
Appendix

A Proof of Theorem 3.3

Before bounding the utility of DP-SGD, we first bound x(t) − x(0) in expectation. For simplicity, we
write fj(·) for f(·; sj) and F (·) for F (·;D) when there is no ambiguity.
Lemma A.1. Suppose Assumption 3.2 holds. Let Q be any orthogonal projection matrix with rank
r and suppose that ∥Q∇f(x; s)∥2 ≤ GQ for all x ∈ Rd and s ∈ S. If we set η ≤ 1

2α in DP-SGD,
then for all t > 0, we have

E ∥Q(x(t) − x(0))∥22 ≤
4G2

Q

α2
+

2ηG2
0

α
(1 + rσ2).

Proof of Lemma A.1. By the assumption, we know ∥Q∇F (x)∥2 ≤ GQ and ∥∇F (x)∥2 ≤ G0. Let
z(t) = x(t) − x(0). Note that

z(t+1) = x(t+1) − x(0)

= x(t) − η
(
∇fj(x

(t)) + α(x(t) − x(0)) +G0 · ζ
)
− x(0)

= (1− αη)z(t) − η(∇fj(x
(t)) +G0 · ζ),

where ζ ∼ N (0, σ2Id) is the isotropic Gaussian noise drawn in (t+ 1)th step. For simplicity, we use
∇̃fj(x

(t)) to denote the noisy subgradient ∇fj(x
(t)) +G0 · ζ. Hence, we have

∥Qz(t+1)∥22 = (1− αη)2∥Qz(t)∥22 − 2η(1− αη)(Qz(t))⊤Q∇̃fj(x
(t)) + η2∥Q∇̃fj(x

(t))∥22.

Taking expectation over the random sample fj and random Gaussian noise ζ, we have

E ∥Qz(t+1)∥22 =(1− αη)2 E ∥Qz(t)∥22 − 2η(1− αη) · E
(
(Qz(t))⊤(Q∇F (x(t)))

)
+ η2 E ∥Q∇̃fj(x

(t))∥22
≤(1− αη)E[∥Qz(t)∥22] + 2ηGQ · E[∥Qz(t)∥2] + η2G2

0(1 + rσ2),

where we used the fact that ζ has zero mean, ∥∇fj(x
(t))∥2 ≤ G0, ∥Q∇F (x(t))∥2 ≤ GQ and

η ≤ 1
2α . Further simplifying and taking expectation over all iterations, we have

E ∥Qz(t+1)∥22 ≤ (1− αη)E ∥Qz(t)∥22 + 2η(
α

4
E ∥Qz(t)∥22 +

1

α
G2

Q) + η2G2
0(1 + rσ2)

≤ (1− αη

2
)E ∥Qz(t)∥22 +

2η

α
G2

Q + η2G2
0(1 + rσ2). (5)

Using that z(0) = 0 we know E ∥Qz(0)∥22 = 0. Solving the recursion (Equation (5)) gives

E ∥Qz(t)∥22 ≤ 2

αη
(
2η

α
G2

Q + η2G2
0(1 + rσ2))

for all t. This proves the result.

Now, we are ready to bound the utility. The proof builds off the standard mirror descent proof.

Lemma A.2. Let δ ∈ (0, 1
2 ], and ε ∈ (0, 10]. Under Assumption 3.2, let x(0) be the initial iterate

and x∗ = argminx F (x). Suppose ∥x(0) − x∗∥2 ≤ D. For any positive integer k ≤ d, setting

T = Θ(n2 + d log2 d), σ = Θ

(√
T log(1/δ)

nε

)
, η =

√
D2

T ·G2
0·kσ2 and α = 1

D

√∑S
s=1 s

22sG2
2s−1k,

we have

E[F (x)− F (x∗)] ≲
G0D

√
k log(1/δ)

εn
+D

√√√√ S∑
s=1

s22sG2
2s−1k,

16



where S = ⌊log(d/k)⌋+ 1, x is the output of DP-SGD, and the expectation is under the randomness
of DP-SGD.

Moreover, if Gk ≤ G0k
−c for each k for some c > 1/2, and in addition n > ε−1

√
log(1/δ), picking

the best k ∈ [d] for the bound above gives

E[F (x;D)− F (x∗;D)] ≲ G0D ·

(√
log(1/δ)

εn

)2c/(1+2c)

.

Proof of Lemma A.2. Fix a positive integer 1 ≤ k ≤ d. Our key idea is to split the whole space Rd

into different subspaces. We define the following set of subspaces:

• U0 = range(Pk).

• For s = 1, 2, . . . , ⌊log(d/k)⌋, let Us ⊆ range(P2sk) be a subspace with maximal dimension
such that Us⊥Ui for all i = 0, . . . , s− 1.

• For S = ⌊log(d/k)⌋ + 1, let US ⊆ Rd be the subspace such that
⊕S

i=0 Ui = Rd, and
US⊥Ui for all i = 0, . . . , S − 1.

Recall Pi is the orthogonal projection matrix with rank i that gives rise to Gi in Assumption 3.2. In
the above, we have assumed that the base of log is 2.

Let Qs be the orthogonal projection matrix that projects vectors onto the subspace Us. Note that
rank(Qs) ≤ 2sk since Us ⊆ range(P2sk).

Moreover, it’s clear that Us⊥range(P2s−1k) for all s ∈ {1, . . . , S}. This is because by construction⊕s−1
i=0 Ui ⊇ range(P2s−1k), and that Us⊥

⊕s−1
i=0 Ui.

Thus,

∥Qs∇F (x)∥2 = ∥Qs(I − P2s−1k)∇F (x)∥2 ≤ ∥Qs∥op ∥(I − P2s−1k)∇F (x)∥2 ≤ G2s−1k (6)

for all x ∈ Rd and all s ∈ {1, . . . , S}.

Let j ∈ [n] be the (uniformly random) index sampled in iteration t of DP-SGD. By convexity of the
individual loss fj ,

fj(x
(t))− fj(x

∗) ≤ ∇fj(x
(t))⊤(x(t) − x∗).

By construction, Rd is the orthogonal direct sum of the subspaces {Uj}Sj=0, and thus any vector
v ∈ Rd can be rewritten as the sum

∑S
i=0 Qiv. We thus split the right hand side of the above as

follows

fj(x
(t))− fj(x

∗) ≤

(
Q0∇fj(x

(t)) +

S∑
s=1

Qs∇fj(x
(t))

)⊤

(x(t) − x∗). (7)

We use different approaches to bound (Q0∇fj(x
(t)))⊤(x(t) − x∗) and (Qs∇fj(x

(t)))⊤(x(t) − x∗)
when s ≥ 1, and we discuss them separately in the following.

Term one: Bound (Q0∇fj(x
(t)))⊤(x(t) − x∗). Recall that

x(t+1) = x(t) − η
(
∇fj(x

(t)) + α(x(t) − x(0)) +G0 · ζ
)

for some Gaussian ζ ∼ N (0, σ2Id). Hence, we have

(∇fj(x
(t)))⊤Q0(x

(t) − x∗)

=

(
1

η
(x(t) − x(t+1))− α(x(t) − x(0))−G0 · ζ

)⊤

Q0(x
(t) − x∗)

=

(
1

η
Q0(x

(t) − x(t+1))

)⊤

Q0(x
(t) − x∗)−

(
α(x(t) − x(0)) +G0 · ζ

)⊤
Q0(x

(t) − x∗)

17



=
1

2η

(
∥Q0(x

(t) − x∗)∥22 − ∥Q0(x
(t+1) − x∗)∥22 + ∥Q0(x

(t) − x(t+1))∥22
)

−
(
α(x(t) − x(0)) +G0 · ζ

)⊤
Q0(x

(t) − x∗), (8)

where we used the fact that Q2
0v = Q0v for any v ∈ Rd (since Q0 is a projection matrix), and the

last equality follows from that

2(Q0(x
(t) − x(t+1)))⊤Q0(x

(t) − x∗)

=∥Q0(x
(t) − x∗)∥22 − ∥Q0(x

(t+1) − x∗)∥22 + ∥Q0(x
(t) − x(t+1))∥22.

Taking expectation on ζ over both sides of Equation (8) and making use of the fact that ζ has mean 0,
we have

E
ζ
(Q0∇fj(x

(t)))⊤(x(t) − x∗)

=
1

2η

(
E
ζ
∥Q0(x

(t) − x∗)∥22 − E
ζ
∥Q0(x

(t+1) − x∗)∥22 + E
ζ
∥Q0(x

(t) − x(t+1))∥22
)

− αE
ζ

(
(x(t) − x(0))⊤Q0(x

(t) − x∗)
)
.

Recalling the definition of Q0 and that Q0 has rank at most k, one has

E
ζ
∥Q0(x

(t) − x(t+1))∥22 = η2 E
ζ
∥Q0

(
∇fj(x

(t)) + α(x(t) − x(0)) +G0 · ζ
)
∥22

= η2 E
ζ
∥Q0

(
∇fj(x

(t)) + α(x(t) − x(0))
)
∥22 + η2G2

0kσ
2

≤ 2η2G2
0(1 + kσ2) + 2η2α2 E

ζ
∥Q0(x

(t) − x(0))∥22.

Moreover, one has

− α(x(t) − x(0))⊤Q0(x
(t) − x∗)

= − α(x(t) − x(0))⊤Q0(x
(t) − x(0))− α(x(t) − x(0))⊤Q0(x

(0) − x∗)

≤ − α

2
∥Q0(x

(t) − x(0))∥22 +
α

2
∥Q0(x

(0) − x∗)∥22.

Hence, we have

E
ζ
(Q0∇fj(x

(t)))⊤(x(t) − x∗)

≤ 1

2η

(
E
ζ
∥Q0(x

(t) − x∗)∥22 − E
ζ
∥Q0(x

(t+1) − x∗)∥22
)
+ ηG2

0(1 + kσ2)

+ ηα2 E
ζ
∥Q0(x

(t) − x(0))∥22 −
α

2
E
ζ
∥Q0(x

(t) − x(0))∥22 +
α

2
E
ζ
∥Q0(x

(0) − x∗)∥22

≤ 1

2η

(
E
ζ
∥Q0(x

(t) − x∗)∥22 − E
ζ
∥Q0(x

(t+1) − x∗)∥22
)
+ ηG2

0(1 + kσ2) +
α

2
E
ζ
∥Q0(x

(0) − x∗)∥22,

where we used η ≤ 1
2α at the end.

Term two: Bound (Qs∇fj(x
(t)))⊤(x(t) − x∗). We bound the objective above for each s separately.

By taking expectation over the random fj , we have

E
fj
(Qs∇fj(x

(t)))⊤(x(t) − x∗) = (Qs∇F (x(t)))⊤(x(t) − x∗)

≤ ∥Qs∇F (x(t))∥2 · ∥Qs(x
(t) − x∗)∥2

≤ 1

αs
∥Qs∇F (x(t))∥22 +

αs

4
∥Qs(x

(t) − x∗)∥22

≤
G2

2s−1k

αs
+

αs

2
∥Qs(x

(t) − x(0))∥22 +
αs

2
∥Qs(x

(0) − x∗)∥22,

18



where we chose αs = αs−22−s and used the bound (6) and Young’s inequality at the end.

Combination: Combining both terms into (7) and taking expectation over all randomness, we have

E[F (x(t))− F (x∗)]

≤ 1

2η
(E ∥Q0(x

(t) − x∗)∥22 − E ∥Q0(x
(t+1) − x∗)∥22) + ηG2

0(1 + kσ2) +
α

2
E ∥Q0(x

(0) − x∗)∥22

+

S∑
s=1

G2
2s−1k

αs
+

1

2

S∑
s=1

αs E ∥Qs(x
(t) − x(0))∥22 +

1

2

S∑
s=1

αs E ∥Qs(x
(0) − x∗)∥22

≤ 1

2η
(E ∥Q0(x

(t) − x∗)∥22 − E ∥Q0(x
(t+1) − x∗)∥22) + ηG2

0(1 + kσ2) +
α

2
∥x(0) − x∗∥22

+

S∑
s=1

G2
2s−1k

αs
+

1

2

S∑
s=1

αs E ∥Qs(x
(t) − x(0))∥22.

Recall α · η ≤ 1/2. Under the other assumptions, by Lemma A.1, one can show

E ∥Qs(x
(t) − x(0))∥2 ≤

4G2
2s−1k

α2
+

2ηG2
0

α
(1 + 2skσ2)

≤
4G2

2s−1k

α2
s

+
2ηG2

0

αss2
(1 + kσ2).

Using
∑∞

s=1 s
−2 ≤ 2, we have

EF (x(t))− EF (x∗)

≤ 1

2η
(E ∥Q0(x

(t) − x∗)∥22 − E ∥Q0(x
(t+1) − x∗)∥22) +

α

2
∥x(0) − x∗∥2

+ ηG2
0(1 + kσ2) + 3

S∑
s=1

G2
2s−1k

αs
+ 2ηG2

0(1 + kσ2)

≤ 1

2η
(E ∥Q0(x

(t) − x∗)∥22 − E ∥Q0(x
(t+1) − x∗)∥22) +

α

2
∥x(0) − x∗∥22

+ 3ηG2
0(1 + kσ2) +

3

α

S∑
s=1

s22sG2
2s−1k.

Summing up over t = 1, 2, · · · , T , by the assumption that ∥x(0) − x∗∥2 ≤ D and convexity of the
function, we have

E[F (x)− F (x∗)] ≤ D2

2ηT
+ 3ηG2

0(1 + kσ2) +
α

2
D2 +

3

α

S∑
s=1

s22sG2
2s−1k. (9)

Set the parameters T = c1(n
2 + d log2 d), σ =

c2
√

T log(1/δ)

nε , η =
√

D2

T ·G2
0·kσ2 and α =

1
D

√∑S
s=1 s

22sG2
2s−1k for some large constants c1, c2. Note that this choice of parameters sat-

isfies the condition of

η · α =

√
D2

T ·G2
0 · kσ2

·

√∑S
s=1 s

22sG2
2s−1k

D

≤

√
G2

0(2d) log
3(2d)

T ·G2
0 · kσ2

=
nε

c2T

√
(2d) log3(2d)

k · log(1/δ)

≤
nε
√

(2d) log3(2d)

c2T
≤ 1

2
,

19



where we used the fact that Gk ≤ G0, s ≤ S ≤ log(2d) , T ≥ n2 + d log2 d, and c2 is large enough.

Using the parameters we pick, we have

E[F (x)− F (x∗)] ≲
G0D

√
k log(1/δ)

εn
+D

√√√√ S∑
s=1

s22sG2
2s−1k

Moreover, assuming Gk ≤ G0k
−c for some c > 1/2, we have

√∑
s s

22sG2
2s−1k ≲ G0/k

c. Hence,

E[F (x)− F (x∗)] ≲
G0D

√
k log(1/δ)

εn
+

G0D

kc
.

Since the above bound holds for all k ∈ {1, . . . , d}, we may optimize it with respect to k. Recall by
assumption that n ≥ ε−1

√
log(1/δ). Letting

k = min

d,


(

εn√
log(1/δ)

) 2
1+2c




yields the bound

E[F (x;D)− F (x∗;D)] ≲ G0D ·

(√
log(1/δ)

εn

)2c/(1+2c)

.

Combining the privacy guarantee in Lemma 2.4 and Lemma A.2 directly results in Theorem 3.3.

B Proof of Theorem 3.5

We study the generalization error of DP-SGD. Similar to previous works, we make use of the stability
of DP-SGD to bound its generalization error. The bound on the excess population loss follows from
combining bounds on the excess empirical loss and the generalization error. Before stating the proof,
we first recall two results in the literature.
Lemma B.1 ([BE02, Lemma 7]). Given a learning algorithm A, suppose the dataset D =
{s1, · · · , sn} is made up of n i.i.d. samples drawn from the underlying distribution P , and we
replace one random sample in D with a freshly sampled s′ ∼ P and get a new neighboring dataset
D′. One has

E
D,A

[F (A(D);P)− F (A(D);D)] = E
D,s′∼P,A

[f(A(D); s′)− f(A(D′); s′)],

where A(D) is the output of A with input D.

Lemma B.2 ([BFGT20, Theorem 3.3]). Suppose Assumption 3.2 holds, running DP-SGD with step
size η on any two neighboring datasets D and D′ for T steps satisfies that

E [∥x− x′∥2] ≤ 4G0η

(
T

n
+

√
T

)
,

where x and x′ are the outputs of DP-SGD with datasets D and D′, respectively.

Proof of Theorem 3.5. Let x and x′ be the outputs of DP-SGD when applied to the datasets D and
D′, respectively. D′ is a neighbor of D with one example replaced by s′ ∼ P that is independently
sampled. Combining Lemma B.1 and Lemma B.2 yields

E[F (x;P)− F (x;D)] = E[f(x; s′)− f(x′; s′)]

≤ E[G0∥x− x′∥2]

20



≤ 4G2
0η

(
T

n
+
√
T

)
.

Similar to the DP-ERM case, by setting T = c1(n
2 + d log2 d), σ =

c2
√

T log(1/δ)

nε , η =√
D2

T ·G2
0(T/n+kσ2)

and α = 1
D

√∑S
s=1 s

22sG2
2s−1k for some large positive constants c1 and c2,

we conclude that η · α ≤ 1/2. Hence, Equation (9) shows that, for any fixed dataset D and any x∗

such that
∥∥x(0) − x∗

∥∥
2
≤ D, we have

E[F (x;D)− F (x∗;D)] ≤ D2

2ηT
+ 3ηG2

0(1 + kσ2) +
α

2
D2 +

3

α

S∑
s=1

s22sG2
2s−1k.

We can therefore rewrite the population loss as follows

E[F (x;P)− F (x∗;P)]

= E[F (x;P)− F (x;D)] + E
D
[F (x;D)− F (x∗;D)]

≤ 4G2
0η

(
T

n
+
√
T

)
+

D2

2ηT
+ 3ηG2

0(1 + kσ2) +
α

2
D2 +

3

α

S∑
s=1

s22sG2
2s−1k.

Substituting in the values for parameters T , σ, η, and α yields

E[F (x;P)− F (x∗;P)] ≲
G0D√

n
+

G0D
√
k log(1/δ)

εn
+D

√√√√ ∞∑
s=1

s22sG2
2s−1k

for all positive integers k ≤ d.

Similarly, if we have Gk ≤ G0k
−c for some c > 1/2, and in addition n > ε−1 log(1/δ), it

immediately follows that

E[F (x;P)−min
x

F (x;P)] ≲
G0D√

n
+G0D ·

(√
log(1/δ)

εn

)2c/(1+2c)

.

This completes the proof.

21



C Protocol for Synthetic Example Experiments in Section 4.1

We detail the construction of the synthetic example in Section 4.1. The training and test sets of this
example both have ntrain = ntest = 10000 instances. Each instance xi is sampled from a distribution
where the first dmin = 10 coordinates are all multi-variate normal distributions with mean and
standard deviation both being 1. All remaining coordinates are constantly 0. This ensures the optimal
non-private training losses for problems of different dimensions are the same.

D Protocol and Additional Fine-Tuning Experiments for Section 4.2

D.1 Experimental Protocol

For experiments in Section 4.2, we fine-tuned the DistilRoBERTa model with (8, 1/n1.1)-DP on the
SST-2 training set with n ≥ 60000 examples and measured performance on the companion dev set.
We used the exact set of hyperparameters presented in [LTLH21] for this task. We repeated our
re-training experiments over five independent random seeds. Fine-tuning for 3 epochs on this task
takes 10 minutes on an A100-powered machine with sufficient RAM and CPU cores.

Our spectral analysis relies on running the orthogonal iteration algorithm on the set of collected
gradients along the private fine-tuning trajectory [Dem97].4 Unlike other numerical algorithms for
estimating eigenvalues of a matrix, orthogonal iteration provably produces the set of eigenvalues that
are largest in absolute value (and corresponding eigenvectors, if the underlying matrix is normal) in
the limit.5 Recall that we needed the top eigenvectors for projection in our re-training experiment.6
By default, we run orthogonal iteration for ten iterations. We show in the following that our results are
insensitivity to the number of iterations used in the orthogonal iteration algorithm. Each orthogonal
iteration takes 10 minutes on an A100-powered machine with r = 4000 gradient samples and
k = 1000 principal components for the DistilRoBERTa experiments.

D.2 Robustness of Results

Robustness to the number of orthogonal iterations. The orthogonal iteration algorithm is a
generalization of the power method that simultaneously produces estimates of multiple eigenvalues.
Its convergence is known to be sensitivity to the gap between successive eigenvalues. The algorithm
converges slowly if consecutive eigenvalues (with the largest absolute values) are close in absolute
value. To confirm that our results aren’t sensitivity to the choice of the number of iterations, we
visualize the top 500 eigenvalues for the orthogonal iteration algorithm is run for different number of
updates. Figure 3 shows that the linear fit to the top 500 eigenvalues remains stable across different
number of orthogonal iterations T . Notably, T = 10 produces similar results as T = 100. These
results were obtained with r = 4000 gradients.

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.5890logx + 0.29 (R2 = 0.988)

(a) T = 10

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.5894logx + 0.29 (R2 = 0.989)

(b) T = 50

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.5894logx + 0.29 (R2 = 0.989)

(c) T = 100

Figure 3: The eigenspectrum remains stable with different number of iterations T .

4By gradients, we always mean the average of clipped per-example gradients — before adding noise — in
this section.

5The orthogonal iteration algorithm is also known as simultaneous iteration or subspace iteration.
6Note that one commonly used algorithm in the neural net spectral analysis literature — Lanczos itera-

tion [GKX19] — does not guarantee that the top eigenvalues are produced, even though its spectral estimates
are frequently deemed accurate [GWG19].

22



Robustness to the number of gradient samples. We further ran experiments with different
numbers of gradient samples r collected along the fine-tuning trajectory, and plot the top 500
eigenvalues. Figure 4 shows that while the slope and intercept of the fitted line in log-log space
changes, the change is moderate. Notably, the decaying trend of the top eigenvalues remains stable.

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.6108logx 0.18 (R2 = 0.976)

(a) r = 1000

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.5890logx + 0.29 (R2 = 0.988)

(b) r = 4000

Figure 4: The fast decaying trend of the eigenspectrum remains stable with different number of
samples r used for the spectral analysis.

Robustness to the gradient sampling strategy. We observe that gradients at the beginning of
fine-tuning tend to be larger in magnitude than gradients collected later on along the optimization
trajectory. To eliminate the potential confounder that the top principal components are solely formed
by the initial few gradients evaluated during fine-tuning, we re-ran the spectral analysis experiment
without the initial gradients. Specifically, we performed PCA for the gradients evaluated from step
300 to step 1300 during private fine-tuning, and compared the distribution of top eigenvalues returned
from this setup to when we used the first 1000 gradients. Note the dev set accuracy converged to
≈ 90% by step 200. Figure 5 shows that while the slope and intercept of linear fits are slightly
different in the new setup compared to the old setup (when all gradients along the fine-tuning
trajectory were used for PCA), that the eigenvalues follow a rapidly decaying trend remains true
under both setups.

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.6108logx 0.18 (R2 = 0.976)

(a) Gradients at iterations 0 to 1000

10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.5310logx 0.66 (R2 = 0.983)

(b) Gradients at iterations 300 to 1300

Figure 5: The rapidly decaying trend of the eigenspectrum remains stable with different sampling
strategies.

Robustness to model size. In previous experiments, we empirically verified that gradients for
fine-tuning DistilRoBERTa are near low rank. Here, we show that similar observations also hold
for Roberta-base and Roberta-large when fine-tuning only the attention layers. The former setup
has approximately 14 million trainable parameters, while the latter has approximately 50 million.
Figures 6 and 7 illustrate these results.

23



100 101 102

k

10 3

10 2
(H

H
)1/

2

estimated values
linear fit: log y = 0.53log x 3.68 (R2 = 0.983)

(a) singular values decay with rank

0 50 100 150 200 250
iteration

0.80

0.82

0.84

0.86

0.88

0.90

0.92

SS
T-

2 
cla

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (d

ev
)

subspace rank=10
subspace rank=20
subspace rank=100
original

(b) retrain in fixed subspace

Figure 6: Experiments for Roberta-base.

100 101 102

k

10 2

(H
H

)1/
2

estimated values
linear fit: log y = 0.63log x 3.77 (R2 = 0.948)

(a) singular values decay with rank

0 50 100 150 200 250
iteration

0.82

0.84

0.86

0.88

0.90

0.92

0.94

SS
T-

2 
cla

ss
ifi

ca
tio

n 
ac

cu
ra

cy
 (d

ev
)

subspace rank=10
subspace rank=20
subspace rank=100
original

(b) retrain in fixed subspace

Figure 7: Experiments for Roberta-large.

Non-robustness to fine-tuning strategy. Recall our fine-tuning experiments for classification was
based on the template-completion formulation detailed in [LTLH21]. As opposed to framing the task
as integer label prediction, this formulation requires the model to predict one of K candidate tokens
to fill in a templated prompt for a K-way classification problem. While we have also performed the
experiment where we re-train in the subspace of top principal components under the usual fine-tuning
setup (stack a randomly initialized prediction head on top of the embedding of the [CLS] token), we
found it difficult to recover the original fine-tuning performance when gradients are projected onto
the top eigen-subspace with d = 100 dimensions. Retraining performance exhibited high variance
and the final dev accuracy was bi-modal over random seeds with near guess accuracy (≈ 50%) and
original accuracy (≈ 90%) being the two modes. We suspect this to be caused by the linear prediction
head being randomly initialized.

D.3 Additional Fine-Tuning Experiments with DistilGPT-2 for Generation Tasks

Experiments in Section 4.2 demonstrated that gradients from fine-tuning for classification are mostly
controlled by a few principal components. In this section, we show that similar observations hold
for fine-tuning on a text generation task. We follow the setup and hyperparameters in [LTLH21] for
privately fine-tuning DistilGPT-2 on the E2E dataset [NDR17] under (8, 1/n1.1)-DP. We fine-tune all
weight matrices in attention layers that produce the queries, values, and keys. This amounts to fine-
tuning approximately 10.6 million parameters of a model with a total parameter count of more than
100 million. We again collected r = 4000 gradients evaluated during private fine-tuning, performed
PCA, and conducted the eigenspectrum analysis. Figure 8 shows that the top eigenspectrum decays
rapidly with a rate similar to what is observed in fine-tuning for the classification problem we studied.

24



10
0

10
1

10
2

k

10
1

10
0

(H
H

)1/
2

estimated values
linear fit: logy = 0.5935logx + 1.39 (R2 = 0.985)

Figure 8: The eigenspectrum of gradients from fine-tuning for text generation rapidly decays.

25


