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ABSTRACT

Multi-task learning (MTL) has emerged as an imperative machine learning tool to
solve multiple learning tasks simultaneously and has been successfully applied to
healthcare, marketing, and biomedical fields. However, in order to borrow infor-
mation across different tasks effectively, it is essential to utilize both homogeneous
and heterogeneous information. Among the extensive literature on MTL, vari-
ous forms of heterogeneity are presented in MTL problems, such as block-wise,
distribution, and posterior heterogeneity. Existing methods, however, struggle to
tackle these forms of heterogeneity simultaneously in a unified framework. In
this paper, we propose a two-step learning strategy for MTL which addresses the
aforementioned heterogeneity. First, we impute the missing blocks using shared
representations extracted from homogeneous source across different tasks. Next,
we disentangle the mappings between input features and responses into a shared
component and a task-specific component, respectively, thereby enabling infor-
mation borrowing through the shared component. Our numerical experiments and
real-data analysis from the ADNI database demonstrate the superior MTL per-
formance of the proposed method compared to a single task learning and other
competing methods.

1 INTRODUCTION

Motivation. Many datasets for specific scientific tasks lack sufficient samples to train an accurate
machine learning model. In recent decades, multi-task learning (MTL) has become a powerful tool
to borrow information across related tasks for improved learning capacity. In addition, data collected
for each task might come from multiple sources; for example, clinic notes, medical images, and
lab tests are collected for medical diagnosis. The multi-source data brings richer information for
each task, potentially enhancing the MTL. However, this also imposes several key challenges. First
of all, it is common that observed data sources for each task are heterogeneous, so some blocks
(certain data sources for certain tasks) could be entirely missing, termed as a block-wise missing
structure in the literature. Second, even if the observed data sources are aligned across tasks, the
distribution of the same data source could be heterogeneous, referred to as distribution heterogeneity.
Furthermore, the associations between features and responses could vary due to distinct scientific
goals or other factors, which we refer to as posterior heterogeneity. In the following, we provide
concrete motivating examples to illustrate these challenges in different problems.

Example 1: Medical multi-source datasets. Multi-source data are widely observed in medical
applications and offer more comprehensive information than single-source data. For example, the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset includes medical imaging, biosam-
ples, gene expression, and demographic information (Mueller et al., 2005a;b). However, entire
blocks of data are often missing when certain sources become unnecessary or infeasible to collect
due to known factors or patient conditions (Madden et al., 2016).

Example 2: Single-cell multi-omics datasets. Data from different experimental batches often
exhibit distribution heterogeneity across various omics measurements. For instance, transcriptome
data collected from different batches can display varying patterns due to differences in experimental
conditions or technical variability (Cao et al., 2022a;b). In multi-omics datasets, sequencing data
distributions also differ across various cancer types (Subramanian et al., 2020).
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Example 3: Combining randomized controlled trials (RCTs) and observational data. Combin-
ing RCTs and observational data has become effective for deriving causal effects due to the high
costs and limited participant numbers in RCTs (Colnet et al., 2024). However, RCTs and obser-
vational data often exhibit posterior heterogeneity (Li et al., 2024a); for instance, causal effects in
RCTs may differ from associations in observational data due to the controlled conditions of RCTs
(Imbens & Rubin, 2015).

Challenges. The challenge in MTL is to incorporate various forms of heterogeneity, each intro-
ducing a unique challenge. Block-wise heterogeneity complicates the integration of data as missing
patterns vary across tasks, making it difficult to leverage shared information efficiently. For example,
in the ADNI dataset, imaging features are present in all datasets, but genetic information is available
only in specific subsets (Xue & Qu, 2021). In addition, distribution heterogeneity can also lead to
biased or misleading scientific conclusions if not addressed properly. For instance, in multi-omics
datasets, sequencing data vary significantly across different cancer types (Subramanian et al., 2020).
Lastly, posterior heterogeneity affects the accuracy of predictions. For example, the relationships
identified in RCTs often do not align with those observational data collected in real-life settings
(Kent et al., 2018; 2020). While each type of heterogeneity imposes its own challenge, addressing
all three challenges simultaneously under a unified framework presents significant obstacles, and to
our best knowledge, current MTL methods are not equipped to handle these intricate dilemmas.

Contributions. In this work, we propose a unified MTL framework to address three types of het-
erogeneity in MTL. There are three key contributions: First, we propose a novel block-wise missing
imputation method which effectively handles distribution heterogeneity by learning both shared and
task-specific representations, uncovering complex structures between sources, and enabling better
generalization during imputation. Second, we disentangle the associations between all input fea-
tures and responses into shared and task-specific components, allowing for the effective integration
of information while adapting to differences across tasks. Third, we propose an MTL architecture
consisting of two parts to construct these associations. The first part builds heterogeneous feature
spaces, while the second part learns responses, jointly addressing both distribution and posterior het-
erogeneity. We validate the proposed framework on synthetic and real-world datasets, demonstrating
its superior performance in handling block-wise missing data and various levels of heterogeneity.

2 RELATED WORK

Multi-source data integration. Several related works on multi-source data collected for the same
set of samples fall within the Joint and Individual Variation Explained (JIVE) framework. These
methods are classified as unsupervised or supervised JIVE, depending on the presence of responses.
Unsupervised JIVE and its variants learn joint, individual, and partially shared structures from multi-
ple data matrices through low-rank approximations (Lock et al., 2013; Feng et al., 2018; Gaynanova
& Li, 2019; Choi & Jung, 2022; Yi et al., 2023; James et al., 2024). Supervised JIVE, on the other
hand, focuses on regression for multi-source data (Gao et al., 2021; Palzer et al., 2022; Zhang &
Gaynanova, 2022; Wang & Lock, 2024). Similarly, factor models have been applied to multi-source
data in a supervised setting (Shu et al., 2020; Li & Li, 2022; Anceschi et al., 2024). While these
methods can effectively address distribution heterogeneity across different sources in linear settings,
they are limited in scope, as they capture only simple data structures within a single task.

Multi-source block-wise missing data integration. Recently, several methods have been devel-
oped to address block-wise missing data. These methods can be divided into two categories based
on whether imputation is involved. Imputation-based methods assume consistent correlations be-
tween different sources across datasets, allowing for the imputation of missing blocks (Gao & Lee,
2017; Xue & Qu, 2021; Xue et al., 2021; Zhou et al., 2021; Ouyang et al., 2024). For example, Xue
& Qu (2021) and Xue et al. (2021) construct estimating equations using all available information
and integrate informative estimating functions to achieve efficient estimators. On the other hand,
non-imputation-based methods focus on learning the covariance matrices among predictors and be-
tween the response and predictors from the observed blocks (Yuan et al., 2012; Xiang et al., 2014;
Yu et al., 2020; Li et al., 2024b). While these methods perform well in the absence of distribution
shift and posterior shift, effectively utilizing all block-wise missing data, they struggle to handle
distribution or posterior heterogeneity.
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Multi-task learning (MTL). There is a growing literature on learning multiple tasks simultane-
ously with a shared model; see Zhang & Yang (2018); Crawshaw (2020); Zhang & Yang (2021)
for reviews. Here, we primarily focus on MTL with deep neural networks, as these networks can
capture more complex relationships. These methods can be broadly classified into four categories:
The first category is balancing individual loss functions for different tasks, which is a common ap-
proach to ease multi-task optimization (Du et al., 2018; Gong et al., 2019; Hang et al., 2023; Wu
et al., 2024). The second category involves regularization, especially in the form of hard parameter
sharing (Subramanian et al., 2018; Liu et al., 2019; Maziarka et al., 2022) and soft parameter sharing
(Ullrich et al., 2017; Lee et al., 2018; Han et al., 2024). The third category addresses the challenge
of negative transfer, where explicit gradient modulation is used to alleviate conflicts in learning dy-
namics between tasks (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2018; Maninis et al., 2019;
Abdollahzadeh et al., 2021; Hu et al., 2022; Wang et al., 2024). The fourth category uses knowl-
edge distillation to transfer knowledge from single-task networks to a multi-task student network
(Rusu et al., 2015; Teh et al., 2017; Clark et al., 2019; D’Eramo et al., 2024). Although MTL can
integrate data from multiple tasks, it is limited in addressing different types of heterogeneity and is
constrained by the assumption of a fully observed setting.

Most related work focuses on addressing a single challenge, such as posterior heterogeneity or the
missing data problem, but typically fails to address all challenges simultaneously. In contrast, our
proposed method extends these approaches by tackling both distribution and posterior heterogeneity
in a block-wise missing setting. This enables a more comprehensive integration of data across tasks,
resulting in improved performance in MTL.

3 TWO-STEP MTL FOR HETEROGENEOUS MULTI-SOURCE BLOCK-WISE
MISSING DATA

Notation. We introduce the notations used in this paper. Vectors and matrices are denoted by x and
X , respectively. The ℓ1 and ℓ2 norms of a vector x are ∥x∥1 and ∥x∥2, and the Frobenius norm
of a matrix X is ∥X∥F . The symbol | represents concatenation. For example, [x1|x2] denotes
concatenating a p1 × 1 vector x1 and a p2 × 1 vector x2 into a (p1 + p2) × 1 vector. Similarly,
[X1|X2] denotes concatenating an n×p1 matrix X1 and an n×p2 matrix X2 into an n× (p1+p2)
matrix. We define [r] = {1, 2, . . . , r} as the set of integers from 1 to r.
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Figure 1: Block-wise missing pattern for 4
tasks and 5 sources, including an anchoring
source and task-specific sources.

Problem Description. Suppose we have data from
T tasks, with features collected from T + 1 sources.
For all tasks, we assume that a common source,
called the anchoring source, is observed. Addition-
ally, each task has its own task-specific source, de-
noted as xt

s for the s-th source in the t-th task.
Specifically, xt

0 represents the anchoring source ob-
served in the t-th task, and xt

t denotes the task-
specific source for the t-th task, while {xt

s}s̸=0,t are
missing. For the t-th task, we observe nt samples
{[xt

0,i|xt
t,i], y

t
i}

nt
i=1. This block-wise missing pattern

is common in real-world applications. For exam-
ple, in biomedical data, some measurements (data
sources) are widely observed for all subjects, while
some measurements are only collected to a subgroup
of subjects due to various reasons. Concretely, in the ADNI data that we analyzed in Section 4.3,
MRI is crucial to monitor the cognitive impairment development of Alzheimer’s patients, so it is
measured for all subjects, while gene expression and PET images are less crucial and are only ob-
served for two subgroups separately. Another example is the split questionnaire design, which aims
to reduce respondent fatigue and improve response rates by assigning different subsets of the ques-
tionnaire to different sampled respondents (Lin et al., 2023). In Figure 1, we provide an example of a
block-wise missing pattern for 4 tasks and 5 sources, where the blue source xt

0 for t ∈ [4] represents
the anchoring source observed by all four tasks, and each task also has a uniquely observed specific
source xt

t for t ∈ [4]. Our goal is to perform MTL on these tasks with block-wise missing data.
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Figure 1 illustrates one of the challenges in MTL. Each task has different missing blocks; for exam-
ple, in the first task, sources 2, 3, and 4 are missing, while in the second task, sources 1, 3, and 4
are missing. Furthermore, both distribution and posterior heterogeneity across tasks complicate the
application of standard imputation methods (Nair et al., 2019; He et al., 2024a;b) and MTL methods
(Kouw & Loog, 2018; Lee et al., 2024; Maity et al., 2024).

3.1 HETEROGENEOUS BLOCK-WISE IMPUTATION

In this section, we propose the first step, Heterogeneous Block-wise Imputation (HBI) for imputing
the missing blocks while leveraging distribution heterogeneity across tasks. HBI extracts disentan-
gled hidden representations from the anchoring source x0, including a shared representation across
tasks and a task-specific representation for each task. The shared representation is then used to
impute the missing blocks, improving generalization across tasks.
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Figure 2: Illustration of parallel imputation
for task-specific sources.

For T tasks and T + 1 sources, we impute the task-
specific sources in a parallel fashion. For each task-
specific source s ̸= 0, we utilize the anchoring
source across all tasks and xs

s to impute the unob-
served blocks {xt

s}t ̸=s. In particular, for the t-th
source, only the t-th task has observed values for the
features xt

t. The imputation aims to use the observed
xt
0 and xt

t along with x−t
0 = {xr

0}r ̸=t to estimate
the missing features in the t-th source for the other
T − 1 tasks, where x−t

t = {xr
t}r ̸=t are unobserved. For example, in Figure 2, we use information

from x1
0, x1

1, and x−1
0 = {x2

0,x
3
0,x

4
0} to impute the missing blocks x−1

1 = {x2
1,x

3
1,x

4
1} for the

task 1-specific source.

xt
0

xt
0

x−t
0

x−t
0

Et
p
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Ec

E−t
p

gt

f t

f−t

g−t

D

G

D

x̂t
0

x̂t
t

x̂−t
0

Figure 3: Illustration of HBI for the task t-
specific source xt. A common encoderEc(·)
learns to capture representation components
that are shared among tasks. Task-specific
encoders Ep(·) (one for the t-th task, and
one for the other T − 1 tasks) learn to cap-
ture task-specific components of the repre-
sentations. A decoder learns to reconstruct
the anchoring source x0 by using both shared
and task-specific representations. The shared
part of the relationship between the anchor-
ing source x0 and the task t-specific source
xt can be borrowed through Ec(·) and G(·)
for imputation. See the text for more infor-
mation.

This is accomplished by learning a model that ex-
ploits both the shared and task-specific informa-
tion of the data, allowing for accurate prediction
of missing values based on the available observed
data. To fully integrate multi-source information,
we leverage an encoder-decoder framework, which
is well-suited for capturing non-linear relationships
in data. Let Ec(·) be a common encoder that maps
{xt

0,x
−t
0 } to shared representations f t

c = Ec(x
t
0)

and f−t
c = Ec(x

−t
0 ) across all T tasks. Let

Et
p(·) and E−t

p (·) be task-specific encoders that map
xt
0 and x−t

0 to task-specific representations gt =
Et

p(x
t
0) and g−t = E−t

p (x−t
0 ). Then, D(f , g)

serves as a decoder that reconstructs the anchoring
source x0 from f and g. Finally, G(f) is a pre-
dictor that maps the shared representation f to the
task t-specific source xt. The resulting heteroge-
neous block-wise imputation model is illustrated in
Figure 3.

In Figure 3, we assume that the relationship between
the anchoring source x0 and the task t-specific
source xt can be borrowed through the shared rep-
resentations f , the common encoder Ec(·), and the
decoder G(·). This allows us to utilize the shared in-
formation (reflected in f t and f−t) for imputation,
while also accounting for the heterogeneity between
xt
0 and x−t

0 (reflected in gt and g−t). Existing impu-
tation methods often learn the relationship between
x0 and xt within the t-th task and apply the rela-
tionship to other tasks, overlooking distribution heterogeneity (Xue et al., 2021; Zhou et al., 2021).
Moreover, common imputation methods rely on parametric models which fail to capture complex re-
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lationships in missing data (Xue & Qu, 2021; Li et al., 2023). However, our HBI method effectively
overcomes these obstacles. Notably, HBI’s extraction of the common components in the relation-
ships between sources across different tasks shares similarities with domain adaptation (Mansour
et al., 2008; Bousmalis et al., 2016; Tzeng et al., 2017; Farahani et al., 2021) but focuses on com-
pleting block-wise missing data. This architecture effectively models complex data structures and
interactions, providing a robust tool for understanding intricate patterns. The resulting optimization
can be formulated as:

(Êc(·), Êt
p(·), Ê−t

p (·), D̂(·), Ĝ(·)) = argminLpre + Lrecon, (1)

In (1), the prediction loss Lpre trains the model to predict xt
t, the target of interest, which is applied

only to the t-th task. We use the following loss function:

Lpre =

nt∑
i=1

l(xt
t,i, G(Ec(x

t
0,i))),

where xi denotes the observed sample, and l(·, ·) can be the mean squared error for continuous
outcomes or cross-entropy for binary outcomes (this applies similarly to the following symbols).
For the reconstruction loss in (1),

Lrecon =

nt∑
i=1

l(xt
0,i, D(Ec(x

t
0,i), E

t
p(x

t
0,i))) +

n−t∑
i=1

l(x−r
0,i , D(Ec(x

−t
0,i), E

−t
p (x−t

0,i))),

where n−t =
∑

r ̸=t nr. Then, we can train (1) to obtain the estimators Êc(·) and Ĝ(·). Conse-

quently, we compute x̂−t
t = Ĝ(Êc(x

−t
0 )). Note that (1) is constructed based on task t-specific

source imputation. Similarly, we can construct imputations for the other T − 1 sources. When
performing imputation for different sources using HBI, the learned hidden representations and cor-
responding generative functions adapt dynamically. This adaptation is crucial as it allows the model
to accommodate the unique information of each source. The complete algorithm for parallel hetero-
geneous imputation is provided in Appendix A.4.

Our proposed HBI method ensures that the imputation model leverages common information across
tasks while incorporating the heterogeneity of each task. By decomposing the latent space into
shared and task-specific components, we gain a nuanced understanding of how input features from
different sources interact, thereby enhancing imputation accuracy.

3.2 HETEROGENEOUS MULTI-TASK LEARNING

In this section, we propose our MTL framework to accommodate distribution and posterior hetero-
geneity given the imputed blocks from HBI. Similar to the disentangled representations for features,
we also model the association between features and responses as two components: a shared function
mapping and a task-specific function mapping. Specifically, for the t-th task, we assume that the
relationship between the response yt and the features [xt

0|xt
1| · · · |xt

T ] is given by:

yt = ψc([x
t
0|xt

1| · · · |xt
T ]) + ψt

p([x
t
0|xt

1| · · · |xt
T ]), (2)

where [xt
0|xt

1| · · · |xt
T ] influence yt through a shared mapping ψc(·) and a task-specific mapping

ψt
p(·). Equation 2 extends traditional meta-analysis, which often assumes a linear relationship in the

t-th task as yt = [xt
0|xt

1| · · · |xt
T ]

⊤βt+ε, where βt includes a common component µ shared across
all T tasks and a unique component αt for each task (Chen et al., 2021; Cai et al., 2022; Maity
et al., 2022). Traditional meta-analysis is incapable of accommodating non-linear relationships or
varying effects. In contrast, we propose a flexible framework which accommodates non-linearities
and integrates task-specific information.

To construct the shared mapping ψc(·) and the task-specific mappings {ψt
p}Tt=1 jointly, we

consider an MTL architecture comprising two parts. The first part builds heterogeneous
feature spaces, while the second part learns responses for all T tasks. Specifically, for
the t-th task, following HBI in Section 3.1, we obtain samples with reconstructed features
{(xt

0,i, . . . , x̂
t
t−1,i,x

t
t,i, x̂

t
t+1,i, . . . , x̂

t
T,i), y

t
i}

nt
i=1. These features can then be integrated to capture

both shared and task-specific representations, enabling the utilization of the combined data while ad-
dressing task-specific heterogeneity. During HBI, the components {x̂t

s}s̸=0,t are primarily predicted
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using the anchoring source xt
0, indicating that xt

0 serves as a common basis. To prevent redundancy,
we extract shared representations solely from the anchoring source xt

0. Specifically, we define

ht = ϕc(x
t
0), (3)

where ϕc(·) is a shared encoder that learns hidden information from the anchoring source for all
tasks. Meanwhile, task heterogeneity is captured by extracting representations from all features,
creating a framework in which shared representations provide a common foundation, while task-
specific details can still be preserved. For the t-th task, we define:

kt = ϕtp([x
t
0| · · · |x̂t

t−1|xt
t|x̂t

t+1| · · · |x̂t
T ]), (4)

where ϕtp is a task-specific encoder which maps the unique information within the t-th task. In (3)
and (4), the heterogeneous feature spaces are fully captured using all data information. The task-
specific representations k capture complex interactions between different sources unique to each
task, aided by HBI in Section 3.1. In practice, such interactions are crucial. For example, in the
ADNI dataset, there are intricate relationships between images and gene expression. Equation 4
accounts for this heterogeneous information. However, previous work (Moon & Carbonell, 2017;
Bica & van der Schaar, 2022) often oversimplifies these interactions by focusing only on task-
specific sources, neglecting a wealth of shared information from other tasks.

For the second part, we consider a network architecture for learning responses in all T tasks,
consisting of L layers with both shared and task-specific subspaces (Ruder et al., 2019; Curth
& Van der Schaar, 2021; Bica & van der Schaar, 2022). For simplicity, in the t-th task, let
k̄t
l and h̄t

l represent the inputs, and kt
l and ht

l the outputs of the l-th layer. For l = 1, set
k̄t
1 = [ht|kt] and h̄t

1 = k̄t
1. For l > 1, the inputs to the (l + 1)-th layer are given by

k̄t
l+1 = [ht

l |kt
l ] and h̄t

l = [ht
l ]. Let gt(·) be the association function in the t-th task, defined as

gt([ht
L|kt

L]) = ψc([x
t
0|xt

1| · · · |xt
T ]) + ψt

p([x
t
0|xt

1| · · · |xt
T ]), where gt(·) is a linear function for

continuous outcomes and a sigmoid function for binary ones.

task 1
ϕ1px̂1

2

x1
1

x1
0

ϕc

x2
0

x̂2
1

x2
2 ϕ2p

task 2

k1

h1

h2

k2

k1
l

h1
l

h2
l

k2
l

y1

y2

Figure 4: Illustration of the construction of
shared mapping and task-specific mappings
for two tasks.

Figure 4 illustrates the construction of the shared
mapping ψc(·) and the task-specific mappings ψ1

p(·)
and ψ2

p(·) for two tasks. For task 1, the input fea-
tures consist of [x1

0|x1
1|x̂1

2], where x̂1
2 represents the

imputed source. In the first part, we build the het-
erogeneous feature space by extracting the shared
representation h1 = ϕc(x

1
0) and the task-specific

representation k1 = ϕ1p([x
1
0|x1

1|x̂1
2]). Similarly,

for task 2, we extract h2 = ϕc(x
2
0) and k2 =

ϕ2p([x
2
0|x̂2

1|x2
2]). Next, we utilize the pairs {h1,k1}

and {h2,k2} to model the responses y1 and y2, re-
spectively. In Figure 4, the blue mapping illustrates
the shared mapping ψc(·), while the orange and yel-
low mappings represent the task-specific mappings
ψ1
p(·) and ψ2

p(·) for tasks 1 and 2, respectively.

The above construction allows us to define the following integrated loss across all T tasks:

Linteg =

T∑
t=1

nt∑
i=1

l(yti , g
t([ht

L,i|kt
L,i])). (5)

Similar to Bousmalis et al. (2016), we also incorporate an orthogonality regularizer, defined as:

Rorth =

T∑
t=1

∥(Ht)⊤Kt∥2F , (6)

where Ht and Kt are matrices whose rows are the hidden representations ht and kt, respectively.
Furthermore, in (4), the input is [xt

0 | · · · | x̂t
t−1 |xt

t | x̂t
t+1 | · · · | x̂t

T ], where xt
0 and xt

t are the ob-
served data, and {x̂t

s}s̸=0,t are obtained through imputation. Since imputation can introduce errors,
we also downweight the imputed data {x̂t

s}s ̸=0,t compared to observed data for learning kt by
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applying a regularizer to the parameters of the first layer of the encoder ϕtp(·), defined as:

Rimp =

T∑
t=1

∑
s̸=0,t

∥Θt
s,p,1∥2F , (7)

where Θt
s,p,1 are the parameters of the first layer of ϕtp(·) corresponding to {x̂t

s}s̸=0,t. This regu-
larizer downweights potentially less accurate imputed features by penalizing the magnitude of the
encoder parameters, fostering a model more robust to imputation errors. To further reduce redun-
dancy between the shared and task-specific layers, we introduce an orthogonal regularizer (Ruder
et al., 2019; Bica & van der Schaar, 2022). Let dtc,l−1 and dtp,l−1 be the dimensions of ht

l−1 and

kt
l−1, the outputs of the (l − 1)-th layer. Denote the weights in the l-th layer as Θt

c,l ∈ Rdt
c,l−1×dt

c,l

and Θt
p,l ∈ R(dt

c,l−1+dt
p,l−1)×dt

p,l . We apply the following regularizer:

Rdr =

T∑
t=1

L∑
l=1

∥(Θt
c,l)

⊤Θt
p,l,1:dt

c,l−1
∥2F . (8)

By combining the losses from (5), (6), (7), and (8), we train the set of all parameters Θ using the
following integrated loss function:

(ψ̂c, {ψ̂t
p}1≤t≤T ) = argmin

Θ
{Linteg + γRorth + δRimp + κRdr},

where γ, δ, and κ are weights controlling the balance among different terms. The more detailed
algorithm for heterogeneous MTL is provided in Appendix A.4.

4 EXPERIMENTS

In this section, we conduct extensive numerical experiments, including two-task MTL, multi-task
MTL with more than two tasks, and an application to the ADNI real dataset. The numerical exper-
iments demonstrate that our proposed two-step MTL method effectively aggregates information in
the presence of block-wise, distribution, and posterior heterogeneity.

4.1 MTL FOR TWO TASKS

We address a common real-world scenario involving MTL with two tasks for illustration. The data
generation process (DGP) is as follows:

DGP: For Task 1, the features are denoted as x1 = [x1
0|x1

1|x1
2] and follow a Gaussian distribution

with mean 0 and an exchangeable covariance matrix. The variance is fixed at 1, and the covariance
structure is specified as (ρ1)

0.01|i−j|. We randomly generate n1 samples, with the third block x1
2

missing in Task 1. For Task 2, the features are denoted as x2 = [x2
0|x2

1|x2
2], where x2 follows a

Gaussian distribution with mean 0, variance 1, and covariance structure (ρ2)
0.01|i−j|. In this task,

we generate n2 samples, with the second block x2
1 missing. The responses are defined as:

y1 = α

p∑
d=1

vc,d(x
1
d)

2/p+ (1− α)

p∑
d=1

v1,dx
1
d/p+ ε1,

y2 = α

p∑
d=1

vc,d(x
2
d)

2/p+ (1− α)

p∑
d=1

v2,dx
2
d/p+ ε2,

where p =
∑2

s=0 ps, with ps being the dimension of the s-th source, and the subscript d denotes the
d-th element of a vector (this notation applies to subsequent symbols as well). The parameters vc,
v1, and v2 are sampled from N(−10, 102), and the noise terms ε1 ∼ N(0, σ2

1) and ε2 ∼ N(0, σ2
2).

The parameter α controls the level of sharing across tasks. For evaluation, we calculate the average
root-mean-squared error (RMSE) on the testing data, as defined in Appendix A.2. We conduct
experiments under various settings to compare the proposed MTL for heterogeneous multi-source
block-wise missing data (MTL-HMB) against existing methods, including Single Task Learning
(STL) and Transfer Learning for Heterogeneous Data (HTL) (Bica & van der Schaar, 2022).
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Setting A: Effect of covariance parameters. We set n1 = n2 = 300, p0 = 100, p1 = p2 = 25,
α = 0.3, and σ1 = σ2 = 0.1. To examine the impact of the covariance parameters ρ1 and ρ2, we set
ρ1 = ρ2 and vary them from 0.5 to 0.95, assuming no distribution heterogeneity across datasets. As
shown in Figure 5(a), increasing correlation improves prediction accuracy across all methods. The
proposed MTL-HMB is the best performer. Specifically, at ρ = 0.95, it outperforms the others by
more than 28.33%. Even at ρ = 0.5, despite imputation errors, our method maintains an advantage.
This demonstrates that imputation enhances prediction, especially when distribution heterogeneity
is absent.

Setting B: Effect of heterogeneous covariance parameters. We set n1 = n2 = 300, p0 = 100,
p1 = p2 = 25, α = 0.3, and σ1 = σ2 = 0.1. To assess the impact of heterogeneous covariance,
we fix ρ1 = 0.95 and vary ρ2 from 0.5 to 0.9. Smaller ρ2 indicates greater heterogeneity and
weaker correlations in Task 2, making predictions more challenging. Figure 5(b) shows that as
ρ2 increases, all methods improve, and our approach consistently leads. At the highest level of
heterogeneity, MTL-HMB outperforms HTL by over 20.91%. Moreover, HTL shows no advantage
over STL, indicating that transfer learning struggles with distribution heterogeneity. In contrast, the
proposed method effectively solves the heterogeneity challenge through imputation, achieving better
predictive accuracy.

Setting C: Effect of heterogeneous mappings. We set n1 = n2 = 300, p1 = p2 = 25, ρ1 = ρ2 =
0.8, and σ1 = σ2 = 0.1. The parameter α is varied to control the level of information sharing in
the mappings to the response. A larger α indicates more shared information. With ρ1 = ρ2 fixed,
heterogeneity is governed solely by α. Figure 5(c) shows that as α increases, the magnitude of y also
increases, resulting in higher average RMSEs. Except at α = 0.1, HTL consistently outperforms
STL, indicating its advantage in incorporating posterior shift. Overall, the proposed MTL-HMB
performs the best across all settings, even in the absence of distribution heterogeneity.

Setting D: Effect of sample sizes. We set p1 = 100, p2 = 25, p3 = 25, ρ1 = 0.95, ρ2 = 0.7,
α = 0.3, and σ1 = σ2 = 0.1. The sample sizes n1 and n2 vary as n1 = n2 = k × 100 for
k = 1, . . . , 6. Figure 5(d) shows that as the sample size increases, average RMSEs decrease, and
the corresponding variability of estimator is reduced across all methods. Our method consistently
performs best, with an improvement of over 18.13% compared to HTL. This is particularly notable
at smaller sample sizes such as 100, where MTL-HMB outperforms HTL and STL by 37.13%
and 38.06%, respectively. Additionally, HTL does not significantly outperform STL, indicating
difficulty in handling distribution heterogeneity.

Setting E: Effect of dimensions. We set n1 = n2 = 300, ρ1 = 0.95, ρ2 = 0.7, α = 0.3, and
σ1 = σ2 = 0.1. To assess the impact of dimensions p1, p2, and p3, we fix p1 = 100 and vary
p2 = p3 = k × 25 for k = 1, . . . , 4. Figure 5(e) shows that increasing dimensions make predic-
tion more challenging, leading to higher average RMSEs for all methods. Our method consistently
outperforms the others, with at least 7.88% and 10.73% improvements over HTL and STL, respec-
tively. Moreover, it exhibits greater stability, refleced by lower RMSEs at both the 75th and 25th
percentiles.

Setting F: Effect of heterogeneous noise levels. We set n1 = n2 = 300, p1 = p2 = 25, ρ1 =
0.95, ρ2 = 0.7, and σ1 = σ2 = 0.1. By fixing σ2 = 0.1 and varying σ1 from 0.1 to 0.5, we
assess the impact of different noise levels. Figure 5(f) shows that HTL lacks a clear advantage over
STL, indicating that distribution heterogeneity leads to degenerated HTL’s performance. Our MTL-
HMB consistently outperforms the competing methods, demonstrating robustness in addressing both
distribution and posterior heterogeneity. Furthermore, MTL-HMB excels at lower prediction levels,
with neither STL nor HTL matching its performance at the 25th percentile.

4.2 MTL FOR MULTIPLE TASKS

To save space, the DGP for number of tasks greater than 2 is detailed in Appendix A.2. We select
R = 2, R = 3, and R = 4, with the prediction results summarized in Figure 6. As shown in Figure
6(a), increasing the number of heterogeneous tasks makes prediction more challenging, resulting in
higher average RMSEs. This underscores the complexity of integrating diverse data. Nevertheless,
our MTL-HMB consistently outperforms the other methods and shows the smallest RMSE standard
deviation, indicating greater robustness and reliability. We focus on the first task, considering it the
“easiest” due to the highest observed correlations. Figure 6(b) shows that for this “easy” task, as
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Figure 5: Boxplots of average RMSEs under Settings A to F for the three methods. The methods
are distinguished by color: orange for STL, green for HTL, and blue for the proposed MTL-HMB.
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Figure 6: Boxplots of average RMSEs under multiple settings across three methods. The methods
are differentiated by color: orange for STL, green for HTL, and blue for our proposed MTL-HMB.

more tasks are integrated, the improvement of our method decreases due to increasing heterogeneity.
Additionally, we observe that in two-task learning, the second task is the most challenging; in three-
task learning, it is the third task; and in four-task learning, it is the fourth task. This pattern indicates
that as the number of integrated tasks increases, the complexity of learning escalates, particularly
for the most recently added task. To quantify these challenges, we compile the RMSEs for the most
difficult tasks in Figure 6(c), which shows that our MTL-HMB excels in these challenging tasks,
consistently outperforming the other methods. For example, in the four-task integration, our method
achieves over 18.22% improvement compared to the HTL.

4.3 ADNI REAL DATA APPLICATION

We perform MTL using the ADNI database. The first task has 72 samples with features from MRI
and PET sources, denoted as X1

0 and X1
1 . The second task has 69 samples with features from MRI

and GENE sources, denoted as X2
0 and X2

2 . The MRI source includes 267 features, PET includes
113, and GENE includes 300. For the response variable, we use the Mini-Mental State Examination
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(MMSE), which measures cognitive impairment and serves as a diagnostic indicator of Alzheimer’s
disease (Tombaugh & McIntyre, 1992).

Method Task 1 Task 2

STL 2.74(0.87) 4.57(1.15)
HTL 2.86(0.75) 4.34(1.47)
Ours 2.66(0.59) 3.59(0.98)

Table 1: Prediction accuracy on testing
data, measured by RMSE.

Although both tasks share the MRI source, significant
heterogeneity may still exist between the two datasets.
To quantitatively assess this heterogeneity, we calculate
the Maximum Mean Discrepancy (MMD) distance be-
tween X1

0 and X2
0 . Additionally, a permutation test

is conducted to determine whether the differences be-
tween these sample sets are statistically significant. The
test yields a p-value of 1× 10−6, indicating significant
differences between X1

0 and X2
0 and therefore a neces-

sity of incorporating heterogeneity among homogeneous source in MTL. Furthermore, the small
sample sizes in both tasks impose challenges for prediction, where MTL can potentially enhance
performance. For both datasets, we use 60% of the samples for training, 20% for model selection
and early stopping, and calculate RMSE on the remaining 20% for testing. The experiment is re-
peated 30 times, and the results are summarized in Table 1. Our MTL-HMB yields lower prediction
errors in both tasks, particularly in Task 2, where it improves performance by at least 17.28% com-
pared to the other two methods, despite the small sample sizes. HTL performs worse than STL due
to ignoring the significant heterogeneity between X1

0 and X2
0 .

5 DISCUSSION

In this paper, we propose a novel two-step strategy for effective MTL in the context of block-wise
missing data in conjunction with different types of heterogeneity. The first step addresses distribu-
tion heterogeneity using integrated imputation, while the second step integrates learning to overcome
distribution and posterior heterogeneity. We conduct extensive numerical experiments to validate the
superiority of the proposed method across various levels of heterogeneity. Additionally, in the ADNI
real-world dataset, our approach achieves significant improvements in both tasks. In the following,
we provide the limitations and outline directions for future work, primarily focusing on transforming
the two-step process into a single-step approach. In this unified method, the shared and task-specific
hidden representations can be used for both imputing missing data and posterior learning simultane-
ously, as detailed in Appendix A.6.
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