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A APPENDIX

In Appendix A.1, we further expand on the related works described in Section 2.

In Appendix A.2, we provide the detailed DGP used in Section 4.2.

In Appendix A.3, we conduct ablation experiments to demonstrate the individual roles of the two
steps in our proposed method.

In Appendix A.4, we provide the pseudo-code for the proposed MTL-HMB.

In Appendix A.5, we include detailed experimental information, including the real data description
and implementation details.

In Appendix A.6, we discuss the limitations of our work and potential future research directions.

A.1 EXPANDED RELATED WORKS

Multi-group data integration. Multi-group data integration and MTL share the common goal of
learning from multiple datasets or tasks simultaneously. The input features and response of a sin-
gle task can be viewed as a separate group. There are several existing methods in the statistical
literature for multi-group data analysis, which can be broadly classified into three categories. The
first category designs specialized regression models (Meinshausen & Bühlmann, 2015; Zhao et al.,
2016; Wang et al., 2018; Huang et al., 2023a;b) or factor regression models (Wang et al., 2023a;b) to
handle large-scale heterogeneous data and identify group-specific structures. The second category
employs specified parameter space constraints, such as fused penalties, to estimate regression coef-
ficients that capture subgroup structures (Tang & Song, 2016; Ma & Huang, 2017; Chen et al., 2021;
Li & Sang, 2019; Tang et al., 2021; Lam et al., 2022; Duan & Wang, 2023; Zhang et al., 2024b).
The third category involves transfer learning, which borrows information from source data to target
data (Li et al., 2022; Tian et al., 2022; Zhang & Zhu, 2022; Tian & Feng, 2023; Cai & Pu, 2024; Cai
et al., 2024; He et al., 2024; Zhang et al., 2024a). The aforementioned multi-group data integration
approaches address distribution and posterior heterogeneity but overlook block-wise missing issues.
Additionally, most methods rely on structured model assumptions, such as linearity, limiting their
capacity to capture complex relationships.

Heterogeneous feature spaces. Existing transfer learning methods mainly addressed either distri-
bution shift or posterior shift separately, with fewer studies considering both types of shifts simul-
taneously. For instance, Moon & Carbonell (2017) investigated scenarios with both heterogeneous
feature and label spaces in the context of natural language processing. They proposed a method that
learned a common embedding for the features and labels and then established a mapping between
them. Similarly, Bica & van der Schaar (2022) focused on a shared label space but assumed that all
tasks had a common source, utilizing the same encoder to extract shared representations. However,
this assumption was often unrealistic in practice. Even when sources were identical, different tasks
could exhibit significant heterogeneity due to variations in subjects, locations, and experimental set-
tings. For example, in our ADNI real data (Section 4.3), tasks sharing MRI features might still differ
due to varying experimental conditions. A key distinction in our method is that we treat this problem
as a block-wise missing data issue rather than simply considering each task to have only the observed
features. This perspective aligns more closely with the reality of medical data, where missing prob-
lem is common, and these missing features can also influence the response. Additionally, we focus
on MTL, which is designed for numerous small-sample and challenging tasks. In contrast, trans-
fer learning often assumed the existence of a large-scale dataset to support a smaller-sample task.
For example, in the experiments conducted by Bica & van der Schaar (2022), the source domain’s
sample size was typically more than ten times that of the target domain. However, in real-world sce-
narios, it is more common for all tasks to have relatively small and limited sample sizes. Our method
aims to provide a more comprehensive and robust learning framework by integrating heterogeneous
information across these small-sample tasks.

A.2 DATA GENERATION PROCESS IN SECTION 4.2

We consider MTL for multiple tasks. The DGP is similar to that in Section 4.1 but is extended to
accommodate more tasks. For three-task learning, the features for the t-th task are denoted as xt =
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[xt
0|xt

1|xt
2|xt

3] and follow a Gaussian distribution with mean 0 and an exchangeable covariance
matrix. The variance is fixed at 1, and the covariance structure is determined by (ρt)

0.01|i−j|. We
randomly generate nt samples, with only xt

0 and xt
t being observed. The response yt is given by:

yt = α

p∑
d=1

vc,d(x
t
d)

2/p+ (1− α)
p∑

d=1

vt,dx
t
d/p+ εr, ∀r ∈ [3].

where p =
∑3

s=0 ps. For three-task learning, we choose the following parameters: n1 = n2 = n3 =
300, p0 = 125, p1 = p2 = p3 = 25, ρ1 = 0.95, ρ2 = ρ3 = 0.9, α = 0.3, vc, vt ∼ N(−10, 102),
and εt ∼ N(0, 0.01) for t ∈ [3].

For four-task learning, the features for the t-th task are denoted as xt = [xt
0|xt

1|xt
2|xt

3|xt
4] and

follow a Gaussian distribution with mean 0 and an exchangeable covariance matrix. The variance
is fixed at 1, and the covariance structure is determined by (ρt)

0.01|i−j|. We randomly generate nt
samples, with only xt

0 and xt
t being observed. The response yt is given by:

yt = α

p∑
d=1

vc,d(x
t
d)

2/p+ (1− α)
p∑

d=1

vt,dx
t
d/p+ εr, ∀r ∈ [4].

where p =
∑4

s=0 ps. For four-task learning, we choose the following parameters: n1 = n2 = n3 =
n4 = 300, p0 = 125, p1 = p2 = p3 = p4 = 25, ρ1 = 0.95, ρ2 = ρ3 = ρ4 = 0.9, α = 0.3,
vc, vt ∼ N(−10, 102), and εt ∼ N(0, 0.01) for t ∈ [4].

For evaluation, we focus on the average RMSE across all tasks in the testing data, defined as follows:

RMSE =
1

T

T∑
t=1

√√√√ 1

nt,test

nt,test∑
i=1

(ŷti − yti)
2
.

A.3 ABLATION EXPERIMENTS

We propose an MTL framework that involves two steps: Step 1 for HBI (see Section 3.1) and Step 2
for heterogeneous MTL (see Section 3.2). To assess the independent effect of each step, we design
ablation experiments. In addition to comparing with STL and HTL, we consider two new ablation
experiments. The first is Step 1 + STL, which applies HBI followed by STL to evaluate the effect
of Step 2 and is denoted as Ablation 1. The second is homogeneous imputation + Step 2, where we
ignore distribution heterogeneity to analyze the impact of disregarding heterogeneity in imputation,
denoted as Ablation 2. The data generation process is consistent with Section 4.1, but we adopt a
more challenging setting. Specifically, we set p1 = 100, p2 = 25, p3 = 25, ρ1 = 0.8, ρ2 = 0.6, α =
0.3, and σ1 = σ2 = 0.1. We analyze the impact of sample sizes n1 and n2 on three methods by fixing
n1 = 300 and varying n2 as n2 = k×100 for k = 1, . . . , 4. The experiments are repeated 30 times,
and the mean RMSE per task is computed, with the results summarized in Figure 1. It is important to
note that, due to the presence of distribution heterogeneity in this setting, HTL performs the worst.
We analyze the ablation results from three perspectives. First, it is evident that both Ablation 2 and
our proposed MTL-HMB outperform STL and Ablation 1, indicating that Step 2 plays a crucial
role in enhancing STL performance. Second, by comparing Ablation 1 with STL, we observe that
Ablation 1 consistently achieves lower loss across different sample sizes, demonstrating that Step
1 improves predictions for a single dataset. Third, when comparing Ablation 2 with our proposed
method, Ablation 2 shows higher loss, suggesting that ignoring distribution heterogeneity negatively
impacts performance. Overall, our ablation experiments demonstrate that when both distribution and
posterior heterogeneity are present, both steps of our proposed framework are crucial.

A.4 PSEUDO-CODE FOR OUR PROPOSED MTL-HMB

Algorithm 1 provides the pseudo-code for training our proposed MTL method. For simplicity, we set
the mini-batch size to be the same across all T datasets: Bt = B for t ∈ [T ]. For HBI, we divide the
data into training and testing sets and train the parameters on the training set. Early stopping is ap-
plied to Lpre on the t-th dataset’s testing data to check for convergence and perform model selection.
For heterogeneous MTL, the data is split into training, validation, and testing sets. Parameters are
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Figure 1: The average RMSEs of all methods across different n2 sample sizes.

trained on the training set, and the best hyperparameter combination is selected using the validation
set. Early stopping is applied to Linteg on the validation set to check for convergence, and the final
prediction metrics are calculated on the test set. In practice, we choose the regularization parameters
γ, δ, and κ from the set [0.01, 0.1, 1] forRorth,Rimp, andRdr. In our experiments, we found that the
selection of γ, δ, and κ is robust, having minimal impact on the final prediction performance.

A.5 EXPERIMENTAL DETAILS

A.5.1 DATASET DESCRIPTION

In this subsection, we provide a detailed description of the ADNI database used in Section 4.3.
The ADNI study (Mueller et al., 2005) aims to identify biomarkers that track the progression of
Alzheimer’s disease (AD). The MMSE score, which measures cognitive impairment, is treated as
the response variable, and we aim to select biomarkers from three complementary data sources:
MRI, PET, and gene expression. Given the sparsity assumption, we use region of interest (ROI) level
data rather than raw imaging data, as the latter might not be suitable for our method. MRI variables
include volumes, cortical thickness, and surface areas, while PET features represent standard uptake
value ratios (SUVR) of different ROIs. Gene expression variables are derived from blood samples
and represent expression levels at different gene probes. To reduce the number of gene expression
variables, we apply sure independence screening (SIS), narrowing it down to 300 variables. This
results in a total of 680 features, including 267 MRI features and 113 PET features. The data is
sourced from ADNI-2 at month 48, where block-wise missingness occurs due to factors such as
low-quality images or patient dropout. Using visit codes, we align MMSE with the imaging data
to ensure they are measured within the same month. Ultimately, we obtained two datasets: dataset
1 contains only MRI and PET sources, while dataset 2 includes MRI and gene expression sources.
Both datasets have relatively small sample sizes, underscoring the importance of effectively using
incomplete observations in the analysis.

A.5.2 IMPLEMENTATION DETAILS AND HYPERPARAMETER SETTING

In Section 4, we compare our proposed method (MTL-HMB) with Single Task Learning (STL) and
Heterogeneous Transfer Learning (HTL). Here, we provide the implementation details of these three
methods.

STL. For STL, we use standard deep neural networks to train each dataset individually. Each dataset
is split into 60% for training, 20% for validation, and 20% for testing. On the training set, we
perform hyperparameter tuning, including network width from {32, 64, 128}, depth from {2, 3, 4,
5}, and batch size from {8, 16, 32} (with 8 included due to the smaller sample size in the ADNI
database). Additionally, we set the learning rate to 0.001 and the early-stopping patience to 30. To
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stabilize the optimization during iterations, we use the exponential scheduler (Patterson & Gibson,
2017), which decays the learning rate by a constant per epoch. In all numerical tasks, we set the
decay constant to 0.95, applied every 200 iterations. We tune the hyperparameters and select the best
model on the validation set. Finally, the tuned hyperparameters are used to compute the prediction
loss on the testing set.

HTL. For HTL, we adapt the network architecture from Bica & van der Schaar (2022) and modify
it for our setting. Following their approach, the framework for handling heterogeneous feature
spaces consists of a common encoder for shared source and task-specific encoders for task-specific
sources, implemented using deep neural networks. The network widths are selected from {32,
64, 128} and depths from {2, 3, 4}. The remaining components are incorporated into an MTL
network architecture, similar to the structure described in Section 3.2, where shared and task-specific
pathways have depths chosen from {2, 3, 4}. The output dimensions of the first L − 1 layers are
selected from {32, 64, 128}, with the final layer predicting the corresponding response. The batch
size is chosen from {8, 16, 32}, and the learning rate is set to 0.001. To remain consistent with Bica
& van der Schaar (2022), we train the prediction loss on the training set, along with regularization
terms Rorth and Rdr. Early stopping and hyperparameter tuning are performed based on the sum of
the prediction losses across all datasets on the validation set, with an early-stopping patience of 30.
Finally, the tuned hyperparameters are used to compute the prediction loss on the testing set.

MTL-HMB. For the proposed MTL-HMB, we describe the method in two steps: Step 1 and Step
2. Step 1: In HBI, the common encoder, task-specific encoders, decoder, and predictor use network
architectures with widths selected from {8, 16, 32} and depths from {1, 2, 3}. The batch size is
chosen from {8, 16, 32}, and the learning rate is set to 0.001. Notably, since the features in our
simulated data exhibit relatively simple linear relationships, we include smaller network widths and
depths in our tuning. Step 2: To construct task-shared and task-specific mappings, the network
architecture for the shared encoder ϕc and the task-specific encoders ϕtp have widths selected from
{32, 64, 128} and depths from {2, 3, 4}. The output dimensions are also chosen from {32, 64, 128}.
For the prediction function, both shared and task-specific pathways have depths chosen from {2, 3,
4}, with the output dimensions of the first L− 1 layers selected from {32, 64, 128}. The final layer
predicts the corresponding response. The batch size is chosen from {8, 16, 32}, and the learning
rate is set to 0.001. Early stopping and hyperparameter tuning are conducted based on the sum of
the prediction losses across all datasets on the validation set, using an early-stopping patience of 30.
Finally, the tuned hyperparameters are applied to compute the prediction loss on the testing set.

A.6 DISCUSSION ABOUT LIMITATIONS AND FUTURE WORK

First, our proposed method essentially assumes that there is common information across all tasks
that can be fused, which implies a relatively strong shared structure. For example, in Section 3.2,
we assume the existence of a common mapping, ψc, between input features and responses for all
r ∈ [R]. However, in reality, when there is strong heterogeneity across multiple datasets, the shared
structure is often only partial. For instance, in three datasets, only two may share the common
ψc, while the third task may be too heterogeneous to fuse with the first two. In such cases, an
adaptive approach for MTL is needed, one that explores partially shared information among tasks
while preserving the uniqueness of the highly heterogeneous task. Currently, some studies have
considered adaptive MTL in relatively simple settings, such as linear cases (Duan & Wang, 2023;
Tian et al., 2023). However, adaptive MTL in the presence of block-wise, distribution, and posterior
heterogeneity remains unexplored, making it a meaningful direction for future research.

Moreover, it is worth noting that in both Section 3.1 (HBI) and Section 3.2 (MTL), the hidden rep-
resentations in each dataset are learned in two steps: the first step for imputation and the second
step for learning the response. This process introduces some computational redundancy. A possi-
ble improvement would be to combine these two steps into one, unifying multiple tasks to learn the
hidden representations for each task, which can then be used for both imputation and response learn-
ing. However, this approach poses computational challenges, such as how to balance different loss
functions to achieve both accurate imputation and prediction. Thus, this remains a future research
direction worth exploring.
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Algorithm 1 Pseudo-code for Our Proposed MTL-HMB.
1: Input: T datasets denoted by {xt

i, y
t
i}

nt
i=1, where xt

i includes two blocks xt
0,i and xt

t,i, learning
rate η, mini-batch size for the t-th dataset is denoted by Bt.

2: Step 1: HBI
3: for t = 1, . . . , T do ▷ Imputation for task t-specific source
4: Initialize: θt (all parameters in this step)
5: while not converged do
6: Sample mini-batch of Bt demonstrations from the t-th dataset {xt

i, y
t
i}

nt
i=1 and mini-

batch combination of B−t =
∑

s̸=tB
t demonstrations from the rest T − 1 datasets.

7: for i = 1, . . . , Bt do ▷ Process batch from the t-th dataset.
8: f t

i = Ec(x
t
0,i), g

t
i = Et

p(x
t
0,i)

9: end for
10: Compute prediction loss Lt

pre =
∑Bt

i=1 l(x
t
t,i, G(f

t
i ))

11: Compute reconstruction loss Lt
recon =

∑Bt

i=1 l(x
t
0,i, D(f t

i , g
t
i))

12: for i = 1, . . . , B−t do ▷ Process batch from the rest T − 1 datasets.
13: f−t

i = Ec(x
−t
0,i), g

−t
i = E−t

p (x−t
0,i)

14: end for
15: Compute reconstruction loss: L−t

recon =
∑B−t

i=1 l(x
−t
0,i, D(f−t

i , g−t
i ))

16: Parameter update θt ← θt − η∇θt(Lt
pre + Lt

recon + L−t
recon)

17: end while
18: for i = 1, . . . , B−t do
19: Imputation for task t-specific source: x̂−t

t,i = Ĝ(Êc(x
−t
0,i))

20: end for
21: end for
22: Obtain samples with reconstructed features {(xt

0,i, . . . , x̂
t
t−1,i,x

t
t,i, x̂

t
t+1,i, . . . , x̂

t
T,i), y

t
i)}

nt
i=1

23: Step 2: Heterogeneous MTL
24: Initialize: Θ (all parameters in this step)
25: while not converged do
26: for t = 1, . . . , T do
27: for i = 1 . . . Bt do ▷ Process batch from the r-th dataset.
28: ht

i = ϕc(x
t
0,i), k

t
i = ϕtp([x

t
0,i| · · · |x̂t

t−1,i|xt
t,i|x̂t

t+1| · · · |x̂t
T,i])

29: Set Ht = [ht
i · · ·ht

Bt ]⊤, Kt = [kt
i · · ·kt

Bt ]⊤

30: for l = 1 . . . L do
31: if l == 1 then
32: h̄t

l,i = ht
i, k̄

t
l,i = [ht

i|kt
i ]

33: else
34: h̄t

l,i = ht
l−1,i, k̄

t
l,i = [ht

l−1,i|kt
l−1,i]

35: ht
l,i = Shared Path(h̄t

l,i), k
t
l,i = Task Specific Patht(k̄t

l,i)
36: end if
37: end for
38: ŷti = gt([ht

L,i|kt
L,i])

39: end for
40: end for
41: Compute integration loss: Linteg =

∑T
t=1

∑Bt

i=1 l(y
t
i , ŷ

t
i)

42: Compute orthogonal regularizer for features: Rorth =
∑T

t=1 ∥(Ht)⊤Kt∥2F
43: Compute robust regularizer for imputation: Rimp =

∑T
t=1

∑
s ̸=0,t ∥Θt

s,p,1∥2F
44: Compute regularizater for redundancy: Rdr =

∑T
t=1

∑L
l=1 ∥(Θt

c,l)
⊤Θt

p,l,1:dr
c,l−1
∥2F

45: Parameters update:
46: Θ← Θ− η∇Θ(Linteg +Rorth +Rimp +Rdr)
47: end while
48: Output: Learnt parameters Θ

5
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