
Published as a conference paper at ICLR 2025

DIFFERENTIABLE INTEGER LINEAR PROGRAMMING

Zijie Geng1,2∗, Jie Wang1,2†, Xijun Li3, Fangzhou Zhu4, Jianye Hao4,5, Bin Li1, Feng Wu1,2

1 University of Science and Technology of China
2 MoE Key Laboratory of Brain-inspired Intelligent Perception and Cognition
3 Shanghai Jiao Tong University 4 Noah’s Ark Lab, Huawei 5 Tianjin University
zijiegeng@mail.ustc.edu.cn, {jiewangx,binli,fengwu}@ustc.edu.cn
lixijun@sjtu.edu.cn, {zhufangzhou,haojianye}@huawei.com

ABSTRACT

Machine learning (ML) techniques have shown great potential in generating high-
quality solutions for integer linear programs (ILPs). However, existing meth-
ods typically rely on a supervised learning paradigm, leading to (1) expensive
training cost due to repeated invocations of traditional solvers to generate train-
ing labels, and (2) plausible yet infeasible solutions due to the misalignment be-
tween the training objective (minimizing prediction loss) and the inference ob-
jective (generating high-quality solutions). To tackle this challenge, we propose
DiffILO (Differentiable Integer Linear Programming Optimization), an unsuper-
vised learning paradigm for learning to solve ILPs. Specifically, through a novel
probabilistic modeling, DiffILO reformulates ILPs—discrete and constrained op-
timization problems—into continuous, differentiable (almost everywhere), and
unconstrained optimization problems. This reformulation enables DiffILO to si-
multaneously solve ILPs and train the model via straightforward gradient descent,
providing two major advantages. First, it significantly reduces the training cost,
as the training process does not need the aid of traditional solvers at all. Second,
it facilitates the generation of feasible and high-quality solutions, as the model
learns to solve ILPs in an end-to-end manner, thus aligning the training and in-
ference objectives. Experiments on commonly used ILP datasets demonstrate that
DiffILO not only achieves an average training speedup of 13.2 times compared to
supervised methods, but also outperforms them by generating heuristic solutions
with significantly higher feasibility ratios and much better solution qualities.

1 INTRODUCTION

Integer linear programs (ILPs) are powerful tools in various areas such as operations research, math-
ematics, and engineering (Bixby et al., 2004; Bengio et al., 2021). They are able to model a broad
range of combinatorial optimization (CO) problems and find diverse real-world applications, includ-
ing scheduling (Ryan & Foster, 1981), planning (Beyer et al., 2016), and network design (Koster
et al., 2010). Despite their significant importance, ILPs inherently exhibit a complex combinatorial
nature and are known as quintessential NP-hard problems, posing substantial challenges in solv-
ing them efficiently. Therefore, extensive research and development efforts have been dedicated to
advancing ILP solvers, such as SCIP (Achterberg, 2009) and Gurobi (Gurobi Optimization, 2021).
These solvers are mainly based on traditional algorithms such as Branch-and-Bound (B&B) (Land
& Doig, 2010) and Branch-and-Cut (B&C) (Mitchell, 2002), which are meticulously enhanced with
various heuristics to improve efficiency and accuracy.

Machine learning (ML) techniques, especially deep neural networks (DNNs), have recently shown
great potential in solving or aiding the resolution of ILPs (Zhang et al., 2023; Li et al., 2024a). In
practice, ILPs within specific scenarios often exhibit similar structures or patterns across instances,
enabling ML methods to automatically identify and exploit these patterns to reduce computational
complexity in a data-driven manner (Gasse et al., 2019). When trained on a dataset of instances,

∗This work was done when Zijie Geng was an intern at Huawei.
†Corresponding author.

1

Published as a conference paper at ICLR 2025

min
x
c⊤x

s. t.Ax ≤ b
x ∈ {0, 1}n

ILP Problem

Predictor Predicted
Solutions

Differentiable
Loss

Gurobi Solutions
(a) Previous Methods
Supervised Learning

Labels (b) DiffILO
Unsupervised Learning

Gradient
Descent

Time-Consuming

Figure 1: (a) Previous works mainly use supervised learning. They employ Gurobi to obtain
solutions that serve as training labels, which is time-consuming. (b) Our proposed DiffILO is an
unsupervised learning approach. Its key idea is to design a differentiable loss function, enabling
straightforward gradient descent methods to optimize the problems and the predictor simultaneously.

DNNs are able to generalize to novel but similar instances, making decisions according to past ex-
periences in a short time frame. The growing intersection of CO and ML has attracted considerable
attention due to its potential to drive innovation and offer mutual benefits to both fields. Research
efforts in this area can be generally categorized into two main streams. Some studies integrate ML
into the traditional branch-and-bound framework, enhancing components such as branching deci-
sions (Gasse et al., 2019; Kuang et al., 2024a;b; Liu et al., 2023; 2024b), separation processes (Li
et al., 2023a), presolving (Kuang et al., 2023), and cut selection (Wang et al., 2023c; Ling et al.,
2024; Wang et al., 2024b). Another line of research, which is the focus of this paper, directly
employs ML to predict solutions (Khalil et al., 2022; Liu et al., 2024a; 2025). Recent advance-
ments, such as Neural Diving (Nair et al., 2020; Yoon, 2022) and Predict-and-Search (Han et al.,
2023; Huang et al., 2024; Zeng et al., 2024), have shown effectiveness in reducing the solving
time. These methods typically follow a supervised learning paradigm, using traditional solvers like
SCIP (Achterberg, 2009) and Gurobi (Gurobi Optimization, 2021) to generate near-optimal solu-
tions as training labels. A predictor is trained to predict the near-optimal solutions from the given
instances. Sophisticated heuristics are then applied to exploit the predicted solutions, thus acceler-
ating the solving process.

Despite these achievements, supervised learning methods still present significant challenges. First,
they are time-extensive due to the need to repeatedly invoke traditional solvers to generate train-
ing labels. This is a fundamental limitation of supervised learning approaches (Wang et al., 2024a),
which has driven researchers across various fields to turn their attention towards unsupervised learn-
ing approaches (Wang et al., 2022). Second, there exists an inherent misalignment between the ob-
jectives of minimizing prediction errors during training and generating high-quality solutions during
inference. In other words, the predictor is trained to mimic the provided solutions rather than inde-
pendently solving the problems. Consequently, these methods often yield plausible yet infeasible
solutions (Zeng et al., 2024). In light of these issues, developing a differentiable approach for
solving ILPs in an unsupervised learning paradigm becomes especially attractive. As illustrated in
Figure 1, the core concept involves designing a differentiable loss function to directly optimize the
problems and the predictor using gradient descent methods. In the field of CO, this differentiable
loss is intuitively expected to align with the optimization objectives, thus enabling an end-to-end
training framework that facilitates producing high-quality solutions. From a fundamental research
perspective, such a method aligns with the ongoing academic pursuit of unsupervised learning. From
a practical perspective, this method promises significant advantages, significantly reducing training
time while improving the quality of generated solutions (Chen et al., 2023).

To tackle this challenge, we propose DiffILO (Differentiable Integer Linear Programming
Optimization), a novel unsupervised learning approach for learning to generate high-quality ILP
solutions. To the best of our knowledge, DiffILO is the first method to employ pure ML tech-
niques for training, without relying on traditional solvers, representing a front-line exploration of
ML applications in the field of combinatorial optimization. Specifically, DiffILO first relaxes the
binary variables into continuous ones via probabilistic modeling, where the constraints are trans-
formed into the form of expected violation. We theoretically demonstrate the equivalence preserved
in this transformation. DiffILO then adopts the penalty function method to convert the constrained
problems into unconstrained ones. By further leveraging a reparameterization trick to flow the gra-

2

Published as a conference paper at ICLR 2025

dient back-propagation, thus forming a differentiable (almost everywhere) loss function, DiffILO
optimizes both the ILP problems and the predictor parameters simultaneously via straightforward
gradient descent methods. The training process is entirely unsupervised, thus significantly reducing
the training time by bypassing the collection of labeled data. Moreover, the end-to-end optimization
aligns the objectives of training and inference, thus consistently producing feasible and high-quality
solutions. Extensive experiments demonstrate that DiffILO not only achieves an average training
speedup of 13.2 times compared to supervised methods, but also outperforms them by generating
heuristic solutions with much higher feasibility ratios and significantly improved objective values.

2 RELATED WORK

2.1 MACHINE LEARNING FOR INTEGER LINEAR PROGRAMS

Machine learning (ML) techniques have become increasingly prevalent in addressing combinatorial
optimization (CO) problems, especially integer linear programs (ILPs) and mixed-integer linear pro-
grams (MILPs) (Bengio et al., 2021; Li et al., 2023b; Zhang et al., 2023; Huawei, 2021). Some stud-
ies incorporate ML models into heuristic components in modern solvers (He et al., 2014; Baltean-
Lugojan et al., 2019; Kuang et al., 2023; Li et al., 2024a), such as branching (Gasse et al., 2019),
separation (Li et al., 2023a), and cut selection (Wang et al., 2023c), etc. Another line of research,
which is the focus of this paper, employs ML to generate heuristic solutions (Nair et al., 2020; Yoon,
2022; Khalil et al., 2022; Ye et al., 2023b; Zeng et al., 2024). A notable recent advancement is the
predict-and-search (PS) framework (Han et al., 2023; Huang et al., 2024), which first predicts initial
solutions, and then employs solvers like Gurobi (Gurobi Optimization, 2021) or SCIP (Achterberg,
2009) to search within a strategically designed trust region for solution improvement. Such research
is similar to the decision-focused learning (DFL) or predict-then-optimize framework (Elmachtoub
& Grigas, 2022; Ferber et al., 2020; Zharmagambetov et al., 2024), which learns a model to map
observable features into latent representation (e.g. coefficients in LP objective) used by solvers.

2.2 DIFFERENTIABLE APPROACHES

Differentiable approaches aim to construct a differentiable optimization objectives, facilitating the
straightforward application of gradient descent methods in an unsupervised, end-to-end manner.
These methods have been effectively implemented in fields such as Partial Differential Equation
(PDE) (Holl et al., 2020; Belbute-Peres et al., 2020) and Density Functional Theory (DFT) (Kvaal
et al., 2014; Mathiasen et al., 2024; Li et al., 2024b), showcasing their effectiveness in solving
such continuous problems. Applying these techniques to CO problems poses challenges due to the
discrete nature of these problems. In the field of CO, differentiable approaches have been tailored
for some specific problems, such as Boolean Satisfiability Problem (SAT) (Amizadeh et al., 2018)
and Traveling Salesman Problem (TSP) (Gaile et al., 2022). Notably, Karalias & Loukas (2020)
explored differentiable approaches for combinatorial optimization on graphs and developed Erdős
Goes Neural, a differentiable and unsupervised learning framework that is similar to our approach.
This concept has been further explored by some following works (Wang et al., 2022; Schuetz et al.,
2022; Wang & Li, 2023). However, these methods are tailored for some specific problems and
depend on custom-designed differentiable loss functions specific to these cases. To the best of our
knowledge, extending these techniques to general ILPs remains non-trivial.

3 METHODOLOGY

This section introduces our proposed DiffILO framework, with an overview depicted in Figure 2.
In Section 3.1, we present the probabilistic approach that reformulates a discrete, constrained ILP
problem into a continuous, unconstrained optimization problem. Next, in Section 3.2, we adopt
the Gumbel Softmax technique for reparameterization, which makes the problem differentiable al-
most everywhere (a.e.) and facilitates an efficient resolution via straightforward stochastic gradient
descent. Finally, Section 3.3 details the implementation of the DiffILO model, including its train-
ing and inference processes. The proofs and additional implementation specifics are available in
Appendix A and Appendix B, respectively.

3

Published as a conference paper at ICLR 2025

min
x
c⊤x

s. t.Ax ≤ b
x ∈ {0, 1}n

(P1) Discrete
Constrained

min
x̂
c⊤x̂

s. t.Ex∼p(·|x̂) [max(Ax− b,0)] = 0

x̂ ∈ [0, 1]n

(P2) Continuous
Constrained

min
x̂
c⊤x̂+ µ

∑
j

ϕ̂j(x̂)

s. t. x̂ ∈ [0, 1]n

(P3) Continuous
Unconstrained

Bipartite Graph G

GNN fθ Solution x̂
min
x̂
c⊤x̂+ µ

∑
j

φ̂j(x̂)

s. t. x̂ ∈ [0, 1]n

(P4) Differentiable a.e.

Sec. 3.3

Thm. 5
Gradients

Sec. 3.2

Gradients

Sec 3.3

Sec. 3.3

Thm. 1, 2

Sec. 3.1
Thm. 3
Sec. 3.1

Sec. 3.2
Reparameterization Thm. 4

Figure 2: Method overview of DiffILO. We first transform the primal discrete and constrained
problem into a continuous, unconstrained, and differentiable (a.e.) problem, as depicted by the blue
arrows. DiffILO employs a graph neural network (GNN) to predict solutions, as depicted by the
black arrows. It optimizes both the ILP problem and the GNN parameters simultaneously through
gradient descent, as depicted by the red arrows.

3.1 PROBABILISTIC MERIT FUNCTION

We focus on integer linear programs (ILPs) that take the form of:

min
x

{
c⊤x | Ax ≤ b,x ∈ {0, 1}n

}
. (P1)

where n denotes the number of variables, c ∈ Rn denotes the objective coefficients, the matrix
A = (a1,a2, · · · ,am)⊤ ∈ Rm×n denotes the constraint coefficient matrix, m denotes the number
of constraints, and b ∈ Rm denotes the right-hand-side biases of the constraints.
Remark 1. Without loss of generality, we focus on ILPs with binary integer variables, also re-
ferred to as 0-1 programs. This simplification is reasonable given the fact that any bounded integer
program can be converted into a binary (0-1) form (Dantzig, 2016; Ye et al., 2023a).

An ILP is quintessentially a discrete and constrained optimization problem. Our first step is to
reformulate it into a continuous problem. An intuitive approach is to relax the binary variables
x ∈ {0, 1}n into continuous variables x̂ ∈ [0, 1]n, which is commonly known as the linear pro-
gramming (LP) relaxation (Agmon, 1954; Bixby et al., 2004). However, clearly such relaxation
alters the original solution space. To achieve an equivalent reformulation, we adopt a probabilistic
approach (Karalias & Loukas, 2020), interpreting the continuous variables x̂ as probabilities associ-
ated with the binary variables. Specifically, each binary variable xi is assumed to follow a Bernoulli
distribution, writing xi ∼ Bernoulli(x̂i). The distribution of x is denoted as x ∼ p(·|x̂). Based on
the probabilistic modeling, we reformulate the primal problem (P1) into:

min
x̂

{
c⊤x̂ | Ex∼p(·|x̂) [max(Ax− b,0)] = 0, x̂ ∈ [0, 1]n

}
. (P2)

Remark 2. The novel reformulation in (P2) is motivated by the intuition that minimizing the ex-
pected constraint violations can restrict the distribution’s support to the set of optimal solutions.
For example, if a component x̂i ∈ (0, 1), then the constraint Ex∼Bernoulli(x̂i)[max(ax − b, 0)] = 0
will ensure that ax ≤ b holds for both x = 0 and x = 1. Otherwise, if x̂i = 0 or x̂i = 1,
Bernoulli(x̂i) becomes a deterministic distribution and it indicates that ax̂i ≤ b holds.

We now present the fundamental theoretical properties of (P2), establishing its equivalence with the
primal problem (P1). Theorem 1 demonstrates the equivalence betweeen the two problems in terms
of feasibility and solvability. Then, Theorem 2 shows that, loosely speaking, the optimal solutions
to (P2) coincide with the optimal solutions to (P1).
Theorem 1. The problem (P2) is feasible (and solvable, i.e., it admits at least one optimal solution)
if and only if (P1) is feasible (and solvable).

4

Published as a conference paper at ICLR 2025

Theorem 2. Let Ic ≜ {i ∈ [n] : ci ̸= 0}. Then the following statements hold:

1. Suppose x∗ ∈ {0, 1}n is an optimal solution to (P1). Then x∗ is also an optimal solution to (P2).
If a vector x̂∗ ∈ [0, 1]n is a feasible solution to (P2) and satisfies x̂∗i = x∗i for all i ∈ Ic, then x̂∗

is an optimal solution to (P2).

2. Suppose x̂∗ ∈ [0, 1]n is an optimal solution to (P2). Then we have x̂∗i ∈ {0, 1} for all i ∈ Ic.
Let Ix̂∗ = {i ∈ [n] : x̂∗i ∈ {0, 1}}. If a vector x∗ ∈ {0, 1}n satisfies x∗i = x̂∗i for all i ∈ Ix̂∗ ,
then x∗ is an optimal solution to (P1).

We can now conclude that transforming (P1) into its continuous format (P2) is well-justified. The
next step is to apply the penalty function method to recast the constrained problem (P2) into an
unconstrained format. We define ϕj(x) ≜ max(a⊤

j x − bj , 0) and ϕ̂j(x̂) ≜ Ex∼p(·|x̂) [ϕj(x)] for
each constraint indexed by j ∈ [m]. Plugging these penalty functions into the optimization objective
results in the following unconstrained problem:

min
x̂
{Fµ(x̂) ≜ c

⊤x̂+ µ
∑
j

ϕ̂j(x̂) | x̂ ∈ [0, 1]n}. (P3)

Here, the function Fµ(x̂) is referred to as a merit function (Nocedal & Wright, 1999). Its exactness
is supported by the following theorem, which states that for a sufficiently large penalty coefficient
µ, the penalty function method preserves the optimal solutions of the original problem.
Theorem 3. There exists a positive scalar µ∗ > 0 such that for any µ > µ∗, any optimal solution
to (P3) is also an optimal solution to (P2).
Remark 3. The conclusion in Theorem 3 differs from the established exact penalty function theory,
which typically assumes the existence of a first-order Karush-Kuhn-Tucker (KKT) point (Di Pillo &
Grippo, 1989). In contrast, our proof leverages the combinatorial properties of the primal problem.
Remark 4. The probabilistic modeling and penalty function approach have been used in some
previous studies for combinatorial optimization problems (Karalias & Loukas, 2020; Wang et al.,
2022). However, these methods depend on predefined closed-form constraint penalties, which are
hard to derive for general ILPs. As a result, they are applicable to some specific problems rather
than general ILPs. Our key technical innovation lies in the transformation of constraints into an
expectation form in (P2), eliminating the need for closed-form penalty designs.

3.2 GRADIENT BACK-PROPAGATION FOR OPTIMIZATION

We are now interested in how to apply gradient-based methods, such as Stochastic Gradient Descent
(SGD), to optimize (P3). This involves estimating the gradients ∇x̂ϕ̂j(x̂) = ∇x̂Ex∼p(·|x̂)[ϕj(x)].
Since x̂ appears in the sampling distribution and it is hard to derive a closed-form expression for
the expectation in general ILPs, estimating the gradients is non-trivial. To address this, we employ
the reparameterization trick to enable accurate and low-variance gradient estimates, thus facilitating
efficient gradient back-propagation.
Remark 5. An alternative approach for handling such non-differentiable computation graphs in-
volving sampling is REINFORCE (also known as the score function estimator) (Williams, 1992).
However, REINFORCE falls short as it does not explicitly propagate gradients from ϕj(x), lead-
ing to a potentially less efficient optimization process (Jang et al., 2017). Therefore, we favor the
reparameterization trick in our approach. See Appendix D.2 for more details.

We adopt the relaxed Bernoulli distribution (Maddison et al., 2016; Wang & Yin, 2020) for repa-
rameterization, which is based on a simple observation illustrated in the following lemma. We
denote the sigmoid function as σ(z) ≜ 1

1+e−z , and its inverse, known as the logit function, as
τ(p) ≜ σ(−1)(p) = log(p

1−p). We also denote the uniform distribution over (0, 1) as U(0, 1).
Lemma 1. (Restated from (Maddison et al., 2016)) Let x̂ ∈ (0, 1) and ϵ be a random variable
sampled from U(0, 1). We define ξ(x̂; ϵ) ≜ σ (τ(x̂) + τ(ϵ)). It follows that P (ξ(x̂; ϵ) > 0.5) = x̂.
Remark 6. The distribution of ξ(x̂; ϵ) is the so-called relaxed Bernoulli distribution. It serves as a
“soft” approximation of the discrete Bernoulli distribution, enabling the gradient flow during back-
propagation. It is also a specific application of the Gumbel-Softmax trick (Jang et al., 2017), and is
also relevant to the random perturbed optimizers (Berthet et al., 2020).

5

Published as a conference paper at ICLR 2025

Building on Lemma 1, we present the following theorem for reparameterization.
Theorem 4. Let x̂ = (x̂1, · · · , x̂n) ∈ (0, 1)n, and ϵ = (ϵ1, · · · , ϵn)⊤ be a random vector, where
each ϵi is independently and identically distributed (i.i.d.) as ϵi ∼ U(0, 1), writing ϵ ∼ pϵ(·).
Let ξ(x̂; ϵ) ≜ (ξ1, · · · , ξn)⊤, where ξi = ξ(x̂i; ϵi) is defined as in Lemma 1. Let ψ(x̂; ϵ) ≜
(ψ1, · · · , ψn)

⊤, where ψi = [ξi] is the binary rounded value of ξi. It follows that:

ϕ̂j(x̂) = Ex∼p(·|x̂) [ϕj(x)] = Eϵ∼pϵ(·) [ϕj (ψ(x̂; ϵ))] . (1)

Theorem 4 validates the effectiveness of the relaxed Bernoulli to reparameterization, in the sense
that, the term ϕ̂j(x̂) can be accurately calculated by sampling random variables ϵ from a non-
parametric distribution pϵ(·). However, note that the gradients derived from ψ, due to the existence
of the rounding function, vanish everywhere. Therefore, while ψ can be used to compute the values
of ϕj , we use ξ to flow gradients from ϕj to x̂. Formally, we observe:

ϕj(ψ(x̂; ϵ)) = max{a⊤
j ψ(x̂; ϵ)− bj , 0}

=
(
a⊤
j ψ (x̂; ϵ)− bj

)
I(a⊤

j ψ(x̂; ϵ)− bj > 0)

≈
(
a⊤
j ξ (x̂; ϵ)− bj

)
I(a⊤

j ψ(x̂; ϵ)− bj > 0),

(2)

where I(·) denotes the indicator function. In Equation 2, ψ is used to accurately determine whether
the constraints are violated, thus preserving the combinatorial properties, while ξ acts as a surrogate
to flow the gradient back-propagation. Consequently, we can approximate ϕ̂j(x̂) as

ϕ̂j(x̂) ≈ φ̂j(x̂) ≜ Eϵ∼pϵ(·) [φj(x̂; ϵ)] , (3)

where
φj(x̂; ϵ) ≜

(
a⊤
j ξ (x̂; ϵ)− bj

)
I(a⊤

j ψ(x̂; ϵ)− bj > 0). (4)

The advantage of φ̂j(x̂) is that it is differentiable almost everywhere (a.e.), allowing for efficient
gradient back-propagation. Therefore, we define the new surrogate problem as:

min
x̂
{Fµ(x̂) ≜ c

⊤x̂+ µ

m∑
j=1

φ̂j(x̂) | x̂ ∈ [0, 1]n}. (P4)

The merit functionFµ(x̂) defined in (P4) is differentiable a.e., and thus (P4) can be resolved through
gradient descent. Formally, we have the following theorem.
Theorem 5. The merit function Fµ(x̂) defined in (P4) is differentiable almost everywhere (a.e.) in
(0, 1)n. At the differentiable points, the gradient is given by:

∇x̂Fµ(x̂) = c+ µ

m∑
j=1

∫
ϵ:a⊤

j ψ(x̂;ϵ)−bj>0

aj ⊙
(
∂

∂x̂
⊙ ξ(x̂; ϵ)

)
pϵ(ϵ)dϵ, (5)

where ⊙ denotes the element-wise product.
Remark 7. Though not differentiable everywhere, modern deep learning frameworks such as Py-
Torch can properly handle such cases, even at non-differentiable points.
Remark 8. We consider x̂ ∈ (0, 1)n as gradient calculations are only necessary within the interior
of the solution space. In practice, we output logits and apply a sigmoid function to map it to (0, 1)n

to represent the probabilities. As noted in Equation 4, we use the sampled binary solutions x ∼
p(·|x̂) to compute constraint violations. Therefore, information from the exact solutions, rather than
relaxed ones, is also properly carried out, preserving the combinatorial nature of the problem.

3.3 MODEL IMPLEMENTATION

So far, we have transformed the original ILP problem into a continuous, unconstrained, and differen-
tiable (a.e.) problem that can be efficiently solved using straightforward gradient descent. Building
on this transformation, we introduce the model implementation of DiffILO, which simultaneously
optimizes both the problem and the predictor parameters through direct gradient back-propagation,
eliminating the need for labeled data. In line with the established practices in the field (Gasse et al.,
2019; Han et al., 2023), we represent each ILP instance—which is formulated as (P1)—as a bipartite

6

Published as a conference paper at ICLR 2025

graph G = (V ∪ W, E), where V andW denote the sets of variables and constraints, respectively,
and E denotes the edges corresponding to the coefficients. Further details on the data representation
are available in Appendix B.1. The predictor fθ, which is parameterized by θ and assumed to be
differentiable with respect to θ, outputs the predicted variable probabilities x̂ = fθ(G). The model
architecture is implemented as a Graph Neural Network (GNN) (Kipf & Welling, 2017; Shi et al.,
2023; 2024; 2025), followed by a multilayer perceptron (MLP). The final layer applies a sigmoid
function to ensure that the output probabilities x̂ ∈ (0, 1)n. More details on the model architecture
are provided in Appendix B.2.

Model Training During training, we update the parameters θ by optimizing the merit function
Fµ(fθ(G)), as defined in (P4), through gradient descent. Specifically, let D = {G1, · · · ,G|D|}
be a batch of ILP instances, each represented as a bipartite graph Gi, with ni variables and mi

constraints. Let φi,j(·) be the penalty function—corresponding to the previously defined φj(·)—for
the ith instance Gi, i.e.,

φi,j(x̂; ϵ) ≜
(
a⊤
i,jξ (x̂; ϵ)− bi,j

)
I
(
a⊤
i,jψ(x̂; ϵ)− bi,j > 0

)
, (6)

where ai,j and bi,j denote the coefficients and the right-hand-side terms of the jth constraints, re-
spectively. For each instance Gi, we sample K random vectors ϵ(k)i ∼ U(0, 1)ni , where K is a
hyperparameter. The training loss for this batch is defined as:

L(θ;D) ≜ 1

|D|

|D|∑
i=1

L(θ;Gi) =
1

|D|

|D|∑
i=1

c⊤fθ(Gi) + µ

mi∑
j=1

K∑
k=1

φi,j(fθ(Gi); ϵ(k)i)

 . (7)

The gradient of the loss function is then given by

∇θL(θ;D)

=
1

|D|

|D|∑
i=1

∇θfθ(Gi)⊤
c+ µ

∑
1≤j≤mi,1≤k≤K:

a⊤
i,jψ(fθ(Gi);ϵ

(k)
i)−bj>0

ai,j ⊙
(
∂

∂x̂
⊙ ξ

(
fθ(Gi); ϵ(k)i

))
 .

(8)

We stabilize the training process through three useful techniques. First, to accommodate instances
with ranging sizes and coefficient ranges, we apply a normalization to modify the loss function.
Second, we find cosine annealing (Loshchilov & Hutter, 2016) to be beneficial for optimizing the
learning schedule. Third, since the penalty coefficient µ is a critical hyperparameter in training, we
introduce a dynamic and adaptive method for adjusting µ. These training techniques are further
explained in detail in Appendix C.2.

Model Inference During inference, for a given instance G, we can sample heuristic solutions
from the predicted distributions p(·|fθ(G)), which are immediately available. Generating heuristic
solutions is particularly valuable in time-sensitive tasks or scenarios that require rapid decision-
making, such as route planning and production scheduling.

Moreover, the generated heuristic solutions can be used to improve the behavior of existing ILP
solvers to find high-quality solutions within a constrained time frame. DiffILO can theoretically
be integrated into any framework that benefits from initialization with heuristic solutions, such as
neural diving (Nair et al., 2020), large neighbourhood search (Huang et al., 2023), or Predict-and-
Search (Han et al., 2023), which are complementary to our approach. In this paper, inspired by Han
et al. (2023) but with further simplification, we add the following constraint to the initial problem∑

x̂i=0

xi +
∑
x̂i=1

(1− xi) < ∆, (9)

where x̂ is the generated heuristic solution, and ∆ is a hyperparameter. This constraint defines a
trust region by limiting the number of variables—which are different from the predicted ones—to
be fewer than ∆. Besides, we provide x̂ for the solver as an initial solution. Further details on the
inference process can be found in Appendix C.3.

7

Published as a conference paper at ICLR 2025

0 25 50 75 100
Instance

0

1000

2000

3000

O
bj

ec
tiv

e
V

al
ue

SC (min)

0 25 50 75 100
Instance

300

400

500

600

700

IS (max)

0 25 50 75 100
Instance

10000

15000

20000

CA (max)

BKS Gurobi PS PS+Gurobi DiffILO DiffILO+Gurobi

Figure 4: The objective values of solutions generated by different approaches across the 100
test instances. “BKS” denotes the best known solutions. “Gurobi” denotes the heuristic module
in Gurobi that searches for heuristic solutions before the exact resolution process. For a better
visualization, objective values for the instances with no feasible solution found are assigned as 3000,
300, and 10000, respectively on these datasets.

4 EXPERIMENTS

This section presents empirical results to demonstrate the effectiveness of our proposed DiffILO in
(1) generating feasible and high-quality heuristic solutions in an end-to-end manner, and (2) improv-
ing the overall performance of traditional solvers to find high-quality solutions within a constrained
time frame. We then conduct a case study to provide some additional insights into the optimization
process of DiffILO. All training and evaluations are performed using the same hardware configura-
tion, specifically an Intel(R) Xeon(R) Gold 6246R CPU @ 3.40GHz, and an NVIDIA GeForce RTX
3090 GPU. Code is available at https://github.com/MIRALab-USTC/L2O-DiffILO.
More experimental details can be found in Appendix C.

SC IS CA
0

50

100

150

200

250

300

Ti
m

e
(h

)

PS (data collection)
PS (training)
DiffILO (training)

Figure 3: Training times of PS and
DiffILO on different datasets. Data
collection refers to the time spent
on solving training and validation
instances to obtain labels, while
training denotes the time spent on
training the neural networks.

Benchmarks We evaluate our method mainly on three
widely used ILP problem benchmarks: set covering
(SC) (Balas & Ho, 1980), maximum independent set prob-
lem (IS) (Bergman et al., 2015), and combinatorial auctions
(CA) (Leyton-Brown et al., 2000). The datasets are generated
using the code from Gasse et al. (2019). Following the settings
described in the PS paper (Han et al., 2023), we generate 400
instances for each benchmark, 240 for training, 60 for valida-
tion, and 100 for testing, respectively. Additional details about
these datasets can be found in Appendix C.1. To demonstrate
the effectiveness of DiffILO on realistic datasets, we conduct
experiments on two subsets of MIPLIB 2017 (Gleixner et al.,
2021). More details are in Appendix D.3.

Baselines We compare our method against two main cat-
egories of baselines. First, we include traditional solvers,
SCIP (Achterberg, 2009) and Gurobi (Gurobi Optimization,
2021), to evaluate whether the heuristic solutions generated
by DiffILO can accelerate the solving process. Second, we
compare DiffILO with the Predict-and-Search (PS) frame-
work (Han et al., 2023), which first predicts solutions and then employs SCIP or Gurobi to search
within a trust region for further improvement. PS and Neural Diving (ND) (Nair et al., 2020) are both
representative supervised learning methods. However, since the prediction components in PS and
ND are the same, we primarily include PS as our baseline. Some more recent supervised learning ap-
proaches such as those based on contrastive learning (Huang et al., 2024) or diffusion models (Zeng
et al., 2024) have not been implemented. Although these methods can enhance the performance
of supervised learning, they also lead to additional training time. For fairness, DiffILO does not
employ similar additional tricks either. The comparison includes capabilities of both methods to
generate feasible solutions and to improve the performance of Gurobi and SCIP. We provide the
results of some additional baselines, including ablation studies, in Appendix D.2.

8

https://github.com/MIRALab-USTC/L2O-DiffILO

Published as a conference paper at ICLR 2025

Table 1: Average objective values obtained by different approaches at 10, 100, and 1, 000 seconds.
We mark the best values in bold and underline the second-best values. Best known solution (BKS)
refers to the solution obtained by running Gurobi for 3,600 seconds.

SC (min, BKS: 86.45) IS (max, BKS:684.14) CA (max, BKS:22272.55)
10s 100s 1000s 10s 100s 1000s 10s 100s 1000s

Gurobi 1031.39 87.09 86.52 682.02 684.12 684.13 22090.76 22242.58 22272.03
PS+Gurobi 131.87 125.26 125.26 684.13 684.13 684.13 22140.65 22243.12 22272.47

DiffILO+Gurobi 95.65 86.78 86.48 684.00 684.12 684.14 22177.82 22260.48 22272.55

SCIP 96.15 89.91 86.93 660.79 679.80 684.05 21013.73 22151.71 22272.55
PS+SCIP 125.26 125.26 125.26 664.50 684.09 684.13 21712.73 22248.55 22272.55

DiffILO+SCIP 94.16 87.47 86.57 674.30 684.06 684.13 21948.70 22256.08 22272.55

101 102 1030.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

Pr
im

al
G

ap

SC

101 102 103
0.000

0.001

0.002

0.003

IS

101 102 103
0.000

0.002

0.004

CA

101 102 103

Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

Pr
im

al
G

ap

101 102 103

Time (s)

0.00

0.01

0.02

0.03

101 102 103

Time (s)

0.00

0.01

0.02

0.03

0.04

0.05

Gurobi SCIP PS+Gurobi PS+SCIP DiffILO+Gurobi DiffILO+SCIP

Figure 5: The relative primal gap of different approaches as
the solving process proceeds. The results are averaged across
100 test instances.

100 101 102 103

Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
im

al
G

ap

Gurobi
DiffILO+Gurobi

(a) cvs16r106-72.

100 101 102 103

Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
im

al
G

ap

Gurobi
DiffILO+Gurobi

(b) cvs16r128-89.

Figure 6: The relative
primal gap on two cvs
test instances.

Training and Inference We train DiffILO for 1, 200 epochs on the SC and IS datasets, and 2, 400
epochs on the CA dataset. After each epoch, we use the trained model to generate solutions for the
validation instances, recording the best feasible solutions and selecting the best epoch based on their
average objectives. We train the PS predictor for 2, 400 epochs on all datasets, selecting the best
epoch based on validating prediction loss. To improve traditional solvers, PS adds constraints to
restrict the solution space within a trust region, which is controlled by some key hyperparameters.
Finding suitable hyperparameters on different datasets is challenging and labor-intensive. In con-
trast, as shown in Formula 9, DiffILO employs a simpler approach that does not require extensive
hyperparameter tuning. In our experiments, we simply set ∆ = 200. More details about the training
and inference processes can be found in Appendix C.2 and Appendix C.3, respectively.

Training Time Comparison Figure 3 shows a comparison of the training times for DiffILO and
PS. The results show that supervised learning methods like PS spends much more time on collecting
training labels than training the neural networks. In contrast, DiffILO bypasses the labor-intensive
labeling process, achieving an average speedup of 13.2 times across the three datasets.

Generating Feasible Solutions We evaluate the ability of different methods to generate high-
quality feasible solutions. The evaluation is performed on the 100 test instances. In Figure 4, for
PS and DiffILO, we sample 30 solutions from the predicted distribution for each instance, select the
best feasible solution, and report the obtained objective value. The average feasible ratio for Dif-
fILO, computed as (

∑
instnace

#feasible
30)/(#instances), is 50.8%, 97.1%, and 99.4%, on SC, IS, and

CA datasets, respectively. The results show that DiffILO consistently produces high-quality feasible
solutions even without solver assistance on almost all instances, while PS struggles to generate fea-
sible solutions on many instances. Gurobi has a heuristic module to find a heuristic solution before

9

Published as a conference paper at ICLR 2025

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4
0.6

0.8
1.0

−8

−6

−4

−2

0

x1

x2

z

(a) z = −5x1 − 4x2

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4
0.6

0.8
1.0

−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

x1

x2

z

(b) #sampling=1

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4
0.6

0.8
1.0

−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

x1

x2

z

(c) #sampling=10

0.0
0.2

0.4
0.6

0.8
1.0 0.0

0.2

0.4
0.6

0.8
1.0

−5.0
−2.5
0.0
2.5
5.0
7.5
10.0

x1

x2

z

(d) Closed Form

Figure 7: An illustrative example. (a) shows the objective function. (b) and (c) visualize the opti-
mization processes of DiffILO, which converge to the optimal solution. (d) visualizes the optimiza-
tion process of optimizing the closed-form objective, which converges to a sub-optimal solution.

executing the exact resolution process. We further assess the solutions found by combining these
methods with this heuristic module. Results show that both PS and DiffILO can improve Gurobi’s
heuristic solutions, but DiffILO+Gurobi significantly outperforms PS+Gurobi, with objectives very
close to the best known solutions.

Improving traditional Solvers We then evaluate the capability of the generated solutions to ac-
celerate the traditional solvers like Gurobi and SCIP to find better solutions in a constrained time
frame. The results are in Table 1 and the solving processes are in Figure 5. The results demonstrate
that DiffILO consistently outperforms PS on the SC and CA datasets. We present the solving curves
on the CVS dataset in Figure 6, and report the solving time on 3 neos test instances in Table 7 in
Appendix D.3. Other additional experiments, including ablation studies and additional baselines,
can be found in Appendix D.

Case Study We present an illustrative example to demonstrate DiffILO’s optimization process.
We consider a simple ILP problem

min
x1,x2∈{0,1}

{−5x1 − 4x2 | x1 + x2 ≤ 1} . (10)

This case is non-trivial for gradient descent, as its optimal solution (1, 0) and an sub-optimal solution
(0, 1) have very close objectives. Figure 7 (a) displays the objective function z = −5x1 − 4x2. The
transformed continuous unconstrained optimization problem is:

min
x̂1,x̂2∈[0,1]

{
Fµ(x̂1, x̂2) ≜ −5x̂1 − 4x̂2 + µ · Ex1,x2

[max(x1 + x2 − 1, 0)]
}
, (11)

where xi ∼ Bernoulli(x̂i). The closed form of Fµ(x̂1, x̂2) is derived as
Fµ(x̂1, x̂2) = −5x̂1 − 4x̂2 + µ · x̂1x̂2. (12)

We first set µ = 20. Figures 7 (b) and (c) visualize the optimization process of DiffILO, which
samples x1 and x2 with the reparameterization trick for optimization. The numbers of sampled
solutions (#sampling) are 1 and 10 in (b) and (c), respectively. They both converge to the optimal
solution (1, 0). Moreover, increasing the number of samples stabilizes the optimization process.
However, as shown in Figure 7 (d), when we directly optimize the smoothed function, i.e., the
closed form of Fµ, it converges to a sub-optimal solutions (0, 1). We conduct experiments with 20
different random seeds. In 11 out of 20 runs, the optimization of the closed-form objective derives
sub-optimal solutions. In contrast, DiffILO’s optimization approach derives the optimal solution in
all the 20 runs. However, using the closed-form penalty function will always perform penalties. We
further conduct experiments to investigate the influence of µ, and the results are shown in Table 9 in
Appendix D.8. More discussions about this paper can be found in Appendix E.

5 CONCLUSION

This paper proposes DiffILO, a novel Differentiable Integer Linear Programming Optimization
approach for learning to predict ILP solutions under an unsupervised learning paradigm. It is to
our knowledge the first method that employs pure ML techniques to solve general ILPs entirely
without the aid of traditional solvers. Experiments on commonly used ILP datasets demonstrate the
effectiveness of DiffILO in reducing training time and producing high-quality solutions.

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We provide the following information for the reproducibility of our proposed DiffILO. The method
is detailed in Section 3, with the proofs for theorems available in Appendix A. The implementation
details, including data representation and model architecture, are provided in Appendix B The ex-
perimental details and results are in Section 4 and further elaborated in Appendix C. The code is
publicly available at https://github.com/MIRALab-USTC/L2O-DiffILO.

ACKNOWLEDGMENTS

The authors would like to thank all the anonymous reviewers for their insightful comments.
This work was supported in part by the National Key R&D Program of China under con-
tract 2022ZD0119801, National Nature Science Foundations of China grants U23A20388, and
62021001. This work was supported in part by Huawei as well.

REFERENCES

Tobias Achterberg. Scip: solving constraint integer programs. Mathematical Programming Compu-
tation, 1:1–41, 2009.

Shmuel Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics,
6:382–392, 1954.

Saeed Amizadeh, Sergiy Matusevych, and Markus Weimer. Learning to solve circuit-sat: An un-
supervised differentiable approach. In International Conference on Learning Representations,
2018.

Anonymous. A reoptimization framework for mixed integer linear programming with dynamic pa-
rameters. In Submitted to The Thirteenth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=scdGzuwC9u. under review.

Egon Balas and Andrew Ho. Set covering algorithms using cutting planes, heuristics, and subgra-
dient optimization: a computational study. Springer, 1980.

Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks. preprint:
http://www. optimization-online. org/DB HTML/2018/11/6943. html, 2019.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable pde
solvers and graph neural networks for fluid flow prediction. In international conference on ma-
chine learning, pp. 2402–2411. PMLR, 2020.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

David Bergman, André Augusto Ciré, Willem Jan van Hoeve, and J. Hooker. Decision diagrams for
optimization. Constraints, 20:494 – 495, 2015.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information process-
ing systems, 33:9508–9519, 2020.

Hawthorne L Beyer, Yann Dujardin, Matthew E Watts, and Hugh P Possingham. Solving conser-
vation planning problems with integer linear programming. Ecological Modelling, 328:14–22,
2016.

Robert E Bixby, Mary Fenelon, Zonghao Gu, Ed Rothberg, and Roland Wunderling. Mixed-integer
programming: A progress report. In The sharpest cut: the impact of Manfred Padberg and his
work, pp. 309–325. SIAM, 2004.

11

https://github.com/MIRALab-USTC/L2O-DiffILO
https://openreview.net/forum?id=scdGzuwC9u

Published as a conference paper at ICLR 2025

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In Proceedings of
the IEEE/CVF international conference on computer vision, pp. 9650–9660, 2021.

Ziang Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. On representing mixed-integer linear
programs by graph neural networks. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=4gc3MGZra1d.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Advances in neural
information processing systems, 26, 2013.

George B Dantzig. Linear programming and extensions. In Linear programming and extensions.
Princeton university press, 2016.

Gianni Di Pillo and Luigi Grippo. Exact penalty functions in constrained optimization. SIAM
Journal on control and optimization, 27(6):1333–1360, 1989.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp.
1504–1511, 2020.

Elı̄za Gaile, Andis Draguns, Emı̄ls Ozoliņš, and Kārlis Freivalds. Unsupervised training for neural
tsp solver. In International Conference on Learning and Intelligent Optimization, pp. 334–346.
Springer, 2022.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Zijie Geng, Xijun Li, Jie Wang, Xiao Li, Yongdong Zhang, and Feng Wu. A deep instance generative
framework for milp solvers under limited data availability. In Advances in Neural Information
Processing Systems, 2023.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

LLC Gurobi Optimization. Gurobi optimizer. URL http://www. gurobi. com, 2021.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

Qingyu Han, Linxin Yang, Qian Chen, Xiang Zhou, Dong Zhang, Akang Wang, Ruoyu Sun, and Xi-
aodong Luo. A gnn-guided predict-and-search framework for mixed-integer linear programming.
In The Eleventh International Conference on Learning Representations, 2023.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving
framework for deep learning via physical simulations. In NeurIPS workshop, volume 2, 2020.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pp. 13869–13890. PMLR, 2023.

Taoan Huang, Aaron M Ferber, Arman Zharmagambetov, Yuandong Tian, and Bistra Dilkina.
Contrastive predict-and-search for mixed integer linear programs. In Forty-first International
Conference on Machine Learning, 2024. URL https://openreview.net/forum?id=
zatLnLvbs8.

12

https://openreview.net/forum?id=4gc3MGZra1d
https://openreview.net/forum?id=zatLnLvbs8
https://openreview.net/forum?id=zatLnLvbs8

Published as a conference paper at ICLR 2025

Huawei. Optverse solver. https://www. huaweicloud.com/product/modelarts/optverse.html, 2021.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with gumble-softmax. In
International Conference on Learning Representations (ICLR 2017). OpenReview. net, 2017.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10219–10227, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Arie MCA Koster, Manuel Kutschka, and Christian Raack. Towards robust network design using in-
teger linear programming techniques. In 6th EURO-NGI Conference on Next Generation Internet,
pp. 1–8. IEEE, 2010.

Yufei Kuang, Xijun Li, Jie Wang, Fangzhou Zhu, Meng Lu, Zhihai Wang, Jia Zeng, Houqiang
Li, Yongdong Zhang, and Feng Wu. Accelerate presolve in large-scale linear programming via
reinforcement learning. arXiv preprint arXiv:2310.11845, 2023.

Yufei Kuang, Jie Wang, Haoyang Liu, Fangzhou Zhu, Xijun Li, Jia Zeng, Jianye Hao, Bin Li,
and Feng Wu. Rethinking branching on exact combinatorial optimization solver: The first deep
symbolic discovery framework. In The Twelfth International Conference on Learning Represen-
tations, 2024a. URL https://openreview.net/forum?id=jKhNBulNMh.

Yufei Kuang, Jie Wang, Yuyan Zhou, Xijun Li, Fangzhou Zhu, Jianye Hao, and Feng Wu. Towards
general algorithm discovery for combinatorial optimization: Learning symbolic branching policy
from bipartite graph. In Forty-first International Conference on Machine Learning, 2024b. URL
https://openreview.net/forum?id=ULleq1Dtaw.

Simen Kvaal, Ulf Ekström, Andrew M Teale, and Trygve Helgaker. Differentiable but exact formu-
lation of density-functional theory. The Journal of chemical physics, 140(18), 2014.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
Springer, 2010.

Kevin Leyton-Brown, Mark Pearson, and Yoav Shoham. Towards a universal test suite for combina-
torial auction algorithms. In Proceedings of the 2nd ACM Conference on Electronic Commerce,
pp. 66–76, 2000.

Sirui Li, Wenbin Ouyang, Max B Paulus, and Cathy Wu. Learning to configure separators in branch-
and-cut. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a.

Xijun Li, Fangzhou Zhu, Hui-Ling Zhen, Weilin Luo, Meng Lu, Yimin Huang, Zhenan Fan, Zirui
Zhou, Yufei Kuang, Zhihai Wang, et al. Machine learning insides optverse ai solver: Design
principles and applications. arXiv preprint arXiv:2401.05960, 2024a.

Yang Li, Jinpei Guo, Runzhong Wang, and Junchi Yan. From distribution learning in training to
gradient search in testing for combinatorial optimization. In Advances in Neural Information
Processing Systems, 2023b.

Yang Li, Zechen Tang, Zezhou Chen, Minghui Sun, Boheng Zhao, He Li, Honggeng Tao, Zilong
Yuan, Wenhui Duan, and Yong Xu. Neural-network density functional theory. arXiv preprint
arXiv:2403.11287, 2024b.

Haotian Ling, Zhihai Wang, and Jie Wang. Learning to stop cut generation for efficient mixed-
integer linear programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 20759–20767, 2024.

13

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=jKhNBulNMh
https://openreview.net/forum?id=ULleq1Dtaw

Published as a conference paper at ICLR 2025

Haoyang Liu, Yufei Kuang, Jie Wang, Xijun Li, Yongdong Zhang, and Feng Wu. Promoting general-
ization for exact solvers via adversarial instance augmentation. arXiv preprint arXiv:2310.14161,
2023.

Haoyang Liu, Jie Wang, Wanbo Zhang, Zijie Geng, Yufei Kuang, Xijun Li, Bin Li, Yongdong Zhang,
and Feng Wu. MILP-StuDio: MILP instance generation via block structure decomposition. In
The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a. URL
https://openreview.net/forum?id=W433RI0VU4.

Haoyang Liu, Jie Wang, Zijie Geng, Xijun Li, Yuxuan Zong, Fangzhou Zhu, Jianye Hao, and Feng
Wu. Apollo-MILP: An alternating prediction-correction neural solving framework for mixed-
integer linear programming. In The Thirteenth International Conference on Learning Represen-
tations, 2025. URL https://openreview.net/forum?id=mFY0tPDWK8.

Hongyu Liu, Haoyang Liu, Yufei Kuang, Jie Wang, and Bin Li. Deep symbolic optimization for
combinatorial optimization: Accelerating node selection by discovering potential heuristics. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 2067–
2075, 2024b.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

Alexander Mathiasen, Hatem Helal, Paul Balanca, Adam Krzywaniak, Ali Parviz, Frederik
Hvilshøj, Blazej Banaszewski, Carlo Luschi, and Andrew William Fitzgibbon. Reducing the cost
of quantum chemical data by backpropagating through density functional theory. arXiv preprint
arXiv:2402.04030, 2024.

John E Mitchell. Branch-and-cut algorithms for combinatorial optimization problems. Handbook
of applied optimization, 1(1):65–77, 2002.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid Von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

David M Ryan and Brian A Foster. An integer programming approach to scheduling. Computer
scheduling of public transport urban passenger vehicle and crew scheduling, pp. 269–280, 1981.

Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with
physics-inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

Zhihao Shi, Xize Liang, and Jie Wang. LMC: Fast training of GNNs via subgraph sampling with
provable convergence. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=5VBBA91N6n.

Zhihao Shi, Jie Wang, Fanghua Lu, Hanzhu Chen, Defu Lian, Zheng Wang, Jieping Ye, and Feng
Wu. Label deconvolution for node representation learning on large-scale attributed graphs against
learning bias. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46(12):11273–
11286, 2024. doi: 10.1109/TPAMI.2024.3459408.

Zhihao Shi, Jie Wang, Zhiwei Zhuang, Xize Liang, Bin Li, and Feng Wu. Accurate and scal-
able graph neural networks via message invariance. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
UqrFPhcmFp.

Lawrence Stewart, Francis Bach, Felipe Llinares-López, and Quentin Berthet. Differentiable clus-
tering with perturbed spanning forests. Advances in Neural Information Processing Systems, 36,
2024.

14

https://openreview.net/forum?id=W433RI0VU4
https://openreview.net/forum?id=mFY0tPDWK8
https://openreview.net/forum?id=5VBBA91N6n
https://openreview.net/forum?id=UqrFPhcmFp
https://openreview.net/forum?id=UqrFPhcmFp

Published as a conference paper at ICLR 2025

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Haoyu Wang and Pan Li. Unsupervised learning for combinatorial optimization needs meta-
learning. arXiv preprint arXiv:2301.03116, 2023.

Haoyu Wang, Jialin Liu, Xiaohan Chen, Xinshang Wang, Pan Li, and Wotao Yin. Dig-milp: a
deep instance generator for mixed-integer linear programming with feasibility guarantee. arXiv
preprint arXiv:2310.13261, 2023a.

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for com-
binatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444–31458, 2022.

Hong Wang, Zhongkai Hao, Jie Wang, Zijie Geng, Zhen Wang, Bin Li, and Feng Wu. Accelerat-
ing data generation for neural operators via krylov subspace recycling. In The Twelfth Interna-
tional Conference on Learning Representations, 2024a. URL https://openreview.net/
forum?id=UpgRVWexaD.

Jie Wang, Zijie Geng, Xijun Li, Jianye Hao, Yongdong Zhang, and Feng Wu. G2MILP: Learning
to generate mixed-integer linear programming instances for milp solvers. Authorea Preprints,
2023b.

Jie Wang, Zhihai Wang, Xijun Li, Yufei Kuang, Zhihao Shi, Fangzhou Zhu, Mingxuan Yuan, Jia
Zeng, Yongdong Zhang, and Feng Wu. Learning to cut via hierarchical sequence/set model for
efficient mixed-integer programming. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, pp. 1–17, 2024b. doi: 10.1109/TPAMI.2024.3432716.

Xi Wang and Junming Yin. Relaxed multivariate bernoulli distribution and its applications to deep
generative models. In Conference on Uncertainty in Artificial Intelligence, pp. 500–509. PMLR,
2020.

Zhihai Wang, Xijun Li, Jie Wang, Yufei Kuang, Mingxuan Yuan, Jia Zeng, Yongdong Zhang, and
Feng Wu. Learning cut selection for mixed-integer linear programming via hierarchical sequence
model. In The Eleventh International Conference on Learning Representations, 2023c.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear
programs with small-scale optimizer and small training dataset. In The Twelfth International
Conference on Learning Representations, 2023a.

Huigen Ye, Hua Xu, Hongyan Wang, Chengming Wang, and Yu Jiang. GNN&GBDT-guided fast
optimizing framework for large-scale integer programming. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of
the 40th International Conference on Machine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 39864–39878. PMLR, 23–29 Jul 2023b.

Taehyun Yoon. Confidence threshold neural diving. arXiv preprint arXiv:2202.07506, 2022.

Hao Zeng, Jiaqi Wang, Avirup Das, Junying He, Kunpeng Han, Haoyuan Hu, and Mingfei Sun.
Effective generation of feasible solutions for integer programming via guided diffusion. In Pro-
ceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
4107–4118, 2024.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

Arman Zharmagambetov, Brandon Amos, Aaron Ferber, Taoan Huang, Bistra Dilkina, and Yuan-
dong Tian. Landscape surrogate: Learning decision losses for mathematical optimization under
partial information. Advances in Neural Information Processing Systems, 36, 2024.

15

https://openreview.net/forum?id=UpgRVWexaD
https://openreview.net/forum?id=UpgRVWexaD

Published as a conference paper at ICLR 2025

A PROOFS

Theorem 1. The problem (P2) is feasible (and solvable, i.e., it admits at least one optimal solution)
if and only if (P1) is feasible (and solvable).

Proof. First, we show the equivalence of the feasibility. It is obvious that any feasible solution
x to (P1) is also a feasible solution to (P2). Conversely, let us consider x̂∗ as a solution to (P2).
It follows that Ex∼p(·|x̂∗) [max(Ax− b,0)] = 0. Notably, supp p(·|x̂∗) is not empty, and for
∀x ∈ supp p(·|x̂∗), we have max(Ax−b,0) = 0, and thusAx ≤ b. Consequently, x is a feasible
solution to (P1).

Next, we show the equivalence of solvability. Notice that the domain of (P1) is {0, 1}n, which is a
finite set. Therefore, (P1) is solvable if and only if it is feasible. Similarly, as the objective of (P2) is
a continuous function over the compact set [0, 1]n, (P2) is solvable if and only if it is feasible. Based
on these observations, we conclude that (P2) is solvable if and only if (P1) is solvable.

Theorem 2. Let Ic ≜ {i ∈ [n] : ci ̸= 0}. Then the following statements hold:

1. Suppose x∗ ∈ {0, 1}n is an optimal solution to (P1). Then x∗ is also an optimal solution to (P2).
If a vector x̂∗ ∈ [0, 1]n is a feasible solution to (P2) and satisfies x̂∗i = x∗i for all i ∈ Ic, then x̂∗

is an optimal solution to (P2).

2. Suppose x̂∗ ∈ [0, 1]n is an optimal solution to (P2). Then we have x̂∗i ∈ {0, 1} for all i ∈ Ic.
Let Ix̂∗ = {i ∈ [n] : x̂∗i ∈ {0, 1}}. If a vector x∗ ∈ {0, 1}n satisfies x∗i = x̂∗i for all i ∈ Ix̂∗ ,
then x∗ is an optimal solution to (P1).

Proof. 1. Let x∗ ∈ {0, 1}n be an optimal solution to (P1). Obviously it is also a feasible solution
to (P2). Assume x̂∗ ∈ [0, 1]n is a feasible solution to (P2) and satisfies x̂∗i = x∗i for all i ∈ Ic. It
follows that c⊤x̂∗ = c⊤x∗. Let x̂ ∈ [0, 1]n be any feasible solution to (P2). For ∀x ∈ supp p(·|x̂),
we have max(Ax − b,0) = 0, and thus Ax ≤ b, which indicates that x is a feasible solution
to (P1) and thus c⊤x∗ ≤ c⊤x. Then we have c⊤x∗ ≤ c⊤Ex∼p(·|x̂)[x] = c⊤x̂. It follows that
c⊤x̂∗ = c⊤x∗ ≤ c⊤x̂, indicating that x̂∗ is an optimal solution to (P2). This conclusion, combined
with the feasibility of x∗, gives that x∗ is also an optimal solution to (P2).

2. Let x̂∗ ∈ [0, 1]n be an optimal solution to (P2). Consider if x̂∗i ∈ (0, 1) for some i ∈ Ic.
Without loss of generality, we assume ci > 0. Define x̂′ such that x̂′i = 0 and x̂′j = x̂j for
j ̸= i. Then supp p(·|x̂′) ⊂ supp p(·|x̂∗), and so x̂′ remains a feasible solution to (P2). However,
c⊤x̂′ < c⊤x̂∗, contradicting the optimality of x̂∗. Therefore x̂∗i ∈ {0, 1} for all i ∈ Ic.
Let x∗ ∈ {0, 1}n satisfies x∗i = x̂∗i for all i ∈ Ix̂∗ . Then x∗ ∈ supp p(·|x̂∗) and thus it is a
feasible solution to (P1). We also have c⊤x∗ = c⊤x̂∗. Let ∀x ∈ {0, 1}n be a feasible solution
to (P1). Then it is also a feasible solution to (P2), indicating that c⊤x̂∗ ≤ c⊤x. In follows that
c⊤x∗ = c⊤x̂∗ ≤ c⊤x, indicating that x∗ is an optimal solution to (P1).

Theorem 3. There exists a positive scalar µ∗ > 0 such that for any µ > µ∗, any optimal solution
to (P3) is also an optimal solution to (P2).

Proof. We define ϕ(x) ≜
∑

j ϕj(x) and ϕ̂(x̂) ≜
∑

j ϕ̂j(x̂), which leads to ϕ̂(x̂) =

Ex∼p(·|x̂)[ϕ(x)]. The domain of ϕ(·) is {0, 1}n, a finite set. Therefore, we can find

ρ ≜ min
x∈suppϕ(·)

ϕ(x). (13)

It follows that ϕ(x) ≥ ρ for ∀x ∈ suppϕ(·). We set µ∗ = 2
√
n∥c∥2

ρ , and assume µ > µ∗. Let
x̂∗ ∈ [0, 1]n be an optimal solution to (P3) and x̂ be any feasible solution to (P3). It suffices to show
that ϕ̂(x̂∗) =

∑
j ϕ̂j(x̂

∗) = 0 and that c⊤x̂∗ ≤ c⊤x̂.

We denote X ∗ ≜ argminx∈supp p(·|x̂∗){c⊤x + µ · ϕ(x)}. The optimality of x̂∗ indicates that
supp p(·|x̂∗) = X ∗, and that

c⊤x̂∗ + µ · ϕ̂(x̂∗) ≤ c⊤x̂+ µ · ϕ̂(x̂). (14)

16

Published as a conference paper at ICLR 2025

The feasibility of x̂ indicates that ϕ̂(x̂) = 0, and thus

c⊤x̂∗ + µ · ϕ̂(x̂∗) ≤ c⊤x̂. (15)

Therefore, for ∀x∗ ∈ X ∗ = supp p(·|x̂∗), we have

µ · ϕ(x∗) ≤ c⊤ (x̂− x∗) ≤ ∥c∥2(∥x̂∥2 + ∥x∗∥2) ≤ 2
√
n∥c∥2. (16)

Consider if ϕ̂(x̂∗) > 0, which implies that supp p(·|x̂∗) ∩ suppϕ(·) ̸= ∅. Let x∗ ∈ supp p(·|x̂∗) ∩
suppϕ(·). Then we have

µ∗ < µ ≤ c
⊤(x̂− x∗)

ϕ(x∗)
≤ ∥c∥2(∥x̂∥2 + ∥x

∗∥2)
ρ

≤ 2
√
n∥c∥2
ρ

= µ∗, (17)

leading to a contradiction. Therefore, we have ϕ̂(x̂∗) = 0. Plugging it into Equation 14 completes
the proof.

Lemma 1. (Restated from (Maddison et al., 2016)) Let x̂ ∈ (0, 1) and ϵ be a random variable
sampled from U(0, 1). We define ξ(x̂; ϵ) ≜ σ (τ(x̂) + τ(ϵ)). It follows that P (ξ(x̂; ϵ) > 0.5) = x̂.

Proof. We have
P (ξ(x̂; ϵ) > 0.5)

=P

(
log(

x̂

1− x̂) + log(
ϵ

1− ϵ) > 0

)
=P

(
x̂

1− x̂ ·
ϵ

1− ϵ > 1

)
=P (ϵ > 1− x̂) = x̂.

(18)

Theorem 4. Let x̂ = (x̂1, · · · , x̂n) ∈ (0, 1)n, and ϵ = (ϵ1, · · · , ϵn)⊤ be a random vector, where
each ϵi is independently and identically distributed (i.i.d.) as ϵi ∼ U(0, 1), writing ϵ ∼ pϵ(·).
Let ξ(x̂; ϵ) ≜ (ξ1, · · · , ξn)⊤, where ξi = ξ(x̂i; ϵi) is defined as in Lemma 1. Let ψ(x̂; ϵ) ≜
(ψ1, · · · , ψn)

⊤, where ψi = [ξi] is the binary rounded value of ξi. It follows that:

ϕ̂j(x̂) = Ex∼p(·|x̂) [ϕj(x)] = Eϵ∼pϵ(·) [ϕj (ψ(x̂; ϵ))] . (1)

Proof. By Lemma 1, we have

P (ψi = 1) = P (ξi > 0.5) = x̂i, (19)

which implies that p(x|x̂) = p(ψ(x̂; ϵ) = x|x̂). Therefore,

ϕ̂j(x̂) = Ex∼p(·|x̂) [ϕj(x)]

=
∑

x∈{0,1}n

ϕj(x)p(x|x̂)

=
∑

x∈{0,1}n

ϕj(x)p(ψ(x̂; ϵ) = x|x̂)

=
∑

x∈{0,1}n

ϕj(x)

∫
ϵ:x=ψ(x̂;ϵ)

p(x|x̂, ϵ)pϵ(ϵ)dϵ

=

∫
ϵ

 ∑
x=ψ(x̂;ϵ)

ϕj(x)

 pϵ(ϵ)dϵ

=Eϵ∼pϵ(·) [ϕj(ψ(x̂; g))] .

(20)

17

Published as a conference paper at ICLR 2025

Theorem 5. The merit function Fµ(x̂) defined in (P4) is differentiable almost everywhere (a.e.) in
(0, 1)n. At the differentiable points, the gradient is given by:

∇x̂Fµ(x̂) = c+ µ

m∑
j=1

∫
ϵ:a⊤

j ψ(x̂;ϵ)−bj>0

aj ⊙
(
∂

∂x̂
⊙ ξ(x̂; ϵ)

)
pϵ(ϵ)dϵ, (5)

where ⊙ denotes the element-wise product.

Proof. We have

∇x̂Fµ(x̂) = ∇x̂

c⊤x̂+ µ

m∑
j=1

φ̂j(x̂)

=c+ µ

m∑
j=1

∇x̂φ̂j(x̂) = c+ µ

m∑
j=1

∇x̂Eϵ∼pϵ(·) [φj(x̂; ϵ)]

=c+ µ

m∑
j=1

Eϵ∼pϵ(·)

[
∂

∂x̂

((
a⊤
j ξ (x̂; ϵ)− bj

)
I
(
a⊤
j ψ(x̂; ϵ)− bj > 0

))]

=c+ µ

m∑
j=1

∫
ϵ:a⊤

j ψ(x̂;ϵ)−bj>0

∂

∂x̂

(
a⊤
j ξ (x̂; ϵ)− bj

)
pϵ(ϵ)dϵ

=c+ µ

m∑
j=1

∫
ϵ:a⊤

j ψ(x̂;ϵ)−bj>0

aj ⊙
(
∂

∂x̂
⊙ ξ(x̂; ϵ)

)
pϵ(ϵ)dϵ.

(21)

18

Published as a conference paper at ICLR 2025

B IMPLEMENTATION DETAILS

B.1 DATA REPRESENTATION

Following previous works (Gasse et al., 2019; Han et al., 2023; Geng et al., 2023; Wang et al.,
2023b), we represent each ILP problem as a weighted bipartite graph G = (V ∪W, E), where V and
W denote the sets of variables and constraints, respectively. The graph is equipped with a tuple of
feature matrices (V,W,E), and the description of these features can be found in Table 2.

Table 2: Description of variable, constraint, and edge features in our bipartite graph representation.
Tensor Feature Description

V

Objective Normalized objective coefficient.

Variable coefficient Average variable coefficient in all constraints.

Variable degree Degree of the variable node in the bipartite graph rep-
resentation.

Maximum variable coefficient Maximum variable coefficient in all constraints.

Minimum variable coefficient Minimum variable coefficient in all constraints.

W
Constraint coefficient Average of all coefficients in the constraint.

Constraint degree Degree of constraint nodes.

Bias Normalized right-hand-side of the constraint.

E Coefficient Constraint coefficient.

B.2 MODEL ARCHITECTURE

We employ a graph neural network (GNN), parameterized by θ, as the predictor. Specifically, given
a bipartite graph G = (V ∪W, E) equipped with the feature metrices (V,W,E), we use MLPs as
embedding layers to obtain the initial embeddings :

h(0)
vi = MLPθ(vi), h(0)

wj
= MLPθ(wj), heij = MLPθ(eij). (22)

After that, we perform K graph convolution layers, with each layer in the form of two interleaved
half-convolutions (Gasse et al., 2019), defined as follows:

h(k+1)
wi

←MLPθ

h(k)
wi
,
∑

j:eij∈E
MLPϕ

(
h(k)
wi
,heij ,h

(k)
vj

) ,

h(k+1)
vj ← MLPϕ

h(k)
vj ,

∑
i:eij∈E

MLPϕ
(
h(k+1)
wi

,heij ,h
(k)
vj

) . (23)

Each convolution layer is followed by two GraphNorm layers, one for variables and the other for
constraints. We employ a concatenation Jumping Knowledge layer to aggregate information from
all K layers and obtain the final node representations:

hvi = MLPθ

(
CONCAT
k=0,··· ,K

(
h(k)
vi

))
, hwj

= MLPθ

(
CONCAT
k=0,··· ,K

(
h(k)
wj

))
. (24)

Subsequently, we use another MLP to output the predicted logits for each variable:

zvi = MLPθ (hvi) . (25)

The logits are then used for resampling module, followed by a sigmoid function to output the gen-
erated solutions.

19

Published as a conference paper at ICLR 2025

C EXPERIMENTAL DETAILS

C.1 DETAILS OF THE BENCHMARKS

We use three commonly used ILP benchmarks in our experiments. The data instances are generated
using the code from https://github.com/ds4dm/learn2branch. We list the benchmark
information in Table 3, including the generation algorithms, average numbers of constraints and
average numbers of variables.

Table 3: Statistics of the benchmarks.
Dataset Generation Number of Constraints Number of Variables

SC (Balas & Ho, 1980) 3000 2000
IS (Bergman et al., 2015) 5943 1500
CA (Leyton-Brown et al., 2000) 576 1500

C.2 TRAINING DETAILS

As mentioned in Section 3.3 in the main text, here we introduce three useful techniqques in our
training process.

Normalization In practice, we conduct a normalization and modify the loss function on each
instance Gi as

L(θ;Gi) ≜

c⊤

∥c∥2
fθ(Gi) + µ

mi∑
j=1

K∑
k=1

φi,j(fθ(Gi); ϵ(k)i)

Mi∥ai,j∥2
, Mi > 0,

c⊤

∥c∥2
fθ(Gi), Mi = 0,

(26)

where Mi is the number of constraints violated.

Learning Rate Annealing To facilitate a continuing model optimization and alleviate local opti-
mum, we adopt a cosine annealing scheduler for the learning rate (Loshchilov & Hutter, 2016), with
a period denoted as lr T. The training curves in Figure 10 in Appendix D.4 demonstrate the influece
of the cosine annealing of learning rate on the training progress.

Adaptive Penalty Coefficient The penalty coefficient µ is an important hyperparameter in Dif-
fILO, which influences the convergence of the training process. It is not set on per-instance
level, but setting it as a single value is enough. Our probability modeling approach can some-
how reduce the influence of µ. Specifically, the penalty term in our method is defined as∑

j Ex∼p(·|x̂)[max(a⊤j x − bj , 0)]. Notice that the penalty is only activated when when the con-
straint is violated. Thus, even if the penalty parameter is set relatively large, the penalty term is less
likely to dominate the loss function significantly if the constraints are not violated.

To reduce the need for manual parameter adjustment for µ, we use a dynamic and adaptive µ,
which is inspired by the adaptive temperature in soft actor-critic algorithm (Haarnoja et al., 2018).
Specifically, after each epoch, we update the coefficient µ according to the updating rule

µk+1 = µk + mu step ∗ (cons− cons targ), (27)

where cons denotes the average constraint violation in this epoch, and cons targ is the target value
of the average constraint violation. Empirically the hyperparameter mu targ is set as no more than
1 (according to the range of coefficients), as this indicates that there exist solutions with no con-
straint violation in a probabilistic sense. This dynamic way for tuning µ can effectively improve
the algorithm robustness against the choice of µ. We present the training curves with different val-
ues the parameter µ and analyze the influence of the adaptive strategy for µ. The results are in
Appendix D.5.

Some important hyperparameters of the model training are provided in Table 4.

20

https://github.com/ds4dm/learn2branch

Published as a conference paper at ICLR 2025

Table 4: Hyperparameters in our experiments.
Hyperparameter SC IS CA Description

embed size 32 32 32 The embedding size of the GNN predictor.
depth 3 10 10 The depth of the GNN predictor.

batch size 5 5 5 Number of ILP problems in each training batch.
num samples 15 15 15 Number of sampled solutions for reparameterization.
num epochs 1,200 1,200 2,400 Number of max running epochs.

optimizer Adam Adam Adam Optimizer for training.
learning rate 1e-4 8e-5 8e-5 Leaning rate for training.

lr T 200 200 200 The period for learning rate cosine annealing.
mu init 5.0 100.0 15 The initial value of µ.
mu step 0.01 1.0 0.001 Step size for optimizing µ.
cons targ 1.0 0.1 0.1 Target value of average constraint violation.

C.3 INFERENCE DETAILS

To incorporate the heuristic solutions into traditional solvers like Gurobi and SCIP, we define a trust
region by limiting the number of variables—which are different from the predicted ones—to be
fewer than 200. In practice, we add the following constraint to the original problem∑

x̂i=0

xi +
∑
x̂i=1

(1− xi) < ∆, (28)

where x̂ denotes the provided heuristic solution, and ∆ is a hyperparameter. In our experiments, we
simply set ∆ = 200.

We also supply our best-found solution as an initial solution to the solver. For Gurobi, this is
implemented as:

for i, v in enumerate(m.getVars()):
v.Start = best_x[i]

and for SCIP it is implemented as:

sol = m.createPartialSol()
for i, v in enumerate(m.getVars()):

m.setSolVal(sol, v, best_x[i])
m.addSol(sol)

Only one best solution is provided to the solver. Specifically, for each instance, we sample 1,000
solutions from the predicted distribution. We select the best feasible solution, if any, based on the
objective value. If no feasible solution found, we select the one with the minimal merit function.

During inference, SCIP 8.1.0 (Achterberg, 2009), Gurobi 10.0.1 (Gurobi Optimization,
2021) are used for solving instances. Following Han et al. (2023), we configure
the solvers towards the “heuristic-first” mode—the ”MIPFocus” parameter for Gurobi and
the ”AGGRESSIVE” parameter in SCIP—so that they will focus on finding better pri-
mal solutions. Specifically, we set ‘m.Params.MIPFocus = 1’ for Gurobi and
‘m.setHeuristics(SCIP PARAMSETTING.AGGRESSIVE)’ for SCIP, respectively. The
time limit for running each experiment is set to 1, 000 seconds.

To improve traditional solvers, PS (Han et al., 2023) adds constraints to restrict the solution space
within a trust region. The trust region search algorithm is controlled by three key hyperparameters,
k0, k1, and ∆. Searching for suitable hyperparameters for PS on different datasets is challenging
and labor-intensive. For IS and CA, we use the default hyperparameters specified in the original
paper. For SC, which is not included in the original paper, we conduct the hyperparameter search
as follows: we first fix k0 and k1 to 100 and experiment with ∆ values in {5, 10, 15, 20}. We then
experiment with k0 and k1 values in {100, 200, 300} with fixed ∆.

21

Published as a conference paper at ICLR 2025

D ADDITIONAL RESULTS

D.1 SHIFTED GEOMETRIC MEAN OF RELATIVE GAPS

To better understand the results, we also report the shifted geometric mean (SGM) of relative gaps
of the instances in Table 5, which is a usually used metric to measure the model performance in the
ILP community. Specifically, suppose the dataset contains N instances, the ith instance’s best know
objective is BKSi, and a method achieves an objective value OBJi. Its relative gap is defined as

gapi =
|OBJi − BKSi|
|BKSi|

. (29)

The shifted geometric mean across all instances is defined as

SGM = exp

(
1

N

∑
i

log(gapi + 1.0)

)
− 1.0. (30)

Table 5: Shifted geometric mean (SGM) of relative gaps of different methods on all datasets.
Lower SGM indicates better performance. We mark the best results in bold and underline the
second-best results.

SC IS CA
10s 100s 1000s 10s 100s 1000s 10s 100s 1000s

Gurobi 10.6222 0.0070 0.0008 0.0031 2.97E-05 1.50E-05 0.0059 0.0013 3.48E-06
PS+Gurobi 0.5085 0.449 0.449 1.50E-05 1.50E-05 1.50E-05 0.0044 0.0009 3.61E-10

DiffILO+Gurobi 0.1046 0.0037 0.0005 0.0002 2.96E-05 0 0.0042 0.0005 4.10E-10

SCIP 0.11 0.0373 0.0052 0.0341 0.0063 0.0001 0.0563 0.0054 1.0067
PS+SCIP 0.449 0.449 0.449 0.0286 7.36E-05 1.50E-05 0.0249 0.0011 1.00E-07

DiffILO+SCIP 0.0873 0.0112 0.0015 0.0143 1.00E-04 1.50E-05 0.0145 0.0007 1.00E-07

D.2 RESULTS OF ADDITIONAL BASELINES

In the main text, our main baseline is the PS method, which is a representative supervised learning
approach. In this section, we include three additional baselines as follows, and the experimental
results on the SC dataset are shown in Table 6 and Figure 8.

CL-LNS (Huang et al., 2023) is a large neighborhood search (LNS) approach, a different frame-
work from branch and bound (BnB). We compare with CL-LNS to demonstrate the effectiveness of
DiffILO compared with LNS-based methods.

ConPaS (Huang et al., 2024) adopts contrastive learning for enhancing the PS framework. As
they have not provided publicly released code, we implement the approach based on the paper’s
details.

DDIM (Zeng et al., 2024) adopts diffusion models to learn to generate feasible solutions. We
used the authors’ released code.

Naive Relaxation We include a naive relaxation baseline for the ablation study to demonstrate
the effectiveness of our proposed relaxation approach. Specifically, in this baseline, we di-
rectly optimize the penalty term

∑
j max(a⊤j x̂ − bj , 0) instead of our proposed probabilistic one∑

j Ex∼p(·|x̂)[max(a⊤j x − bj , 0)]. The parameter µ is further tuned to achieve good convergence.
Different from our approach, the naive baseline views the problem as a simple continuous one with-
out considering the discrete nature of the original problem.

22

Published as a conference paper at ICLR 2025

REINFORCE rather than reparameterization As noted in Remark 5, an alternative approach
for handling non-differentiable computation graphs involving sampling is the REINFORCE method.
To demonstrate the effectiveness of using reparameterization, we implement a REINFORCE method
as a baseline. It computes gradients as

∇x̂Ex∼p(·|x̂)[C(x)] = Ex∼p(·|x̂)[C(x)∇x̂ log p(·|x̂)], (31)

where C(x) denotes the merit function as defined in (P3). We find that all models collapse to-
wards minimal objectives but significant constraint violations, even if we set a very large µ. This
tendency underscores the well-known training challenges associated with RL models. Specifically,
the REINFORCE method relies on random exploration without gradient guidance. When a solution
is reached, the model receives only a reward signal but is unaware of the inherent components of
the reward or the gradient information at the current point. In the vast search space, the absence
of gradient-directed exploration can lead models to converge to trivial yet infeasible solutions. The
results further demonstrate the necessity of re-parameterization trick for this task.

Table 6: Results of additional baselines. We report the objective values achieved at 10s, 100s,
and 1000s, respectively. The results show that DiffILO still outperforms these baselines. Another
baseline, REINFORCE, has failed to derive meaningful results and thus is not reported.

SC (Min, BKS: 86.45)
10s 100s 1000s

CL-LNS 203.27 91.96 86.77
Naive Relaxation 132.1 94.71 87.05

DiffILO 95.65 86.78 86.48

We test the abilities of DiffILO, ConPaS, and DDIM to generate feaisble solutions. The results are
shown in Figure 8. The results show that ConPaS still fails to generate feasible solutions across most
instances. DDIM demonstrates strong feasibility rates and successfully generates feasible solutions
for all instances. However, when considering solution quality, DiffILO still outperformed DDIM
in terms of objective values. This highlights the strength of DiffILO in producing higher-quality
solutions.

0 25 50 75 100
Instance

200

400

600

800

1000

O
bj

ec
tiv

e
V

al
ue

SC (min)

BKS
DFL
ConPaS
DDIM

Figure 8: Results of DiffILO, ConPaS (Huang et al., 2024), and DDIM (Zeng et al., 2024) on
generating feasible solutions on SC.

D.3 RESULTS ON MIPLIB DATASETS

To demonstrate the effectiveness of DiffILO on a more complex and realistic dataset, we conduct
additional experiments on the MIPLIB 2017 benchmark (Gleixner et al., 2021), which is well known
as a collection of challenging real-world MILP instances. Notice that MIPLIB contains instances
across many different scenarios, and many of the large-scale problems do not have isomorphic coun-
terparts, learning directly on the full MIPLIB is extremely challenging. Following Wang et al.
(2023a), we first construct a subset of MIPLIB, called ”MIPLIB-CVS”, to validate the effectiveness
of DiffILO. Specifically, it contains five capacitated vertex separator (CVS) problem instances from
MIPLIB 2017. They are cvs08r139-94, cvs16r70-62, cvs16r89-60, cvs16r106-72,

23

Published as a conference paper at ICLR 2025

and cvs16r128-89. We use the first three instances for training DiffILO, and then test the model
on the last two instances. The total training process takes about only 9 minutes. If we use supervised
learning, it will take more than three hours to solve the training instances for providing labels. The
solving progresses are shown in Figure 6, which overall demonstrate that DiffILO can accelerate
the solving process even on complex realistic datasets. Notably, on the cvs16r128-89, DiffILO
achieves the optimal solution (which is −97.0) in 1, 000 seconds, which even surpasses the result
obtained by running Gurobi for 3, 600 seconds (which is −96.0).

100 101 102 103

Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
im

al
G

ap

Gurobi
DiffILO+Gurobi

(a) cvs16r106-72.

100 101 102 103

Time (s)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Pr
im

al
G

ap

Gurobi
DiffILO+Gurobi

(b) cvs16r128-89.

Figure 9: The relative primal gap on the two test instances.

We have conducted an experiment on another subset of MIPLIB. We construct a subset of MIPLIB,
called ”neos”, to validate the effectiveness of DiffILO. Specifically, we collect all binary instances
with ”neos” in their names and select the instances whose ”.mps” files contain no more than 500,000
lines. We identify 25 such instances in total. Then, we randomly select 20 instances for training and
use another 5 for test. Among these 5 instances, neos-952987 and neos-4382714-ruvuma
derive no feasible solutions solved by Gurobi in 1,000 seconds. We report the solving time on the
other 3 test instances, neos-829552, neos-831188, neos18 in Table 7.

Table 7: Solving time on the 3 test instances from neos.
neos-829552 neos-831188 neos18

Gurobi 44.83 63.24 4.24
Gurobi+DiffILO 43.08 60.91 4.28

While there were slight overall improvements, they were not significant enough to draw firm conclu-
sions. We attribute this to the inherent heterogeneity of the neos dataset. According to the MIPLIB
website, the neos instances originate from diverse scenarios with unknown applications. This poses
significant challenges for ML-based approaches, which rely on common patterns and generaliza-
tions across instances. Additionally, we find that the heterogeneity among training samples led to
unstable training processes, further complicating evaluation. The results demonstrate that training
on heterogeneous datasets still pose challenges to DiffILO.

D.4 TRAINING CURVES

We present the training curves of DiffILO in Figure 10. The consistent progress of training and
validation curves shows that DiffILO exhibits good generalization. The consistent progress of losses
and objectives shows that DiffILO effectively aligns the training and inference objectives.

D.5 INFLUENCE OF ADAPTIVE PENALTY COEFFICIENT

We present the training curves with two different settings of the penalty coefficient µ in Figure 11.
The results show that with our proposed adaptive penalty strategy, the training process is robust to
different configurations of µ, and the coefficient µ can adjust itself towards a reasonable value.

24

Published as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
0.00

0.05

0.10

0.15

0.20

0.25

0.30
SC train loss

0 10000 20000 30000 40000 50000
102

103

104
SC train objs

0 200 400 600 800 1000
0

200

400

600

800

1000
SC valid loss

0 200 400 600 800 1000
102

103

104
SC valid objs

0 10000 20000 30000 40000 50000

−15

−10

−5

0

5

10

15
IS train loss

0 10000 20000 30000 40000 50000

−675

−650

−625

−600

−575

−550

−525

IS train objs

0 200 400 600 800 1000
−675

−650

−625

−600

−575

−550

−525

−500
IS valid loss

0 200 400 600 800 1000
−675

−650

−625

−600

−575

−550

−525

−500
IS valid objs

0 20000 40000 60000 80000 100000

−1

0

1

2

3

4

5

CA train loss

0 20000 40000 60000 80000 100000
−20000

−17500

−15000

−12500

−10000

−7500

−5000

CA train objs

0 500 1000 1500 2000
−20000

−17500

−15000

−12500

−10000

−7500

−5000

−2500

0
CA valid loss

0 500 1000 1500 2000

−15000

−10000

−5000

0

CA valid objs

Figure 10: The learning curves of DiffILO on different datasets. Objs denotes the objective
values of the best-found solutions at each step.

0 1000 2000 3000 4000 5000 6000

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Training Curve of µ

µ=1
µ=5

0 25 50 75 100 125

103

Training Curve of Best Feasible Solution

0 25 50 75 100 125

100

101

102

Training Curve of Cons Violation Loss

0 25 50 75 100 125

100

101

102

Training Curve of Objective Loss

Figure 11: Training curves for different configurations of the penalty parameter µ. In the two
experiments, we set the initial value of µ as 1.0 and 5.0 (with miximum set as 5.0), respectively. The
parameter µ is dynamically adaptive during training. Even if we set a small initial value for µ, e.g.,
1.0 here, it can be adaptively adjusted towards a proper value, i.e., 5.0 here.

D.6 ABLATION STUDIES

We have conducted experiments to evaluate key choices, and the results are in Figure 12. The
number of samples. We conduct experiments on a SC dataset, with results shown in Figure 12(a).
We evaluated sample sizes of 5, 10, 15, 20, and 25. While larger sample sizes resulted in slightly
smoother training curves and smaller sample sizes led to a little early convergence in the early
stage of training, the overall results do not show significant differences. This demonstrates the
robustness of DiffILO to this parameter. For the main experiments, we just empirically set the
sample size to 15. We also compared performance with and without the proposed normalization
techniques. The results, presented in FigureD.6(b), show that our normalization method significantly
accelerates convergence compared to directly summing all penalty terms. We also tested averaging
the constraint penalties instead of summing them, which resulted in worse validation performance
and thus is not presented in the figure.

D.7 GENERALIZATION RESULTS

We further test the zero-shot generalizability of PS and DiffILO. Specifically, the models are trained
on small SC instances (with 3, 000 constraints an 2, 000 variables), and tested on large SC instances
(with 6, 000 constraints and 4, 000 variables). The results are in Table 8, demonstrating that DiffILO
generalizes well to large-sized instances. This may be because the unsupervised training approach

25

Published as a conference paper at ICLR 2025

Table 8: Generalization to large-size datasets. The models are trained on small SC instances (with
3000 constraints an 2000 variables), and tested on large SC instances (with 6000 constraints and
4000 variables). Results show that DiffILO performs well on large-sized instances, indicating its
generalization ability.

SC-small (BKS: 86.45) SC-large (BKS: 79.35)
10s 100s 1000s 10s 100s 1000s

Gurobi 1031.39 87.09 86.52 993.65 85.92 79.58
PS+Gurobi 131.87 125.26 125.26 144.76 131.45 131.45

DiffILO+Gurobi 95.65 86.78 86.48 97.83 84.72 79.55

0 100 200 300

103

num sample=5
num sample=10
num sample=15
num sample=20
num sample=25

(a) numsample

0 200 400 600 800 1000

103

104

w/ normalization
w/o normalization

(b) normalization

Figure 12: Ablation studies on (a) number of samples in each step and (b) the normalization trick
used for training.

encourages the model to learn the fundamental mechanisms needed to solve problems, instead of
merely memorizing simple statistical patterns in the data, thus outperforming supervised methods.

D.8 CASE STUDY

We have conducted additional experiments to investigate how the penalty parameter µ affects the
success rate. The results are in Table 9. In this table, we report the number of successes out of 20
trails with different random seeds. The results show that optimizing closed-form merit function is
robust against changes in µ. Interestingly, its performance is mainly determined by the random seed.
However, it consistently underperforms compared to DiffILO across a broad range of µ values. With
a properly chosen µ, DiffILO achieves a 100% success ratio.

Table 9: The influence of µ on the success ratio in the case study.
8 9 10 11 12 13 14 15 16 17 18 19 20 25 50 100

closed-form 0 0 0 9 9 9 9 9 9 9 9 9 9 9 9 9
DiffILO 0 0 0 0 0 2 7 17 20 20 20 20 20 20 19 16

26

Published as a conference paper at ICLR 2025

E DISCUSSIONS

E.1 LIMITATIONS

Sub-optimality DiffILO is an unsupervised learning approach, which does not learn from the op-
timal solutions found by traditional solvers, but instead learns to produce solutions itself. There are
reasonable concerns that DiffILO may tend to generate sub-optimal solutions, especially when com-
pared with supervised learning approaches. Sub-optimality is essentially a fundamental challenge
for most optimization approaches. Therefore, more attention should be paid to addressing this issue
and reducing the risk of sub-optimality.

Research scope DiffILO mainly focuses on solving integer linear programs (ILPs). Currently, we
focus on ILPs with binary variables. More general ILPs with integer variables and mixed-integer
linear programs (MILPs) are out of the scope of this paper. This extension poses new challenges,
especially in dealing with the unbounded integer and continuous variables. However, we believe
that DiffILO provides an avenue for such directions, and we plan to explore the use of differentiable
approaches for solving general ILPs and MILPs in future work.

Waiting for more sophisticated designs The differentiable ILP solving is still in its early stage
and lacks sophisticated designs. For example, the sampled solutions can be stored in a buffer for
better sample efficiency. The specific gradient optimization algorithm for such task is not yet de-
veloped. Moreover, the current bipartite graph representation and GNN architecture are still simple,
and can be further designed in the future.

E.2 FUTURE AVENUES

Used for large-scale pretraining The unsupervised nature of DiffILO makes it suitable for pre-
training tasks on large-scale datasets.

Combination with supervised learning DiffILO is based on unsupervised learning and may be
stuck in sub-optimal. It is promising to combine it with small amounts of supervised data to better
overcome the sub-optimality issue.

Better optimization algorithm In this work, we use simple Adam for gradient-based optimiza-
tion. Better and more specificly-used optimizers could be developed in the future. Moreover,
integrating traditional methods such as branch-and-bound or large-neighborhood search into our
framework could bolster its robustness and help the model navigate complex solution landscapes
effectively.

Extension to more general problems We note that a contemporaneous ICLR submission (Anony-
mous, 2024) reports and attempts to tackle the similar limitations. They stated: ”Most existing
end-to-end machine learning-based methods primarily focus on predicting solutions for binary vari-
ables.” Their approach involves converting integer variables into binary representations and pre-
dicting these binary bits iteratively. This iterative binary prediction approach could be extended to
our framework, though it would require additional modifications. We plan to explore this direction
in future work. Moreover, While this paper primarily focuses on ILPs, the underlying principles
can be extended to non-linear problems. The key lies in the design of the probabilistic model for
ϕ̂j(x̂) = Ex∼p(·|x̂)[ϕj(x)], where ϕj(x) can be adapted for non-linear constraints. Exploring such
extensions is an exciting direction for future work.

Better model architectures In the future, better model architectures will be expored to replace
the GNN in the current methodology. Some potential practices include soft matching between
nodes (Cuturi, 2013; Caron et al., 2021), differentiable clustering for a soft cluster assignment (Stew-
art et al., 2024), and vector quantization for assigning discrete values (Van Den Oord et al., 2017).

27

	Introduction
	Related Work
	Machine Learning for Integer Linear Programs
	Differentiable Approaches

	Methodology
	Probabilistic Merit Function
	Gradient Back-Propagation for Optimization
	Model Implementation

	Experiments
	Conclusion
	Proofs
	Implementation Details
	Data Representation
	Model Architecture

	Experimental Details
	Details of the Benchmarks
	Training Details
	Inference Details

	Additional Results
	Shifted Geometric Mean of Relative Gaps
	Results of Additional Baselines
	Results on MIPLIB Datasets
	Training Curves
	Influence of adaptive penalty coefficient
	Ablation Studies
	Generalization Results
	Case Study

	Discussions
	Limitations
	Future Avenues

