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ABSTRACT

Multi-track deep music generation has largely focused on pre-specified struc-
tures and instruments. However, it remains a challenge to generate “band-level”
full-length music that is capable of allocating instruments based on musical fea-
tures, their expressive potential, and their performance characteristics differences.
Moreover, the representations of symbolic and audio music have been treated as
distinct sub-areas, without a unified architecture to join their own advantages.
In this work, we introduce UniComposer 1, a novel music generation pipeline
that composes at the band level, utilizing a hierarchical multi-track music repre-
sentation complemented by four cascaded diffusion models which progressively
generate rhythm features, and unified features extracted from both symbolic and
audio music by autoencoders. Experiments and analysis demonstrate that Uni-
Composer achieves a unified latent space for symbolic and audio music, and is
capable of generating band-level compositions with well structured multi-track
arrangements, surpassing previous methods in performances.

1 INTRODUCTION

The area of deep generative models for symbolic music (Wang et al. (2024), Hsiao et al. (2021),
Huang & Yang (2020), among others) have witnessed advancements in a range of fronts. However,
the approaches in the literature do not yet achieve band-level music generation. Band-level music
has two critical features: 1) Instruments in a band collaborate to fulfill specific roles, such as har-
mony, rhythm, or accompaniment, which can differ from their roles in solo performances—a nuance
overlooked in current multi-track generation. For instance, the piano often provides repetitive har-
monies in a band, contrasting with its more varied melodies in solo settings. 2) Composers carefully
select instruments to match the melody’s characteristics, ensuring timbre, range, and expressiveness
align with the intended emotion. They also arrange instruments dynamically, adjusting prominence
based on sections or rhythmic changes. Current methods either replicate input instruments (Liu et al.
(2022), Dong et al. (2018)) or rely on pre-defined user input (Dong et al. (2023), von Rütte et al.
(2023), OpenAI (2024)).

For music data that take Audio formats such as MP3 (mpgedit (2003)) and WAV (bitsforbyte (2021)),
there are billions of publicly accessible music tracks spanning a wide range of styles, instruments,
and time periods. However, the situation is different for symbolic music. On one hand, symbolic-
format music data are not as ample as the audio-format. On the other hand, methods for analysis
and generation in symbolic music are often more structured and fine-grained, allowing explicit in-
corporation of music theory into the model architecture (Wang et al. (2024), von Rütte et al. (2023)).
This enhances the model’s ability to implicitly capture complex musical relationships. In contrast,
methodologies for analyzing and generating audio music tend to rely solely on the model’s inherent
capacity to learn these relationships (Ji et al. (2023), Huang et al. (2023)), without explicitly incor-
porating music structure into the architecture design. However, no public work has yet developed
approaches to organically combine the two forms of music, leaving this area largely unexplored.

Our work, UniComposer, simplifies band-level music modeling by introducing a hierarchical struc-
ture that groups instruments into monophonic, polyphonic, and percussion categories. Monophonic
instruments provide chordal foundations, polyphonic instruments add melodic complexity, and per-
cussion drives the rhythm. We use a two-step generation process: first, a basic rhythm is created

1Demo page is on: https://sites.google.com/view/unicomposer
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for each type, then details and variations are added. This method is powered by four cascaded
Transformer-based diffusion models, operating at the bar level unified feature space for symbolic
music and corresponding time for single bar for audio music.

UniComposer combines the strengths of symbolic and audio music formats through two key meth-
ods. First, it converts audio into symbolic format, utilizing the structured nature of symbolic music
for generation, grounded in music theory. Second, for symbolic music generation, it uses a bar
decoder to extract notes from audio data, enhancing the model’s performance through data augmen-
tation. This is achieved via encoders respectively for symbolic and audio inputs, sharing a unified
bar decoder. Both inputs are mapped to a common latent space, seamlessly integrating audio and
symbolic music generation. Figure 1 illustrates the architecture.

Figure 1: Overall Architecture of UniComposer.

In summary, the contribution of the paper is as follows:

1. We introduce UniComposer, the first band-level music generation system that involves col-
laborative roles of instruments, tailored to harmonize, provide rhythm, or accompaniment,
with careful selection of instruments to match the melody’s expressive qualities. Unicom-
poser uses a hierarchical representation across three instrument types.

2. We propose an approach that integrates the advantages of both symbolic and audio music,
using separate encoders and a shared decoder to bridge both formats within a common fea-
ture space. This approach can leverage the rich audio music to facilitate data augmentation
for symbolic music.

3. UniComposer is capable of mapping inputs into a unified feature space for generation
through cascaded bar-based diffusion models. The composer can accept both symbolic
and audio music as input, producing well-structured band-level music.

2 RELATED WORK

In this section, we first review multi-track music generation, followed by integrated processing for
symbolic and audio music. Then, we review structured music modeling. Finally, we review the
applications of autoencoders and diffusion models in music generation.

Multi-Track Music Generation. Addressing the complexity of generating music consisting of
multiple interrelated tracks, multi-track music generation has become a significant area of research.
Some works focus on developing multi-track representations of music which facilitate the generation
process, while others aim to utilize multi-track approaches to improve music resolution and achieve
fine-grained control. Guo (2024) integrates the AC algorithm to enhance diversity in multi-track
music generation. MMBert (Zhu et al. (2024)) is a multi-track generation method focusing on the
chord aspects of music. Jen-1 Composer (Yao et al. (2023)) generates music that contains four
tracks from text prompts. Multitrack Music LDM (Karchkhadze et al. (2024)) leverages multi-
track techniques to generate high-fidelity audio music. Cosenza et al. (2023) utilizes a graph-based
generation approach to produce polyphonic music, with the instruments to be played specified by
the user. MMMachine (Ens & Pasquier (2020)) mainly concentrates on multi-track inputs for music
representation to achieve a better understanding of music, similar to SymphonyNet (Liu et al. (2022))
that copies input tracks for generation.

Integrated Processing of Symbolic and Audio Music. Research that combines audio and sym-
bolic music is currently divided into two interconnected areas: audio rendering of symbolic music
and automatic music transcription that translates audio into symbolic notes. For audio rendering of
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symbolic music, traditional audio renderers use DSP-based or sample-based synthesizers to produce
instrumental sounds. A parallel line of research has applied data-driven approaches to audio syn-
thesis, often referred to as ”neural audio synthesis.” Notable examples include NSynth (Engel et al.
(2017)), GANSynth (Engel et al. (2019)), DDSP (Engel et al. (2020)), and MIDI-DDSP (Wu et al.
(2021)). These approaches share a similar concept of converting notes to audio waveforms using
neural networks that perform an upsampling process.

For automatic music transcription, the outputs are typically frame-level multi-pitch estimation
(MPE) or note-level estimation. These methods commonly first estimate a pitch posteriorgram,
where each time-frequency bin is assigned an estimate of the likelihood of a fundamental frequency
being active at a given time (Duan et al. (2010); Bittner et al. (2017)). Multiple methods have been
proposed for estimating notes from pitch posteriorgrams, such as using median filtering (Klapuri
& Davy (2007)), Hidden Markov Models (Benetos (2017)), or neural networks (Ewert & Sandler
(2017); Nishikimi et al. (2021)). Gardner et al. (2021) is the first lighting work of leveraging a
unified framework for transcription.

Structured Music Modeling. The local musical structure can be effectively modeled in two distinct
ways: through approaches that either learn structure indirectly or through methods that directly
define or extract musical elements, both yielding good results. Approaches like Music Transformer
(Huang et al. (2018)), JukeBox (Dhariwal et al. (2020)), MuseFormer (Yu et al. (2022)), MERT
(Li et al. (2023)), LLark (Gardner et al. (2023)) and Lemercier et al. (2024) represent the former,
where models predict and generate musical events by capturing dependencies within the music. On
the other hand, methods that rely on musical domain knowledge define specific features or extract
interpretable musical representations, enabling the model to learn structures such as pitch contours
at the measure level and accompaniment patterns. Some studies also aim to combine them, yielding
high quality output (Mariani et al. (2023), Wang et al. (2024)).

Autoencoders and Diffusion Models for Music Generation. (Variational) Autoencoders are
widely utilized to extract musical representations from pre-trained models, encapsulating both the-
oretical and perceptual aspects of music (Brunner et al. (2018); Jiang et al. (2020); Wu & Yang
(2023)). These extracted features serve as essential tools for modeling cascading musical events
due to their rich informational content. In the domain of music generation using diffusion models,
two principal approaches have emerged. The first approach represents music in a piano-roll for-
mat, enabling diffusion models to directly generate note pitches and durations without the need for
intermediate representations (Mittal et al. (2021), Atassi (2023), Wang et al. (2024)). The second
approach employs diffusion models as feature learners; these models generate music by manipulat-
ing features encoded from preceding stages and executing reverse diffusion processes to synthesize
the final output (Zhu et al. (2022), Zhang et al. (2023), Huang et al. (2024)).

3 METHODOLOGY

Given an input melody, our proposed UniComposer extracts features from each bar in symbolic
music or the relative duration in audio. The composition process operates within the latent space
of these features, categorized into three main functions: monophonic, polyphonic, and percussion.
Feature extraction is managed by symbolic and audio encoders, while a shared decoder reconstructs
bars from these extracted features. Using bars as the fundamental unit, the system progressively
generates detailed features for each category through four cascaded diffusion models. A converter
can subsequently translate symbolic output into audio. Section 3.1 outlines the hierarchical repre-
sentation of band-level music, followed by the feature extraction together with the training strategy
in Section 3.2, 3.3 and 3.4. Finally, the overall generation process is discussed in Section 3.5.

3.1 HIERARCHICAL REPRESENTATION OF BAND-LEVEL MUSIC

To streamline and simplify the modeling of band-level music, we adopt a functional separation
approach to represent the three components of the musical ensemble, with a hierarchical reduction
process transitioning from detailed to simplified rhythmic structures inspired by Prajwal et al. (2024)
and Wang et al. (2024) to capture the overarching compositional framework. This approach enhances
the efficiency of the learning process for UniComposer, and is illustrated in Figure 2.
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Functional Separation. Monophonic instruments play one note at a time, while polyphonic instru-
ments can produce multiple notes simultaneously, enabling harmonic richness. Percussion instru-
ments create sound by actions like striking or shaking. Monophonic instruments focus on melody,
contributing to musical expression by adding emotional depth through greater variation, while poly-
phonic ones often emphasize harmony and accompaniment with repeated or transposed notes, sup-
porting the music’s structure. Percussion maintains rhythm, articulating the beats and tension that
drive the progression of a piece. Recognizing these functional distinctions, UniComposer sepa-
rates these musical elements to improve data representation for band-level music. This division is
facilitated by referencing the program IDs on the MIDI standard (MIDI-Association (2024)).

Hierarchical Reduction. On one hand, as is typical for composers, the initial step often involves
drafting each section of the ensemble, defining key structural elements such as the primary modula-
tion points and the bassline pitches. On the other hand, the process of function separation can result
in superimposition of different instrumental parts, leading to redundant and overly intricate note
sequences, which makes it challenging for UniComposer to learn. Inspired by Wang et al. (2024),
we adopt a similar reduction approach based on the detailed rhythmic data for each instrumental
category. The rhythmic structure of both monophonic and polyphonic sections is largely influenced
by the harmonic chroma, while the rhythm of percussive instruments is primarily determined by the
time signature, as it governs the temporal shifts within a composition.

Figure 2: Band-Level Hierarchical Music Representation. Green box shows music with pre-labeled
main melody. Mono., Poly. and Perc. represent monophonic, polyphonic and percussion, respec-
tively. Hierarchical separation process breaks down band-level music into three parts, from detailed
to reduced. Generation process starts with the main melody and adds reduced and detailed compo-
nents based on instrument separation.

3.2 BAR-LEVEL FEATURE EXTRACTION FOR SYMBOLIC MUSIC

To analyze a sequence of notes within a bar, UniComposer extracts two key features: one represent-
ing the notes themselves (note feature) and the other capturing the overall musical characteristics of
the bar (musical feature). This process is facilitated by the joint training of a symbolic encoder and a
bar decoder, inspired by the approach outlined in Roberts et al. (2018), but with a more lightweight
model that utilizes Transformer architecture (Vaswani (2017)) instead of RNNs.

Data Representation. UniComposer employs a modified version of the REMI representation
(Huang & Yang (2020)), specifically adapted to handle bar-level features in symbolic music. Four
key attributes are extracted for each bar: chord, time signature, dynamics, and tonality. Chords are
represented by their root, chroma, and bass, while time signatures are restricted to three discrete
values: 3/4, 6/8, and 4/4. Dynamics are categorized into six levels, ranging from pianissimo (pp) to
fortissimo (ff). Tonality, indicating the organization of chords, can be either major or minor. Each
note is characterized by five attributes: onset, duration, pitch, velocity, and instrument. To achieve a
fine-grained temporal resolution, each bar is divided into 24 time bins. Velocity is simplified to four
levels (von Rütte et al. (2023)), preserving essential nuances while reducing complexity. Pitch is
encoded using 128 discrete values (MIDI-Association (2024)), and We group the 128 MIDI instru-
ments, along with drums, into 13 categories, such as classifying all types of pianos (e.g., acoustic
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piano, electric piano) under the piano category. UniComposer compiles all the notes present in its
dataset and uses them (which is approximately 106) as its vocabulary.

Addressing Embedding Challenge. Embedding layers trained alongside the model (e.g., Liu et al.
(2022), von Rütte et al. (2023)) face instability due to the excessively large vocabulary size of Uni-
Composer. Additionally, for this five-attribute note representation, the meaning of each note is
inherently determined by its own attributes, contrasting with the word embedding approach (e.g.,
Mikolov (2013)), where meaning is derived from contextual co-occurrence. To tackle these chal-
lenges, UniComposer proposes an innovative solution: a simple multi-layer perceptron (E-MLP) is
trained to encode each note by applying basic addition and concatenation operations to the tradi-
tional embedding vectors of the five attributes of a note. This process is followed by feed-forward
layers, which produce an output embedding vector with a fixed dimensionality of 16.

Symbolic Encoder. The symbolic encoder employs the E-MLP mentioned above to generate a
sequence of embedding vectors for the notes within a bar. Two special learnable vectors, represent-
ing the start [BOS] and end [EOS] of the sequence, are added to the embedding sequence. This
sequence is then processed by a bi-directional model based on the classical multi-head transformer
architecture proposed by Vaswani (2017), consisting of 4 layers and 4 attention heads is used to han-
dle this embedding sequence. The transformer’s final hidden state is passed through two separate
linear projection layers, producing outputs for both note and musical feature representations.

Figure 3: Overall Architecture for feature extraction by the encoders. The symbolic encoder and
audio encoder process these two types of input, respectively, while a bar decoder is employed to re-
construct notes and predict musical features. The flame and snowflake icons in the image correspond
to Table 1, indicating the three-step training schedule for each module.

3.3 UNIFICATION OF AUDIO INTO SYMBOLIC MUSIC

Pre-processing. Since general audio formats such as MP3 and WAV are dense time-sequence data,
UniComposer applies the Harmonic Constant-Q Transform (H-CQT) (Bittner et al. (2017)) to pro-
cess them. H-CQT takes an audio signal as input, and the output is a three-dimensional tensor
representing the time-frequency representation at different harmonic frequencies. Its main function
is to capture both the fundamental frequency and its harmonic components, providing a richer spec-
tral representation. UniComposer computes H-CQT with 3 bins per semitone and a hop size of
11 ms, operating with a sample rate of 22.05 kHz and utilizes 8 harmonics. For an input of shape
(1, t× 22, 050), this H-CQT produces an output with the shape (8, t× 172, 128).
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Audio Encoder. The audio encoder aims to map audio segmentation to the same note and musical
feature space of the symbolic encoder. After pre-processing, a fully convolutional model followed
by an output layer is applied to produce the note and musical feature. The architecture is similar to
that proposed by Bittner et al. (2022), but with fewer layers, as the audio encoder processes shorter
input segments. Since H-CQT captures all harmonic waves, the convolutional layers with deep
kernels are able to detect notes with correct pitch and duration. Finally, using a series of linear and
activation layers, the audio encoder generates the expected two features.

3.4 REFACTORING AND TRAINING PROCESS FOR FEATURE EXTRACTION

Bar Decoder. The task of the bar decoder is to reconstruct all the notes from the input based on the
note feature, and predict four musical attributes of the bar based on the musical feature. For note
reconstruction, the bar decoder uses a classical transformer decoder with 4 layers and 4 attention
heads. The note feature is replicated n times to serve as the input hidden state of the decoder. The
transformer generates an embedding vector for each position auto-regressively, with a dimension
of 16. For musical feature prediction, a multi-layer percepton is applied to the musical feature,
followed by four classifiers to predict the four musical attribute of a bar.

Three-Step Training Process. Firstly, the E-MLP is optimized to establish a stable embedding
space for the notes. A separate MLP architecture (D-MLP), which includes five distinct classifiers,
is employed to decode specific attributes from the E-MLP’s output. Secondly, the symbolic encoder
and bar decoder are trained jointly in a self-reconstruction manner for symbolic music. Specifically,
the symbolic encoder extracts both the note and feature from a musical bar, while the bar decoder
attempts to reconstruct the bar and predict its musical attributes. Thirdly, the bar decoder is frozen,
and a similar self-reconstruction training approach is applied to the audio encoder, in conjunction
with the bar decoder. The key difference here is that a converter, based on the open-source tool
Fluidsynth (Tom Moebert (2024)), is used to convert symbolic music into audio waveforms, which
serve as the input for the audio encoder. These three steps can be found in Table 1.

Table 1: Three step training process for the encoders
Step Trainable Part Target

1 E-MLP, D-MLP Stable Embedding Vector
2 Symbolic Encoder, Bar Decoder Stable Symbolic Feature Space
3 Audio Encoder Unified Audio and Symbolic Feature

3.5 HIERARCHICAL GENERATION IN FEATURE SPACE

UniComposer operates following the process depicted by the solid lines in Figure 2, but within a
unified feature space. The generation process begins with the main melody’s features, progressing
from reduced to detailed. Finally, the feature are decoded and merged together.

Cascaded Diffusion Models. UniComposer utilizes four Transformer-based diffusion models (de-
noted as DM1 to DM4), all of which share the same architecture. They work within the bar-level
unified feature space, using background conditions to generate target features from Gaussian noise.
Starting with the note and musical features extracted from a given melody, DM1 generates the re-
duced monophonic, polyphonic, and percussion features for each bar. Then, with the note and
musical features, combined with one of the reduced features as part of the background condition,
DM2–DM4 generate detailed features for each bar. Detailed configurations for every diffusion
model can be found in Table 2.

Table 2: Configuration of the four diffusion models. ’R-’ stands for ’Reduced-’. n represents the
number of bars, and each channel has the shape (n, 256), as each type of feature is represented by
256 dimensions.

Background Cond. Output
Shape Interpretation Shape Interpretation

DM1 (2, n, 256) Note, Musical (3, n, 256) R-Mono., R-Poly., R-Perc.
DM2 (3, n, 256) Note, Musical, R-Mono. (1, n, 256) Detailed Mono.
DM3 (3, n, 256) Note, Musical, R-Poly. (1, n, 256) Detailed Poly.
DM4 (3, n, 256) Note, Musical, R-Perc. (1, n, 256) Detailed Perc.
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Attention Mechanism. Inspired by Shabani et al. (2023), we design three types of attention mech-
anisms. 1) Self Attention, which restricts the attention to within a single bar to enhance local infor-
mation; 2) Global Attention, a standard self-attention applied across all bars in a song; and 3) Local
Attention, which operates at a 4-bar level to help the model capture short-term dependencies within
the song. In each attention layer, we learn three separate sets of key, query and value matrices,
using four multi-heads. The outputs of the three attention mechanisms are summed and then passed
through a standard Add & Norm layer. The denoising process repeats this attention block six times.
The masks used to implement these three types of attention mechanisms are shown in Figure 4.

Figure 4: Attention mechanism and diffusion details. Three types of attention are applied using
masks and separate query, key and value sets. The Transformer-based diffusion model learns to
reconstruct the features of each bar from Gaussian noise, based on specific background conditions.

Data Augmentation Derived from Audio. Due to the richness of audio data, this can be achieved in
two ways: 1) For audio tracks that have already been separated by instrument type, which is common
in DJ music, both the input and output of DM1 can be derived by combining tracks based on their
track names, utilizing features extracted from the audio encoder. 2) For general audio music, the
combination of the audio encoder and bar decoder can be used as an automatic music transcription
system, converting audio into symbolic music, thereby enhancing data diversity for training.

4 EXPERIMENTS

We implemented UniComposer using PyTorch, with the diffusion models built upon a public im-
plementation of Guided-Diffusion (Dhariwal & Nichol (2021)). All experiments were conducted
on a single NVIDIA RTX 4090 GPU. In the following sections, we first introduce the composition
of the dataset used to train each part of UniComposer, and then evaluate its performance in terms
of the unified feature and the generated quality. We also conduct ablation studies on the attention
mechanism and the cascaded diffusion models, demonstrating their necessity.

4.1 DATASET

We use notes, bars, and songs from the Lakh MIDI Dataset (LMD, Raffel (2016)) to train Uni-
Composer. The LMD dataset contains over 170,000 unique multi-track MIDI files, with each track
labeled by instrument name. We reserve 1,000 songs as evaluation set.

Dataset for encoders. In Step 1, we collect unique notes from LMD to train the E-MLP and D-MLP.
In Step 2, we use non-empty bars with varying note densities, instruments, and durations to train the
symbolic encoder and bar decoder. In Step 3, we first synthesize entire songs from MIDI files using
Fluidsynth (Tom Moebert (2024)), then extract the corresponding segments of bars filtered in Step
2 from the audio. This process results in MIDI-audio bar pairs, which are used to train the audio
encoder while keeping the bar decoder frozen.

Dataset for Cascaded Diffusion Models. For training the four diffusion models, we filter out songs
in LMD that are either too short or too long, selecting only those that contain a pre-labeled “melody”
or “main melody” along with at least one monophonic instrument, one polyphonic instrument, and
one percussion instrument. A detailed breakdown of the training dataset is provided in Table 3.

Table 3: Dataset composition for encoder, decoder and cascaded diffusion models of UniComposer

Part Encoder and Decoders Cascaded Diffusion Models
Step1 Step2 Step3 DM1 DM2 DM3 DM4

Unit Note Bar MIDI-Audio Bar Pair Song Song Song Song
Count 608,020 915,644 915,644 13,232 13,232 13,232 13,232

7
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4.2 EVALUATION ON UNIFIED FEATURE

Method and Metrics. To assess the performance of our encoders, we focused on the note estimation
task by integrating the audio encoder and bar decoder (A&B). This system takes audio input and
estimates notes, reflecting the core capabilities of the model. Performance is measured using the
note-level F-measure (F ), where a note is considered correct if its pitch, onset, and offset fall within
a defined threshold compared to the ground truth. Additionally, we report the note-level F-measure
without considering offsets (Fno), following the same criteria as the F-measure but ignoring offsets,
as well as the bar-level note accuracy (Acc). These metrics are computed using the mir eval library
(Liang et al. (2015)).

Baseline Settings. As a baseline, we compare the performance of A&B on note onset and duration
with other note estimation pipelines, including Basic-Pitch (Bittner et al. (2022)) and MI-AMT (Wu
et al. (2020)). To assess the necessity of E-MLP and D-MLP, we also create a variation of Uni-
Composer where these components are replaced by a vocabulary of 608,020 tokens, followed by a
standard embedding layer. This model is denoted as Vocab-AE. The reserved evaluation set are sep-
arated into main melody, monophonic and polyphonic tracks, and we report the note reconstruction
accuracy in Table 4.

Analysis. It is important to note that Basic-Pitch and MI-AMT only estimate pitch, onset, and
duration, whereas A&B and Vocab-AE also predicts velocity and instrument. Vocab-AE performs
worse, emphasizing the value of the stable note embeddings produced by E-MLP. A&B performs
on par with Basic-Pitch in most cases. Given that A&B operates in a unified feature space while
Basic-Pitch is specialized for note estimation, A&B demonstrates strong performance.

Table 4: Note estimation evaluation of Audio Encoder & Bar Decoder (A&B) with other baselines
Melody Mono. Poly.

Acc Fno F Acc Fno F Acc Fno F
Vocab-AE 0.44 0.36 0.31 0.12 0.08 0.04 0.11 0.06 0.02
Basic-Pitch 0.91 0.79 0.71 0.76 0.69 0.61 0.70 0.65 0.63
MI-AMT 0.80 0.68 0.62 0.64 0.56 0.50 0.42 0.34 0.25

A&B (Ours) 0.94 0.82 0.74 0.72 0.63 0.57 0.77 0.62 0.59

4.3 EVALUATION ON GENERATION QUALITY

Metrics. A variety of metrics have been proposed to evaluate the harmony, quality and similarity
of music generation. We borrowed the metrics from Ji et al. (2023) and Ren et al. (2020) for eval-
uation: chord accuracy (CA) that measures the harmony, and averaging overlapped area (OA) of
distributions (DA, A can be one of P (itch), V (elocity), D(uration), and OI(onsetInterval)) to
measure the difference between generated musical piece and ground-truth musical piece.

Baseline Settings. We introduce MuseGAN (M-G, Dong et al. (2018)), PopMAG (P-M, Ren et al.
(2020)) and Figaro (F-G, von Rütte et al. (2023)). To make UniCompoer (U-C) comparable with
the three model: 1) For MuseGAN, we take 4 bars as input to generate 4 tracks (guitar, drum,
string and bass) conditioned on a main melody of piano track, and free of musical information since
MuseGAN doesn’t use chord and other features. 2) For PopMAG, we use the same task, while
extend the generation length into 64 bars. 3) For Figaro, we use only features including chord,
beat and target instrument as input, as Figaro just take them as input to generate new rhythm. We
compare the ability of UniComposer with them separately on evaluation set. Results are in Table 5.

Table 5: Music Geneartion Quality Evaluation. The three groups carry out different tasks.

CA DP DV DD DOI
M-G 0.334± 0.011 0.294± 0.013 0.342± 0.008 0.311± 0.016 0.336± 0.010
U-C 0.397± 0.010 0.358± 0.012 0.407± 0.016 0.301± 0.009 0.398± 0.013
P-M 0.589± 0.011 0.601± 0.013 0.492± 0.009 0.523± 0.007 0.655± 0.007
U-C 0.566± 0.010 0.625± 0.018 0.511± 0.014 0.507± 0.005 0.628± 0.014
F-G 0.541± 0.011 0.356± 0.006 0.642± 0.008 0.477± 0.008 0.433± 0.004
U-C 0.445± 0.012 0.451± 0.016 0.592± 0.011 0.504± 0.011 0.507± 0.008
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Instrument Assignment Capability. Since UniComposer is the first system to automatically select
instruments, metrics are limited. To assess its effectiveness, we analyzed the instrument distribution
across 10 melodies in four emotional categories: happy, sad, soothing, and stirring. The occurrence
of guitar, violin, trumpet, and flute in these melodies was recorded and summarized in Table 6.

Table 6: Instrument occurrence in different emotional melodies, each category containing 10 pieces.
Guitar Violin Trumpet Flute Guitar Violin Trumpet Flute

Happy 8 5 3 0 Soothing 7 7 2 1
Sad 8 7 0 0 Stirring 8 6 3 0

4.4 ABLATION STUDY

Attention Mechanisms. We begin by experimenting with the global attention mask (U-GA), a com-
mon approach in natural language processing. Next, we test the addition of either the self-attention
mask (U-GSA) or the local attention mask (U-GLA) to global attention individually. Finally, we
compare these three attention mechanisms with UniComposer (UniComp.). As shown in Table 7,
global attention establishes a foundation by providing cross-bar focus within a music piece. Self-
attention refines this by encouraging the model to emphasize pitch and velocity, yielding slight
improvements. Local attention, which mimics a composer’s focus on musical sub-structures, further
enhances overall quality.

Cascaded Diffusion Models. To evaluate the hierarchical generation process, we first removed
diffusion models DM2 through DM4, leaving only DM1 (U-DMa). In this configuration, DM1 is
trained to generate the entire MIDI based solely on the melody and musical features. We also im-
plemented a second structure in which DM2 through DM4 were compressed into a single diffusion
model (U-DMb), while DM1 remained unchanged. In this variant, the monophonic, polyphonic,
and percussion features were combined, and a single diffusion model was trained to generate the
complete raw MIDI. As shown in Table 7, the results demonstrate that it is challenging for a single
diffusion model to capture the full data distribution, from the main melody to the detailed instrumen-
tation. Due to the complexity of each individual instrument, integrating them into a single diffusion
model proves difficult.

Table 7: Ablation study on attention mechanisms and cascaded diffusion models.
CA DP DV DD DOI

U-GA 0.549± 0.008 0.501± 0.006 0.405± 0.004 0.492± 0.007 0.540± 0.006
U-GSA 0.532± 0.009 0.530± 0.006 0.421± 0.010 0.493± 0.006 0.559± 0.010
U-GLA 0.601± 0.008 0.627± 0.011 0.537± 0.012 0.507± 0.006 0.629± 0.015
U-DMa 0.187± 0.006 0.156± 0.002 0.174± 0.004 0.102± 0.001 0.168± 0.004
U-DMb 0.364± 0.008 0.420± 0.007 0.386± 0.009 0.366± 0.005 0.309± 0.004

UniComp. 0.607± 0.008 0.644± 0.013 0.549± 0.011 0.511± 0.009 0.643± 0.010

5 CONCLUSION

In this work, we propose UniComposer, a band-level music generation pipeline that involves col-
collaborative roles of instruments and bridges the gap between symbolic and audio music. Uni-
Composer first extracts features from both symbolic bars and audio segments, and then applies four
cascaded diffusion models to generate the corresponding features for each bar. Experiments on the
feature space demonstrate the effectiveness of the unified latent space, while comparisons with other
music generation pipelines highlight UniComposer’s ability to generate band-level music. Addition-
ally, the ablation studies confirm the effectiveness of the various components within UniComposer.

Discussion and Future work. There are potential discrepancies in data distribution between syn-
thesized audio generated from MIDI, background noise, and real-world recordings. However, a
limitation is the lack of extensive datasets containing paired raw audio and corresponding MIDI for
comprehensive training. Meanshile, UniComposer’s capacity to process human vocals remains lim-
ited due to insufficient data. Another constraint is the requirement for prior BPM (Beats Per Minute)
information, which can restrict the data. Addressing these issues may be a focus of future research.
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APPENDICES

This section aims to offer a comprehensive explanation of the technical concepts and mathemati-
cal formulations discussed in the paper, along with additional examples and case studies to better
illustrate their practical applications.

A DETAILS FOR ENCODER, DECODER AND TRAINING

A.1 E-MLP AND D-MLP STRUCTURE

We denote a five-attribute note as N = [O,D,P, V, I], where O represents the onset time, D stands
for duration, P denotes pitch, V refers to velocity, and I indicates instrument. A vocabulary is
constructed to encompass all possible tokens corresponding to these five attributes.

E-MLP (Encoder MLP). The E-MLP model is responsible for encoding the input tokens of the
note. It consists of a token embedding layer that maps each input token to a dense vector repre-
sentation. Specifically, each token is passed through an embedding layer, followed by a series of
linear transformations and activation functions. The output is a 16-dimensional vector for each note.
Mathematically, the process can be represented as:

EMLP(N) = σ(W2(σ(W1TN + b1)) + b2)

where: TN represents the input token embedding for note N , W1 and W2 are the weight matrices
for the two linear layers, b1 and b2 are the bias terms, and σ denotes the activation function ReLU.
The final output of the E-MLP is a fixed 16-dimensional latent representation of the note N .

D-MLP (Decoder MLP). The D-MLP model aims to reconstruct or predict the five discrete at-
tributes (O,D,P, V, I) from the latent representation generated by the E-MLP. The D-MLP consists
of two linear-activation layers that are stacked together. For each attribute, a separate classifier is
used, as each attribute takes discrete values from predefined categories. The process for predicting
each attribute can be described as follows:

Âi = softmax(Wi · σ(Wi−1 · Z + bi−1) + bi)

where: Z is the latent 16-dimensional vector obtained from the E-MLP, Wi−1 and Wi are weight
matrices, with Wi−1 belonging to the first linear layer and Wi to the classifier for attribute Ai (where
i ∈ {O,D,P, V, I}), bi−1 and bi are the bias terms, and softmax is applied to ensure that the output
is a valid probability distribution over the possible discrete values of each attribute. Thus, the D-
MLP outputs five probability distributions, one for each attribute of the note.

Overall Process. In summary, the E-MLP encodes the note into a fixed-length latent representation,
while the D-MLP decodes this representation into the predicted values of the five attributes. The
entire process can be formulated as:

N̂ = DMLP(EMLP(N))

where N̂ represents the predicted note attributes.

A.2 FORMULATION OF THE NOTE ENCODER

As stated in the paper, the note encoder takes a sequence of embedding vectors as input and utilizes a
4-head, 6-layer Transformer architecture. Denote each note as N , and let the embedding of the note
be processed by the E-MLP, denoted as EMLP. We use the final hidden state of the Transformer as the
input to two separate output layers. Each of these output layers consists of a linear transformation
followed by a non-linear activation function. These layers output two distinct features: note features
and musical features.

The input to the Transformer is a sequence of embedding vectors, denoted as X =
[EMLP(N1), EMLP(N2), . . . , EMLP(NT )], where T is the length of the sequence, and each EMLP(Ni)
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is the 16-dimensional embedding of note Ni obtained from the E-MLP. The Transformer first maps
these to its feature space, and then processes this sequence through its multi-head self-attention
mechanism and a series of feed-forward layers. The final hidden state HT at time step T (corre-
sponding to the last note in the sequence) is used as the input to the subsequent output layers.

The Transformer-based encoding process can be formulated as:

HT = Transformer(X)

where HT is the hidden state vector at the last layer and the final time step of the Transformer.

We then apply two separate output layers to HT , one for extracting note features and another for
extracting musical features. Each output layer consists of a linear transformation followed by a
non-linear activation function. The outputs are defined as follows:

Fnote = σ(WnoteHT + bnote), Fmusic = σ(WmusicHT + bmusic)

Thus, the final formulation can be expressed as:

Fnote, Fmusic = Output Layers(Transformer(EMLP(N1), EMLP(N2), . . . , EMLP(NT )))

A.3 LOSS FOR THREE-STEP TRAINING OF FEATURE EXTRACTION

Step 1: E-MLP and D-MLP. Given a note N = [O,D,P, V, I] representing its five attributes
(onset, duration, pitch, velocity, instrument), the task is to embed this note into a 16-dimensional
vector using the E-MLP. The D-MLP then reconstructs the five attributes from this 16-dimensional
representation. The loss function used to minimize the reconstruction error across the five attributes
is formulated as:

L =

5∑
i=1

CrossEntropy(Ai, Âi)

where Ai are the true attributes and Âi are the predicted attributes. Each attribute is treated as a
classification task using cross-entropy loss.

Step 2: Note Encoder and Bar Decoder. The note encoder processes a sequence of 16-dimensional
embeddings, generating both note-level and musical-level features. The bar decoder takes the note
features as input and auto-regressively generates the embedding vector at each position.

The loss function for the note embeddings is the Mean Squared Error (MSE) between the predicted
and target sequences, both of which consist of 16-dimensional embedding vectors. This can be
formulated as:

Lnote =
1

T

T∑
t=1

MSE(Et, Êt)

where Et and Êt represent the true and predicted 16-dimensional embedding vectors at time step t,
and T is the length of the sequence.

For the musical attributes (chord, time signature, tonality and dynamics), the loss is computed using
a classifier-based loss function, typically cross-entropy, for each attribute:

Lattr =

4∑
i=1

CrossEntropy(Ai, Âi)

where Ai and Âi are the true and predicted values for the four musical attributes, respectively.
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Step 3: Audio Encoder. As described in Section 3, the training data for the audio encoder is derived
from MIDI files. Given a MIDI song S, we convert it to an audio waveform W . For each bar Bi in S
and its corresponding waveform segment in W (denoted as Bw), we extract the note sequence from
S and use the E-MLP to obtain an embedding sequence. Next, Bw is fed into the audio encoder,
which outputs the note features and musical features. The bar decoder then uses the note features
to reconstruct the embedding vector list, while the musical features are used to predict the four
attributes (onset, duration, pitch, and velocity).

The loss function in this process consists of two parts: 1) MSE Loss: The Mean Squared Error
(MSE) between the input embedding sequence from the E-MLP and the output embedding sequence
generated by the bar decoder; 2) Classification Loss: A cross-entropy loss for the four musical
attributes predicted from the musical features.

Laudio =
1

T

T∑
t=1

MSE(Et, Êt) +

4∑
i=1

CrossEntropy(Ai, Âi)

where Et is the input embedding at time step t, Êt is the reconstructed embedding, and T is the
length of the sequence. In this training process, the bar decoder is frozen, and only the audio encoder
is updated.

B DEALING WITH AUDIO INPUT

B.1 HARMONIC CONSTANT-Q TRANSFORMATION

The Harmonic Constant-Q Transform (H-CQT) extends the traditional Constant-Q Transform
(CQT) by introducing a third dimension, designed to align harmonically related frequencies. This
alignment allows the transformation to more effectively capture harmonic information, which is cru-
cial in many audio analysis tasks, such as music transcription, pitch tracking, and timbre analysis. By
analyzing harmonics across multiple frequency bins, the H-CQT emphasizes both the fundamental
frequencies and their harmonics, improving the representation of harmonic structures.

The H-CQT is mathematically defined as follows:

XHCQT (h, t, k) =

N−1∑
n=0

x(n)w(n− t) e−2πihfkn

where:

- XHCQT (h, t, k) represents the H-CQT coefficient at harmonic index h, time frame t, and fre-
quency bin k. - x(n) is the input signal in the time domain, typically a sampled audio signal of
length N .

- w(n− t) is a window function (such as a Hann or Hamming window) centered around time frame
t, which serves to localize the analysis in both time and frequency domains. The window function
is crucial in minimizing spectral leakage and ensuring that the signal is properly segmented in time.

- fk denotes the center frequency of the k-th bin in the Constant-Q Transform, which is character-
ized by a logarithmic frequency spacing, making it well-suited for processing audio signals where
perception of pitch is often logarithmic in nature.

- h is the harmonic index, which allows for the computation of higher harmonics of the fundamental
frequencies present in the signal. Specifically, when h = 1, the transform focuses on the fundamen-
tal frequencies, while h > 1 captures the harmonics.

In this formulation, the summation operates over all signal samples x(n), where n = 0, 1, ..., N −1.
The term e−2πihfkn is a complex exponential that shifts the signal by a frequency determined by
both the harmonic index h and the center frequency fk. This process is analogous to taking a short-
time Fourier transform, but in the context of CQT, it scales the analysis resolution logarithmically
across frequencies, ensuring that each frequency bin captures a musically relevant pitch range.
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By introducing the harmonic index h, the H-CQT enables the simultaneous representation of mul-
tiple harmonics for each fundamental frequency. This multidimensional transform offers a richer
description of harmonic content compared to the traditional CQT, making it a powerful tool for
analyzing signals where harmonic structure is important, such as music.

B.2 TIME ALIGNMENT FOR THE SECOND OF A BAR

As discussed in the conclusion section, obtaining the BPM (beats per minute) information for a piece
of audio is a crucial step. After acquiring this information, we extract a 2-second audio segment from
the raw input and process it using the audio encoder and bar decoder to predict the time signature of
the audio.

Let us assume the time signature is represented as n
m , where n is the number of beats per measure

(or bar), and m defines the note value that constitutes one beat (e.g., quarter note, eighth note).
Additionally, let the BPM of the audio be denoted as BPM.

The duration of one bar in seconds, which corresponds to the time it takes to complete a single
measure, can be calculated using the following formula:

Duration of one bar (in seconds) =
n

BPM
× 60

Where: - n is the number of beats per bar (from the time signature), - BPM is the beats per minute,
- 60 is the number of seconds in a minute.

Using this calculated duration, we define the new segment length for processing the entire audio.
The audio will now be divided into segments corresponding to the duration of one bar, allowing for
more precise temporal alignment. This adjustment ensures that each segment represents a musically
coherent unit, aligning with the beats and measures of the audio.

C INSTRUMENT SEPARATION

To simplify the classification of instruments, we propose a streamlined categorization based on
their corresponding MIDI program IDs, as shown in Table 8. This approach consolidates multiple
MIDI instrument categories into broader groups, facilitating more efficient handling in instrument
separation tasks. For example, various types of pianos (e.g., acoustic grand piano, electric piano) are
grouped under a single ”Pianos” category. Similar consolidations are applied across other instrument
families, such as chromatic percussion, guitars, and basses.

The primary objective of this reduction is to enhance the efficiency of instrument separation mod-
els by lowering the complexity of the classification process while preserving the key distinctions
necessary for accurate audio representation and processing. Each generalized instrument group cor-
responds to a specific range of MIDI program IDs, with the exception of standard drums, which are
categorized separately.

We categorize instruments into three main groups: Monophonic, Polyphonic, and Percussion. Below
is the detailed classification for each category, as shown in Table 9.

Monophonic Instruments. Monophonic instruments are those that generally produce only one note
at a time. These instruments are commonly used in melodic lines and solos, as their tonal clarity
allows for strong emphasis on individual notes including: 1) Violin: A bowed string instrument
known for its wide range and expressive dynamics. 2) Trumpet: A brass instrument with a bright
and powerful sound. 3) Saxophone: A woodwind instrument with a reedy sound, common in jazz
and classical genres. 4) Bassoon: A large woodwind instrument, characterized by its deep, rich
sound. 5) Flute: A woodwind instrument producing sound by air flow across an opening, known for
its bright and airy timbre.

Polyphonic Instruments. Polyphonic instruments can play multiple notes simultaneously, making
them suitable for harmonic and chordal accompaniment. These instruments are essential in creat-
ing complex textures in music including: 1) Piano: A keyboard instrument capable of producing
rich harmonies and complex melodies. 2) Guitar: A string instrument often used in various musi-
cal genres, capable of playing chords and melodic lines. 3) Organs: A keyboard instrument with
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Table 8: Instrument reduction according to MIDI program IDs
# Program ID Instrument in UniComposer
1 0-7 Pianos
2 8-15 Chromatic Percussion
3 16-23 Organs
4 24-31 Guitar
5 32-39 Bass
6 40-43 Violin
7 54-58 Trumpet
8 62-65 Saxophone
9 66-69 Bassoon

10 70-77 Flute
11 102-109 Ethnic
12 110-117 Melodic Percussion
13 / Standard Drums

multiple sound-producing pipes, known for its grandeur in churches and large venues. 4) Bass (Elec-
tric/Acoustic): A low-pitched instrument that plays a foundational role in harmonic structures, often
contributing to both rhythm and harmony.

Percussion Instruments. Percussion instruments are classified based on their ability to produce
sound through striking or hitting. This category includes both rhythmic and melodic percussion
instruments including: 1) Melodic Percussion: Instruments such as xylophones and vibraphones that
can produce pitched sounds, allowing for melodic content. 2) Chromatic Percussion: Instruments
capable of producing all the notes in the chromatic scale, often used for melodic and harmonic roles
in orchestras. 3) Standard Drums: Drums typically found in drum kits, primarily used for rhythmic
purposes in various musical genres.

Table 9: Three category instrument separation.
Category Instruments

Monophonic Violin, Trumpet, Saxophone, Bassoon, Flute
Polyphonic Piano, Guitar, Organs, Bass
Percussion Melodic Percussion, Chromatic Percussion, Standard Drums

D DATASETS

D.1 NOTE VOCABULARY SELECTION

We collect 608,020 unique notes from LMD dataset. The rationale behind collecting all notes that
occur in the LMD dataset is outlined as follows:

1) Practicality of Limiting the Scope: It is computationally impractical to account for every possible
combination of notes, as the total number of potential notes within the five-attribute representation
is exceedingly large. Specifically, this involves combinations of the following five attributes: instru-
ment type, pitch, duration, velocity, and time signature. The total number of potential combinations
is the product of the ranges of these attributes, calculated as 24 (onset) * 24 (duration) * 4 (velocity
bin) * 128 (pitch) * 13 (reduced instrument), resulting in an immense number of possible notes.
Given this, it is more feasible to focus on notes that are actually observed in the dataset, as they
represent a more manageable subset of possibilities.

2) Infrequency of Certain Combinations: Many attribute combinations are highly unlikely or do not
occur frequently in real-world compositions. For instance, specific instruments such as the violin
rarely play pitches lower than G3 (pitch number 55). Therefore, it is unnecessary to consider these
improbable combinations, further reducing the computational complexity by excluding unrealistic
or rare note occurrences. This selective approach helps in focusing on the most relevant data.
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D.2 BAR-LEVEL FEATURE EXTRACTION

The four attributes of a bar mentioned in this paper are chord, time signature, dynamics, and tonality.
These attributes are extracted from a bar, given the five-attribute notes contained within it.

Chord. We adopt the chord calculation algorithm from the REMI representation. A chord is defined
by three attributes: root, chroma, and bass. These can be extracted using the library mir eval
by analyzing the chord name. Given the sequence of note pitches in a bar, a similarity metric is
computed between this pitch sequence and all possible chord chromas. The chroma with the highest
similarity is selected as the most likely chroma for the current bar, and the corresponding chord is
then determined. This method ensures the chord assigned to a bar accurately reflects the harmonic
content of that segment.

Time Signature. In the MIDI standard, the time signature is embedded in the program change
channel, where multiple time signatures can exist within a single piece of music. To determine the
time signature of a specific bar, we record the index of each bar and its corresponding program
change. The time signature of a bar is assigned based on the nearest preceding program change.
This method ensures that each bar’s time signature is correctly aligned with the overall structure of
the piece.

Dynamics. We categorize dynamics into six levels: pp, p, mp, mf, f, and ff, which correspond to
very soft to very loud dynamic ranges. To determine the dynamics of a bar, we extract the velocity
and pitch information from the note sequence in the bar. The average velocity of all notes in the
bar is computed, and based on this value, we map the velocity to one of the six dynamic levels.
For instance, very low velocities map to pp, while very high velocities map to ff. This approach
provides a clear dynamic profile for each bar, reflecting the performance intensity.

Tonality. We adopt a simple binary classification of tonality: major and minor. Major tonality
often expresses emotions such as happiness, brightness, and triumph, while minor tonality conveys
sadness, tension, or somberness. In this paper, tonality is derived together with the chord extraction
process. A chord label, such as ‘C:maj7’ or ‘D:min7’, directly indicates whether the tonality is major
or minor. The label ‘maj’ (major) or ‘min’ (minor) is used to classify the tonality of the bar. This
binary tonality annotation simplifies the tonal analysis of the music while still capturing essential
emotional qualities.

D.3 HANDLING NOTE DURATION ACROSS BARS

In our approach, each bar is subdivided into 24 bins to represent discrete time intervals within the bar.
However, a challenge arises when dealing with notes that extend beyond a single bar. Specifically,
a note may begin in one bar but continue into subsequent bars, resulting in a duration that spans
multiple bars.

To address this, we segment the duration of such notes into discrete parts. Each segment corresponds
to a note that starts within a specific bar and, in most cases, extends to the end of that bar. The
remaining portion of the note continues into the next bar in a similar manner. By this method, we
ensure that each bar is represented by a set of notes with a maximum duration of 24 bins, effectively
standardizing the duration representation within each bar.

This approach allows for seamless integration of note durations across multiple bars while maintain-
ing the temporal structure imposed by the 24-bin division. It also facilitates the uniform handling of
note events across bars, enabling consistent analysis and processing of musical sequences.

E METRICS DETAILS

We evaluate performance using the note-level F-measure (F ), where a note is considered correctly
identified if its pitch is within a quarter tone, the onset is within 50 ms, and the offset is within 20%
of the note’s duration.

Chord Accuracy (CA). Chord Accuracy assesses whether the chords of the generated tracks align
with the conditional chord sequence, which directly impacts the harmony of the generated music.
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Chord accuracy is defined as:

CA =
1

Ntracks ×Nchords

Ntracks∑
i=1

Nchords∑
j=1

I{Ci,j = Ĉi,j}

where Ntracks represents the number of tracks, Nchords the number of bars, Ci,j denotes the j-th
ground-truth chord in the i-th track, and Ĉi,j refers to the corresponding generated chord in the
same position.

Pitch, Velocity, Duration, Onset Interval. To provide a more comprehensive evaluation of the
harmony, dynamics, and expressiveness of musical compositions, we analyze the distributions of
various features (e.g., pitch and velocity) and compare the distances between the distributions of
generated and ground-truth musical pieces. First, histograms are computed for each feature, fol-
lowed by kernel density estimation to convert the histograms into continuous probability density
functions. This smoothing process offers a more generalizable representation of the data.

Averaging Overlapped Area (OA). The overlapping area (OA) of distributions (DA, where A can
be one of Pitch, Velocity, Duration, or Onset Interval) is used to quantify the difference between the
generated and ground-truth musical pieces. This is represented by the following formula:

DA =
1

Ntracks ×Nbars

Ntracks∑
i=1

Nbars∑
j=1

OA(PA
i,j , P̂A

i,j)

where OA denotes the averaged overlapping area between two distributions. PA
i,j represents the

distribution of feature A in the i-th track and j-th bar of the ground-truth musical piece, while P̂A
i,j

represents the same in the generated piece.

F MORE SHOWCASES AND DISCUSSIONS

F.1 FORMULATION OF THE CASES

We denote MIDI music as images, where the height of the image represents the pitch of each note,
and the length corresponds to the time. In this representation, each note is mapped to a specific
position in the image based on its pitch and onset time. The color of each pixel represents instrument,
providing a visual representation of the musical structure. More showcases are on https://
sites.google.com/view/unicomposer

F.2 BENEFITS OF USING BARS AS THE BASIC UNIT

Since UniComposer uses bars as the fundamental unit for music generation, the resulting composi-
tions are strongly aligned by bars, which helps to maintain a coherent and well-structured musical
form. This bar-level alignment ensures that the generated music follows a clear rhythmic structure,
improving both the musicality and organization of the output.

F.3 BENEFITS OF INSTRUMENT SEPARATION

UniComposer distinguishes between monophonic, polyphonic, and percussion instruments, allow-
ing for a more refined focus on their individual roles within band-level music compositions. Mono-
phonic instruments primarily contribute to melodic variation and dynamic changes, playing a central
role in driving the musical narrative. Polyphonic instruments provide harmonic support and stabil-
ity, often through repetitive chord progressions or sustained notes that enhance the overall harmonic
texture. Percussion instruments, on the other hand, serve as the rhythmic foundation, dictating the
tempo and guiding the progression of the music. This separation of instrumental roles contributes
to a clearer structural organization in band-level compositions, ensuring that each instrument type
complements the others in a cohesive and balanced manner.
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