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ABSTRACT
In this supplementary material, we provide: i) evaluations for the
video segmentation ability of our AutoSFX and comparisons be-
tween it and SOTA audiovisual segmentation approaches; ii) failure
cases of our AutoSFX.

ACM Reference Format:
Anonymous Author(s). 2018. AutoSFX: Automatic Sound Effect Genera-
tion for Videos (Supplementary Material). In Proceedings of Make sure to
enter the correct conference title from your rights confirmation emai (Con-
ference acronym ’XX). ACM, New York, NY, USA, 4 pages. https://doi.org/
XXXXXXX.XXXXXXX

1 AUTOSFX V.S. AVS APPROACHES
In this section, we first introduce the experiment setup (§ 1.1) for
audiovisual segmentation (AVS) task, including datasets, evaluation
metrics, and implementation details. Then, we evaluate the perfor-
mance of our AutoSFX in comparison to state-of-the-art methods
for AVS (§ 1.2). We also provide mass segmentation results ins this
section.

1.1 Setup
Dataset. We leverage the AVSBench [10] dataset to evaluate the
performance of our proposed approach. This is a recently released
video segmentation dataset, providing masks for sounding objects
with audio signals. It covers 23 object categories, e.g., animal and
human-related sound events. Specifically, it consists of two subsets
with different sound source protocols: S4, the Single-source subset,
includes 4932 videos with 10,852 annotated frames; MS3, the Multi-
source subset, includes 424 videos with 2,210 annotated frames.
Fig. 1 demonstrates some examples of the dataset.

Evaluation Metrics. We quantify the performance by adopt-
ing standard segmentation and audio generation metrics outlined
in [10]. Specifically, we quantify the segmentation performance
using two benchmark settings: S4, where only a portion of the
ground truth is provided during training, but all frames need to
be predicted during evaluation; and MS3, where the labels of all
five sampled frames of each video are available for training. With
the evaluation metrics of mIoU (mean Intersection-over-Union),
MJ , and F-score, MF , we could measure the region similarity
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for profit or commercial advantage and that copies bear this notice and the full citation
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and/or a fee. Request permissions from permissions@acm.org.
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S4 (Single Source) MS3 (Multi-Source)

video frame mask

baby laughter

video frame mask

piano & guita

Figure 1: Exmples of the AVSBench dataet used in our exper-
iments.

and contour accuracy of the generated masks compared to that of
ground truth.

Implementation Details. We resized all video frames to a size
of 1024 × 1024 and extracted the log Mel-Spectrogram using 64
mel filter banks over 1 second of audio data sampled at 16,000 kHz
on AVSBench. We employ Adam optimizer to optimize the model
parameters with an initial learning rate of 10−4 with cosine decay.
The batch size is defined as 8, and we train on S4 for 20 epochs and
40 epochs for MS3.

1.2 Quantitative Evaluation
In this section, we carry out a series of experiments to evaluate the
performance of our proposed Sound Generation Module in terms
of video segmentation, including the comparison with other SAM-
based methods (§ 1.2.1), the comparison with methods from related
tasks (§ 1.2.2), and model evaluation (§ 1.2.3).

1.2.1 Comparison with other SAM-based AVS methods. We
conducted evaluations of various SAM-based methods on AVS-
Bench, including SAM [3], AV-SAM [7], SAMA-AVS [4], and our
AutoSFX. To establish a baseline, we utilize the released model
weights of the ViT-H SAM model. This was done without any ad-
ditional training. Furthermore, we adopted the training strategy
proposed by SAMA-AVS to respectively train and test our model
on the two subsets of AVSBench, i.e. S4 and MS3.

The quantitative results of the different SAM-based methods
are demonstrated in Table 1. Overall, our AutoSFX has significant
advantages over SAM, AVS, and AV-SAM on both subsets and both
metrics, i.e. MJ = .807 and MF = .878 for S4 and MJ = .645
andMF = .692 for MS3. When focusing on the results from the S4
subset, we observe that our results surpass the performance of the
vanilla SAM and AV-SAM. This may be due to our enhanced em-
phasis on auditory information in the video segmentation branch,
leading to a more robust audio-visual fusion across the model rather
than just in the initial stage. Moreover, the performance of our Au-
toSFX is comparable to that of SAMA-AVS, which further validates
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Table 1: Comparision between different SAM-based methods on the test sets of S4 and MS3 of AVSBench. We demonstrate the
results with the evaluation metrics ofMJ andMF .

Metric Setting SAM [3] AVS [10] AV-SAM [7] SAMA-AVS [4] AutoSFX (ours)

MJ
S4 .551 .787 .408 .815 .807
MS3 .540 .540 - .631 .645

MF
S4 .739 .879 .566 .886 .878
MS3 .638 .645 - .691 .692

(a) M4 (Single Source) (b) MS3 (Multi-Source)

Lion Roaring

Video
Frame

Audio

GT

Ambulance Siren

Video
Frame

Audio

GT

Ours

Ours

Violin and Piano

Boy and Dog

AVS-
Bench

AVS-
Bench

Figure 2: Qualitative examples of our proposed BiGSAM, under the semi-supervised M4 setting and fully-supervised MS3
setting, respectively.

our idea that the representations in the two branches (i.e. audio-
visual segmentation and vision-to-sound generation) can mutually
promote and enhance each other.

In Fig. 2, we demonstrate some qualitative results of the gener-
ated segmentation masks among our AutoSFX, AVSBench, and the
corresponding ground truth. We observe that for both S4 and MS3

subsets, our results are closer to the ground truth. Specifically, on
the test set of S4 (Fig. 2(a)), our method produces higher-quality
results on single-sounding objects, i.e. clearer contour and finer
details. Take the driving bus as an example, our method could effec-
tively handle occlusion and achieve improved segmentation. Also,
AutoSFX could precisely segment frames of a lion roaring, even

2
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Table 2: Comparison with methods from related tasks on two subsets of AVSBench. We demonstrate the results with the
evaluation metrics ofMJ andMF .

Metric Setting SSL VOS SOD AutoSFX

LVS [1] MSSL [8] 3DC [5] SST [2] iGAN [6] LGVT [9] (ours)

MJ
S4 .379 .449 .571 .663 .616 .749 .807
MS3 .295 .261 .369 .426 .429 .407 .645

MF
S4 .510 .663 .759 .801 .778 .873 .878
MS3 .330 .363 .503 .572 .544 .593 .692

… …

… …

… …

(a) Music Festival

(b) Space

(c) Horse

… …

(d) Women

AutoSFX: People clapping Pika: Engine roaring Professional: People shouting

Professional: “Ding” & Heart beatPika: Hollow noise

Professional: Sound of horse hooves & Clock ticking

AutoSFX: Footsteps

Professional: Eagle screeching

AutoSFX: Sound of horse hooves with different speed
Pika: Sound of horse hooves with the same speed

AutoSFX: The sound of slapping water
Pika: Water flowing

Figure 3: Failure cases of our AutoSFX and the online sound effect generation tool (Pika).

against a background with a similar texture. On the other hand, for
the test set of MS3 (Fig. 2(b)), our generated masks have more pre-
cise boundaries for multiple-sounding objects, reducing ambiguous
lines and spots, and overlapping areas.

1.2.2 Comparison with methods from related tasks. The
most relevant tasks for AVS are sound source localization (SSL),
video object segmentation (VOS), and salient object detection (SOD).
We compare our framework with the methods from the three tasks.
Specifically, we demonstrate two SOTA methods within each task,
i.e. LVS [1] and MMSL [8] for SSL, 3DC [5] and SST [2] for VOS, and
iGAN [6] and LVGT [9] for SOD. Note that the backbones of these
methods are all pre-trained on the ImageNet. As shown in Table 2,
the quantitative results demonstrate that our method achieves sig-
nificantly superior segmentation performance than other methods.

1.2.3 Model Evaluation. Here we perform an ablation study to
investigate the choice of different modules in our proposedAutoSFX.

Audio-Visual Fusion.We train the models with either cross-modal
attention or easily concatenate the visual and auditory features

extracted from the corresponding encoders. For the latter strategy,
we then obtained results ofMJ = .792 andMF = .849 for S4, only
lower than that of SAMA-AVS [4], andMJ = .607 andMF = .675
for MS3. On the contrary, leveraging our cross-modal attention
mechanism, the model achieves a better performance.

Diffusion-based module. We perform the experiments by moving
the diffusion-based module only for the audio generation branch,
rather than for audio-visual diffusion. The results demonstrate
that the model improves when the diffusion-based module con-
siders multi-modal information. Specifically, the ablated frame-
work achieves results of MJ = .684 and MF = .693 for S4, and
MJ = .602 andMF = .643 for MS3.

2 FAILURES
As the performance of our AutoSFX is limited to the sound genera-
tion model trained on the VEGAS and VGGSound datasets, diverse
user inputs pose experience failures in the sound effect generation.
For example, as shown in Fig. 3 (a), generating sound effects for
scenes featuring large crowds in dimly lit settings, e.g., like many

3
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people shaking hands at a music festival, can be challenging. Pro-
fessional designers utilized shouts and cheers to create the complex
soundscape, while the generated results are suboptimal; i.e. Pika’s
output resembles the roar of an engine, and ours merely produces
the sound of clapping. There are some special scenarios in which
sounds should be abstract, like in space (Fig. 3 (b)). In reality, space
is silent, but designers would like to use heartbeat sounds to create
a mysterious ambiance; AutoSFX and Pika generate very differ-
ent results. Additionally, professional designers sometimes employ
sound effects for visual content more abstractly, such as using the
ticking of a clock to represent a running horse (Fig. 3 (c)) and an
eagle’s screech for a woman waving her arms like a bird. Future
work could further incorporate text prompts during the training
process of the generation module. We also believe there is potential
for improvement in video understanding and generating abstract,
indescribable, and context-aware sound effects.
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