latent 16-dimensional vector obtained from the E-MLP, Wi−1 and Wi are weight
matrices, with Wi−1 belonging to the first linear layer and Wi to the classifier for attribute Ai (where
i ∈ {O,D,P, V, I}), bi−1 and bi are the bias terms, and softmax is applied to ensure that the output
is a valid probability distribution over the possible discrete values of each attribute. Thus, the D-
MLP outputs five probability distributions, one for each attribute of the note.

Overall Process. In summary, the E-MLP encodes the note into a fixed-length latent representation,
while the D-MLP decodes this representation into the predicted values of the five attributes. The
entire process can be formulated as:

N̂ = DMLP(EMLP(N))

where N̂ represents the predicted note attributes.

A.2 FORMULATION OF THE NOTE ENCODER

As stated in the paper, the note encoder takes a sequence of embedding vectors as input and utilizes a
4-head, 6-layer Transformer architecture. Denote each note as N , and let the embedding of the note
be processed by the E-MLP, denoted as EMLP. We use the final hidden state of the Transformer as the
input to two separate output layers. Each of these output layers consists of a linear transformation
followed by a non-linear activation function. These layers output two distinct features: note features
and musical features.

The input to the Transformer is a sequence of embedding vectors, denoted as X =
[EMLP(N1), EMLP(N2), . . . , EMLP(NT )], where T is the length of the sequence, and each EMLP(Ni)
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is the 16-dimensional embedding of note Ni obtained from the E-MLP. The Transformer first maps
these to its feature space, and then processes this sequence through its multi-head self-attention
mechanism and a series of feed-forward layers. The final hidden state HT at time step T (corre-
sponding to the last note in the sequence) is used as the input to the subsequent output layers.

The Transformer-based encoding process can be formulated as:

HT = Transformer(X)

where HT is the hidden state vector at the last layer and the final time step of the Transformer.

We then apply two separate output layers to HT , one for extracting note features and another for
extracting musical features. Each output layer consists of a linear transformation followed by a
non-linear activation function. The outputs are defined as follows:

Fnote = σ(WnoteHT + bnote), Fmusic = σ(WmusicHT + bmusic)

Thus, the final formulation can be expressed as:

Fnote, Fmusic = Output Layers(Transformer(EMLP(N1), EMLP(N2), . . . , EMLP(NT )))

A.3 LOSS FOR THREE-STEP TRAINING OF FEATURE EXTRACTION

Step 1: E-MLP and D-MLP. Given a note N = [O,D,P, V, I] representing its five attributes
(onset, duration, pitch, velocity, instrument), the task is to embed this note into a 16-dimensional
vector using the E-MLP. The D-MLP then reconstructs the five attributes from this 16-dimensional
representation. The loss function used to minimize the reconstruction error across the five attributes
is formulated as:

L =

5∑
i=1

CrossEntropy(Ai, Âi)

where Ai are the true attributes and Âi are the predicted attributes. Each attribute is treated as a
classification task using cross-entropy loss.

Step 2: Note Encoder and Bar Decoder. The note encoder processes a sequence of 16-dimensional
embeddings, generating both note-level and musical-level features. The bar decoder takes the note
features as input and auto-regressively generates the embedding vector at each position.

The loss function for the note embeddings is the Mean Squared Error (MSE) between the predicted
and target sequences, both of which consist of 16-dimensional embedding vectors. This can be
formulated as:

Lnote =
1

T

T∑
t=1

MSE(Et, Êt)

where Et and Êt represent the true and predicted 16-dimensional embedding vectors at time step t,
and T is the length of the sequence.

For the musical attributes (chord, time signature, tonality and dynamics), the loss is computed using
a classifier-based loss function, typically cross-entropy, for each attribute:

Lattr =

4∑
i=1

CrossEntropy(Ai, Âi)

where Ai and Âi are the true and predicted values for the four musical attributes, respectively.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Step 3: Audio Encoder. As described in Section 3, the training data for the audio encoder is derived
from MIDI files. Given a MIDI song S, we convert it to an audio waveform W . For each bar Bi in S
and its corresponding waveform segment in W (denoted as Bw), we extract the note sequence from
S and use the E-MLP to obtain an embedding sequence. Next, Bw is fed into the audio encoder,
which outputs the note features and musical features. The bar decoder then uses the note features
to reconstruct the embedding vector list, while the musical features are used to predict the four
attributes (onset, duration, pitch, and velocity).

The loss function in this process consists of two parts: 1) MSE Loss: The Mean Squared Error
(MSE) between the input embedding sequence from the E-MLP and the output embedding sequence
generated by the bar decoder; 2) Classification Loss: A cross-entropy loss for the four musical
attributes predicted from the musical features.

Laudio =
1

T

T∑
t=1

MSE(Et, Êt) +

4∑
i=1

CrossEntropy(Ai, Âi)

where Et is the input embedding at time step t, Êt is the reconstructed embedding, and T is the
length of the sequence. In this training process, the bar decoder is frozen, and only the audio encoder
is updated.

B DEALING WITH AUDIO INPUT

B.1 HARMONIC CONSTANT-Q TRANSFORMATION

The Harmonic Constant-Q Transform (H-CQT) extends the traditional Constant-Q Transform
(CQT) by introducing a third dimension, designed to align harmonically related frequencies. This
alignment allows the transformation to more effectively capture harmonic information, which is cru-
cial in many audio analysis tasks, such as music transcription, pitch tracking, and timbre analysis. By
analyzing harmonics across multiple frequency bins, the H-CQT emphasizes both the fundamental
frequencies and their harmonics, improving the representation of harmonic structures.

The H-CQT is mathematically defined as follows:

XHCQT (h, t, k) =

N−1∑
n=0

x(n)w(n− t) e−2πihfkn

where:

- XHCQT (h, t, k) represents the H-CQT coefficient at harmonic index h, time frame t, and fre-
quency bin k. - x(n) is the input signal in the time domain, typically a sampled audio signal of
length N .

- w(n− t) is a window function (such as a Hann or Hamming window) centered around time frame
t, which serves to localize the analysis in both time and frequency domains. The window function
is crucial in minimizing spectral leakage and ensuring that the signal is properly segmented in time.

- fk denotes the center frequency of the k-th bin in the Constant-Q Transform, which is character-
ized by a logarithmic frequency spacing, making it well-suited for processing audio signals where
perception of pitch is often logarithmic in nature.

- h is the harmonic index, which allows for the computation of higher harmonics of the fundamental
frequencies present in the signal. Specifically, when h = 1, the transform focuses on the fundamen-
tal frequencies, while h > 1 captures the harmonics.

In this formulation, the summation operates over all signal samples x(n), where n = 0, 1, ..., N −1.
The term e−2πihfkn is a complex exponential that shifts the signal by a frequency determined by
both the harmonic index h and the center frequency fk. This process is analogous to taking a short-
time Fourier transform, but in the context of CQT, it scales the analysis resolution logarithmically
across frequencies, ensuring that each frequency bin captures a musically relevant pitch range.
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By introducing the harmonic index h, the H-CQT enables the simultaneous representation of mul-
tiple harmonics for each fundamental frequency. This multidimensional transform offers a richer
description of harmonic content compared to the traditional CQT, making it a powerful tool for
analyzing signals where harmonic structure is important, such as music.

B.2 TIME ALIGNMENT FOR THE SECOND OF A BAR

As discussed in the conclusion section, obtaining the BPM (beats per minute) information for a piece
of audio is a crucial step. After acquiring this information, we extract a 2-second audio segment from
the raw input and process it using the audio encoder and bar decoder to predict the time signature of
the audio.

Let us assume the time signature is represented as n
m , where n is the number of beats per measure

(or bar), and m defines the note value that constitutes one beat (e.g., quarter note, eighth note).
Additionally, let the BPM of the audio be denoted as BPM.

The duration of one bar in seconds, which corresponds to the time it takes to complete a single
measure, can be calculated using the following formula:

Duration of one bar (in seconds) =
n

BPM
× 60

Where: - n is the number of beats per bar (from the time signature), - BPM is the beats per minute,
- 60 is the number of seconds in a minute.

Using this calculated duration, we define the new segment length for processing the entire audio.
The audio will now be divided into segments corresponding to the duration of one bar, allowing for
more precise temporal alignment. This adjustment ensures that each segment represents a musically
coherent unit, aligning with the beats and measures of the audio.

C INSTRUMENT SEPARATION

To simplify the classification of instruments, we propose a streamlined categorization based on
their corresponding MIDI program IDs, as shown in Table 8. This approach consolidates multiple
MIDI instrument categories into broader groups, facilitating more efficient handling in instrument
separation tasks. For example, various types of pianos (e.g., acoustic grand piano, electric piano) are
grouped under a single ”Pianos” category. Similar consolidations are applied across other instrument
families, such as chromatic percussion, guitars, and basses.

The primary objective of this reduction is to enhance the efficiency of instrument separation mod-
els by lowering the complexity of the classification process while preserving the key distinctions
necessary for accurate audio representation and processing. Each generalized instrument group cor-
responds to a specific range of MIDI program IDs, with the exception of standard drums, which are
categorized separately.

We categorize instruments into three main groups: Monophonic, Polyphonic, and Percussion. Below
is the detailed classification for each category, as shown in Table 9.

Monophonic Instruments. Monophonic instruments are those that generally produce only one note
at a time. These instruments are commonly used in melodic lines and solos, as their tonal clarity
allows for strong emphasis on individual notes including: 1) Violin: A bowed string instrument
known for its wide range and expressive dynamics. 2) Trumpet: A brass instrument with a bright
and powerful sound. 3) Saxophone: A woodwind instrument with a reedy sound, common in jazz
and classical genres. 4) Bassoon: A large woodwind instrument, characterized by its deep, rich
sound. 5) Flute: A woodwind instrument producing sound by air flow across an opening, known for
its bright and airy timbre.

Polyphonic Instruments. Polyphonic instruments can play multiple notes simultaneously, making
them suitable for harmonic and chordal accompaniment. These instruments are essential in creat-
ing complex textures in music including: 1) Piano: A keyboard instrument capable of producing
rich harmonies and complex melodies. 2) Guitar: A string instrument often used in various musi-
cal genres, capable of playing chords and melodic lines. 3) Organs: A keyboard instrument with
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Table 8: Instrument reduction according to MIDI program IDs
# Program ID Instrument in UniComposer
1 0-7 Pianos
2 8-15 Chromatic Percussion
3 16-23 Organs
4 24-31 Guitar
5 32-39 Bass
6 40-43 Violin
7 54-58 Trumpet
8 62-65 Saxophone
9 66-69 Bassoon

10 70-77 Flute
11 102-109 Ethnic
12 110-117 Melodic Percussion
13 / Standard Drums

multiple sound-producing pipes, known for its grandeur in churches and large venues. 4) Bass (Elec-
tric/Acoustic): A low-pitched instrument that plays a foundational role in harmonic structures, often
contributing to both rhythm and harmony.

Percussion Instruments. Percussion instruments are classified based on their ability to produce
sound through striking or hitting. This category includes both rhythmic and melodic percussion
instruments including: 1) Melodic Percussion: Instruments such as xylophones and vibraphones that
can produce pitched sounds, allowing for melodic content. 2) Chromatic Percussion: Instruments
capable of producing all the notes in the chromatic scale, often used for melodic and harmonic roles
in orchestras. 3) Standard Drums: Drums typically found in drum kits, primarily used for rhythmic
purposes in various musical genres.

Table 9: Three category instrument separation.
Category Instruments

Monophonic Violin, Trumpet, Saxophone, Bassoon, Flute
Polyphonic Piano, Guitar, Organs, Bass
Percussion Melodic Percussion, Chromatic Percussion, Standard Drums

D DATASETS

D.1 NOTE VOCABULARY SELECTION

We collect 608,020 unique notes from LMD dataset. The rationale behind collecting all notes that
occur in the LMD dataset is outlined as follows:

1) Practicality of Limiting the Scope: It is computationally impractical to account for every possible
combination of notes, as the total number of potential notes within the five-attribute representation
is exceedingly large. Specifically, this involves combinations of the following five attributes: instru-
ment type, pitch, duration, velocity, and time signature. The total number of potential combinations
is the product of the ranges of these attributes, calculated as 24 (onset) * 24 (duration) * 4 (velocity
bin) * 128 (pitch) * 13 (reduced instrument), resulting in an immense number of possible notes.
Given this, it is more feasible to focus on notes that are actually observed in the dataset, as they
represent a more manageable subset of possibilities.

2) Infrequency of Certain Combinations: Many attribute combinations are highly unlikely or do not
occur frequently in real-world compositions. For instance, specific instruments such as the violin
rarely play pitches lower than G3 (pitch number 55). Therefore, it is unnecessary to consider these
improbable combinations, further reducing the computational complexity by excluding unrealistic
or rare note occurrences. This selective approach helps in focusing on the most relevant data.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D.2 BAR-LEVEL FEATURE EXTRACTION

The four attributes of a bar mentioned in this paper are chord, time signature, dynamics, and tonality.
These attributes are extracted from a bar, given the five-attribute notes contained within it.

Chord. We adopt the chord calculation algorithm from the REMI representation. A chord is defined
by three attributes: root, chroma, and bass. These can be extracted using the library mir eval
by analyzing the chord name. Given the sequence of note pitches in a bar, a similarity metric is
computed between this pitch sequence and all possible chord chromas. The chroma with the highest
similarity is selected as the most likely chroma for the current bar, and the corresponding chord is
then determined. This method ensures the chord assigned to a bar accurately reflects the harmonic
content of that segment.

Time Signature. In the MIDI standard, the time signature is embedded in the program change
channel, where multiple time signatures can exist within a single piece of music. To determine the
time signature of a specific bar, we record the index of each bar and its corresponding program
change. The time signature of a bar is assigned based on the nearest preceding program change.
This method ensures that each bar’s time signature is correctly aligned with the overall structure of
the piece.

Dynamics. We categorize dynamics into six levels: pp, p, mp, mf, f, and ff, which correspond to
very soft to very loud dynamic ranges. To determine the dynamics of a bar, we extract the velocity
and pitch information from the note sequence in the bar. The average velocity of all notes in the
bar is computed, and based on this value, we map the velocity to one of the six dynamic levels.
For instance, very low velocities map to pp, while very high velocities map to ff. This approach
provides a clear dynamic profile for each bar, reflecting the performance intensity.

Tonality. We adopt a simple binary classification of tonality: major and minor. Major tonality
often expresses emotions such as happiness, brightness, and triumph, while minor tonality conveys
sadness, tension, or somberness. In this paper, tonality is derived together with the chord extraction
process. A chord label, such as ‘C:maj7’ or ‘D:min7’, directly indicates whether the tonality is major
or minor. The label ‘maj’ (major) or ‘min’ (minor) is used to classify the tonality of the bar. This
binary tonality annotation simplifies the tonal analysis of the music while still capturing essential
emotional qualities.

D.3 HANDLING NOTE DURATION ACROSS BARS

In our approach, each bar is subdivided into 24 bins to represent discrete time intervals within the bar.
However, a challenge arises when dealing with notes that extend beyond a single bar. Specifically,
a note may begin in one bar but continue into subsequent bars, resulting in a duration that spans
multiple bars.

To address this, we segment the duration of such notes into discrete parts. Each segment corresponds
to a note that starts within a specific bar and, in most cases, extends to the end of that bar. The
remaining portion of the note continues into the next bar in a similar manner. By this method, we
ensure that each bar is represented by a set of notes with a maximum duration of 24 bins, effectively
standardizing the duration representation within each bar.

This approach allows for seamless integration of note durations across multiple bars while maintain-
ing the temporal structure imposed by the 24-bin division. It also facilitates the uniform handling of
note events across bars, enabling consistent analysis and processing of musical sequences.

E METRICS DETAILS

We evaluate performance using the note-level F-measure (F ), where a note is considered correctly
identified if its pitch is within a quarter tone, the onset is within 50 ms, and the offset is within 20%
of the note’s duration.

Chord Accuracy (CA). Chord Accuracy assesses whether the chords of the generated tracks align
with the conditional chord sequence, which directly impacts the harmony of the generated music.
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Chord accuracy is defined as:

CA =
1

Ntracks ×Nchords

Ntracks∑
i=1

Nchords∑
j=1

I{Ci,j = Ĉi,j}

where Ntracks represents the number of tracks, Nchords the number of bars, Ci,j denotes the j-th
ground-truth chord in the i-th track, and Ĉi,j refers to the corresponding generated chord in the
same position.

Pitch, Velocity, Duration, Onset Interval. To provide a more comprehensive evaluation of the
harmony, dynamics, and expressiveness of musical compositions, we analyze the distributions of
various features (e.g., pitch and velocity) and compare the distances between the distributions of
generated and ground-truth musical pieces. First, histograms are computed for each feature, fol-
lowed by kernel density estimation to convert the histograms into continuous probability density
functions. This smoothing process offers a more generalizable representation of the data.

Averaging Overlapped Area (OA). The overlapping area (OA) of distributions (DA, where A can
be one of Pitch, Velocity, Duration, or Onset Interval) is used to quantify the difference between the
generated and ground-truth musical pieces. This is represented by the following formula:

DA =
1

Ntracks ×Nbars

Ntracks∑
i=1

Nbars∑
j=1

OA(PA
i,j , P̂A

i,j)

where OA denotes the averaged overlapping area between two distributions. PA
i,j represents the

distribution of feature A in the i-th track and j-th bar of the ground-truth musical piece, while P̂A
i,j

represents the same in the generated piece.

F MORE SHOWCASES AND DISCUSSIONS

F.1 FORMULATION OF THE CASES

We denote MIDI music as images, where the height of the image represents the pitch of each note,
and the length corresponds to the time. In this representation, each note is mapped to a specific
position in the image based on its pitch and onset time. The color of each pixel represents instrument,
providing a visual representation of the musical structure. More showcases are on https://
sites.google.com/view/unicomposer

F.2 BENEFITS OF USING BARS AS THE BASIC UNIT

Since UniComposer uses bars as the fundamental unit for music generation, the resulting composi-
tions are strongly aligned by bars, which helps to maintain a coherent and well-structured musical
form. This bar-level alignment ensures that the generated music follows a clear rhythmic structure,
improving both the musicality and organization of the output.

F.3 BENEFITS OF INSTRUMENT SEPARATION

UniComposer distinguishes between monophonic, polyphonic, and percussion instruments, allow-
ing for a more refined focus on their individual roles within band-level music compositions. Mono-
phonic instruments primarily contribute to melodic variation and dynamic changes, playing a central
role in driving the musical narrative. Polyphonic instruments provide harmonic support and stabil-
ity, often through repetitive chord progressions or sustained notes that enhance the overall harmonic
texture. Percussion instruments, on the other hand, serve as the rhythmic foundation, dictating the
tempo and guiding the progression of the music. This separation of instrumental roles contributes
to a clearer structural organization in band-level compositions, ensuring that each instrument type
complements the others in a cohesive and balanced manner.
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