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A Proof of Theorem 1

Theorem A.1. (Convergence) Suppose that Assumptions 1, 2, 3, and 4 hold, and we set a decaying learning
rate ÷t = 2

µ(t+“) , where “ = max
Ó

8L
µ , E

Ô
and any ‘t Ø 0. The expected error following T total local iterations

(equivalent to T/E communication rounds) for FedALIGN under full device participation satisfies

E[F (wT )] ≠ F
ú Æ 1

T + “
(C1 + C2◊T �) + flT , (10)

where ◊T œ [0, 1] and flT can be adjusted by selecting an appropriate ‘t in each time step (flT and ◊T are
defined after the theorem statement). Here, C1 and C2 are constants given by

C1 := 2L

µ2
!
‡

2 + 8(E ≠ 1)2
G

2"
+ 4L

2

µ
Îw0 ≠ wúÎ2

, C2 := 12L
2

µ2 .

Here the terms ◊T and flT are defined as

◊T = 1
T + “ ≠ 2

T ≠1ÿ

i=1
E

5
1

1 +
q

k /œP pkIk,·(i)

6
, (11)

and

flT := 2L

µ(T + “ ≠ 2)

T ≠1ÿ

i=1
E

5 q
k /œP pkIk,·(i)�k

1 +
q

k /œP pkIk,·(i)

6
. (12)

We analyze FedALIGN in the full device participation setting here. The proof skeleton here follows Cho et al.
(2020), but considering a selection criteria for non-priority clients in each communication round requires novel
analysis.

A.1 Some definitions and preliminaries

First we define the re-normalized data fraction as

p
Õ
k(t) := pk

1 +
q

k /œP pkIk,·(t)
. (13)

Generally, p
Õ
k(t) is a random variable, dependent on (‘·(t), ·(t)), and can assume a distinct value in each

communication round. In the proof, we sometimes express p
Õ
k(t) as p

Õ
k, which is a minor notational liberty.

Note that our aggregation rule is as follows: During every communication round, the global model w·(t)
aggregates the weighted sum of the local models, renormalized by total data contributed by all clients included
in that communication round. This update is given by

w·(t) Ω 1
1 +

q
k ”œP pkIk,·(t)

A
ÿ

kœP
pkwk

·(t) +
ÿ

k /œP

pkwk
·(t)Ik,·(t)

B
.

This aggregated expression rewritten in terms of p
Õ
k has the following form:

ÿ

kœP
p

Õ
kwk

·(t) +
ÿ

k /œP

p
Õ
kwk

·(t)Ik,·(t). (14)

This motivates us to define a “virtual” sequence

wt =
ÿ

kœP
p

Õ
kwk

t +
ÿ

k /œP

p
Õ
kwk

t Ik,·(t), (15)
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which intuitively captures an aggregation (if it happens) in every local round. The value of wt is indeed
the aggregated global model when t corresponds to a communication round. Now, define the aggregated
stochastic gradients as

gt =
Nÿ

k=1
p

Õ
kÒFk(wk

t , ›t)Ik,·(t), (16)

and the aggregated gradients as

gt =
Nÿ

k=1
p

Õ
kÒFk(wk

t )Ik,·(t), (17)

where above, for ease of analysis, we redefine Ik,·(t) to be

Ik,·(t) := 1{|Fk

!
wk

t

"
≠ F

!
wk

t

"
| < ‘t, or k is the index of a priority client}. (18)

This definition also allows us to rewrite wt as

wt :=
Nÿ

k=1
p

Õ
kwk

t Ik,·(t). (19)

Both definitions are equivalent, and we will use either definition as required. We also use E to mean
expectation over all sources of randomness for a fixed time t, while E·|pÕ

k
,Ik,·(t)’k refers to the conditional

expectation, conditioned on random variables (pÕ
k, Ik,·(t)’k).

We now state some preliminary lemmas. We state more directly relevant lemmas in the next section.
Lemma A.2. (Gradient is L-close to its minima) If Fk is L-smooth with global minimum value F

ú
k , then for

any wk, we have

ÎÒFk(wk)Î2 Æ 2L(Fk(wk) ≠ F
ú
k ). (20)

Proof. By definition of L-smoothness, we have

F
ú
k Æ Fk(v) Æ Fk(wk) + (v ≠ wk)T ÒFk(wk) + L

2 Îv ≠ wkÎ2
.

Since this is true for any v, one can set v = wk ≠ (1/L)ÒFk(wk). This gives us

F
ú
k Æ F (wk) ≠ 1

L
[ÒFk(wk)]T ÒFk(wk) + 1

2L
ÎÒFk(wk)Î2 = Fk(wk) ≠ 1

2L
ÎÒFk(wk)Î2

,

or

ÎÒFk(wk)Î2 Æ 2L(Fk(wk) ≠ F
ú
k ). (21)

Lemma A.3. (Aggregated model is closer to wú than local models) Given local models wk
t and the global

minima wú of F (·),

E
#
Îwt ≠ wúÎ2$

Æ E
Nÿ

k=1
p

Õ
kIk,·(t)E.|pÕ

k
Ik,·(t)Îwk

t ≠ wúÎ2
. (22)

Proof. The lemma follows because

E
#
Îwt ≠ wúÎ2$

= E

S

U
.....

Nÿ

k=1
p

Õ
kIk,·(t)wt

k ≠ wú

.....

2T

V (a)= E

S

U
.....

Nÿ

k=1
p

Õ
kIk,·(t)(wt

k ≠ wú)

.....

2T

V

Æ E
nÿ

k=1
p

Õ
kIk,·(t)Ik,·(t)Îwk

t ≠ wúÎ2 Æ E
nÿ

k=1
p

Õ
kIk,·(t)E.|pÕ

k
Ik,·(t)Îwk

t ≠ wúÎ2
, (23)

where (a) is because
qN

k=1 p
Õ
kIk,·(t) = 1, from the definitions of p

Õ
k and Ik,·(t).
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Lemma A.4. (Average discrepancy caused by local updates.) Given Assumption 4, for ÷·(t) Æ 2÷t and all
t ≠ ·(t) Æ E ≠ 1, we have

E
Nÿ

k=1
p

Õ
kÎwk

t ≠ wtÎ2
Ik,·(t) Æ 4÷

2
t (E ≠ 1)2

G
2
. (24)

Proof. We have that

E
Nÿ

k=1
p

Õ
kÎwk

t ≠ wtÎ2
Ik,·(t) = E

Nÿ

k=1
p

Õ
k

..!
wk

t ≠ w·(t)
"

≠
!
wt ≠ w·(t)

"..2
Ik,·(t)

(a)
Æ E

Nÿ

k=1
p

Õ
kÎwk

t ≠ w·(t)Î2
Ik,·(t)

(b)
Æ E

Nÿ

k=1
p

Õ
kIk,·(t)E·|pÕ

k
,Ik,·(t)

Q

a
·(t)+E≠1ÿ

i=·(t)
(E ≠ 1)÷2

i ÎÒFk(wk
i )Î2

R

b

(c)
Æ E

Nÿ

k=1
p

Õ
kIk,·(t)

·(t)+E≠1ÿ

i=·(t)
(E ≠ 1)÷2

i G
2

(d)
Æ E

Nÿ

k=1
p

Õ
kIk,·(t) (E ≠ 1)2

÷
2
·(t)G

2

(e)
Æ 4÷

2
t (E ≠ 1)2

G
2
, (25)

where (a) is due to the definition wt and the fact that (for vectors ak)
Nÿ

k=1
Îak ≠ āÎ2 Æ

Nÿ

k=1
ÎakÎ2

,

where ā is a weighted average of the ak’s, (b) is due to the fact that when t ≠ ·(t) Æ E ≠ 1

Îwk
t ≠ w·(t)Î2 =

......

tÿ

i=·(t)
ÒF (wk

i )

......

2

Æ
tÿ

i=·(t)
(E ≠ 1)÷2

i ÎÒFk(wk
i )Î2

Æ
·(t)+E≠1ÿ

i=·(t)
(E ≠ 1)÷2

i ÎÒFk(wk
i )Î2

,

(c) is due to Assumption 4, (d) is because ÷t is non-increasing and (e) is because ÷·(t) Æ 2÷t.

Lemma A.5. (SGD variance bound) Given Assumption 3,

EÎgt ≠ gtÎ2 Æ ‡
2
. (26)

Proof. First we notice that

EÎgt ≠ gtÎ2 = E
.....

Nÿ

k=1
p

Õ
kIk,·(t)(ÒF (wk

t ; ›
k
t ) ≠ ÒF (wk

t ))

.....

2

Æ E
Nÿ

k=1
p

Õ
k

2
Ik,·(t)E·|pÕ

k
,Ik,·(t)ÎÒF (wk

t ; ›
k
t ) ≠ ÒF (wk

t )Î2

(a)
Æ ‡

2E
Nÿ

k=1
p

Õ
k

2
Ik,·(t)

(b)
Æ ‡

2
, (27)
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where (a) is due to Assumption 3 and (b) is because p
Õ
k Æ 1 and

qN
k=1 p

Õ
kIk,·(t) = 1.

Notice that in Lemma A.5, if one instead has individual variance bounds of ‡
2
k, one can also extend this

lemma to obtain

EÎgt ≠ gtÎ2 Æ E
Nÿ

k=1
p

Õ
k

2
‡

2
k (28)

in a straightforward manner. If required, the subsequent analysis can be easily extended to this case.

A.2 One-step SGD

Lemma A.6. (One step SGD) Assume Assumptions 1, 2, 3 and 4. If ÷t Æ 1
4L and wú is the global optimum

of objective F (.), then

EÎwt+1 ≠ wúÎ2 Æ (1 ≠ ÷tµ)EÎwt ≠ wúÎ2 + ÷
2
t Bt + ÷tDt, (29)

where

Bt := 8(E ≠ 1)2
G

2 + 6L�E
53

1
1 +

q
k /œP pkIk,·(t)

46
+ ‡

2

Dt = 2E
5 q

k /œP pkIk,·(t)�k

1 +
q

k /œP pkIk,·(t)

6

� := F
ú ≠

ÿ

kœP
pkF

ú
k , �k := Fk(wú) ≠ F

ú
k . (30)

We prove this lemma in the next section. Now define �t = EÎwt ≠ wúÎ2
. We assume a diminishing step-size

÷t = 2
µ(t+“) , with ÷1 Æ min

1
1

4L ,
1
µ

2
and ÷t Æ 2÷t+E (The choice of “ guarantees this condition). We can prove

that �t Æ vt
“+t by induction, where vt =

1
4

µ2 Bt + 2
µ Dt(t + “) + “�0

2
, where (if we pick “ = max{ 8L

µ , E})

B0, B1 = 0, Bt = 1
t + “ ≠ 2

t≠1ÿ

i=1
Bi ’t Ø 2,

D0, D1 = 0, Dt = 1
t + “ ≠ 2

t≠1ÿ

i=1
Dt ’t Ø 2. (31)

We proceed via induction on the number of time steps t.

Base case. When t = 0,

�0 Æ v0
“

= �0, (32)

from the definition of vt.
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Inductive step. Assume �t Æ vt
“+t . Then for t + 1, due to Lemma A.6

�t+1 Æ
3

1 ≠ 2
t + “

4
�t + 4

µ2(t + “)2 Bt + 2
µ(t + “)Dt

(a)
Æ

3
1 ≠ 2

t + “

4
vt

t + “
+ 4

µ2(t + “)2 Bt + 2
µ(t + “)Dt

= 4
µ2(t + “)2

!
(t + “ ≠ 2)Bt + Bt

"
+ 2

µ(t + “)
!
(t + “ ≠ 2)Dt + Dt

"
+ “

(t + “ ≠ 2)�0
(t + “)2

= 4
µ2(t + “)2

A
t≠1ÿ

i=1
Bi + Bt

B
+ 2

µ(t + “)

A
t≠1ÿ

i=1
Di + Dt

B
+ “

(t + “ ≠ 2)�0
(t + “)2

(b)
Æ 4(t + “ ≠ 1)

µ2(t + “)2 Bt+1 + 2(t + “ ≠ 1)
µ(t + “)(t + “ + 1)Dt+1(t + “ + 1) + “

�0
t + “ + 1

(c)
Æ vt+1

“ + t + 1 , (33)

where (a) is due to the inductive hypothesis, (b) and (c) are because

t + “ ≠ 2
(t + “)2 Æ (t + “ ≠ 1)

(t + “)2 = (t + “)2 ≠ 1
(t + “)(t + “ + 1) Æ 1

t + “ + 1 , (34)

Thus, by L-Lipschitz smoothness)

E[F (wt)] ≠ F
ú Æ L

2
vt

t + “
Æ (C1 + C2◊T �) + flT , (35)

which proves Theorem A.1.

A.3 Proof of Lemma A.6

Proof of Lemma A.6. By definition wt+1 = wt ≠ ÷tgt. Therefore we can write

Îwt+1 ≠ wúÎ2 = Îwt ≠ ÷tgt ≠ wú ≠ ÷tgt + ÷tgtÎ2

= = Îwt ≠ wú ≠ ÷tgtÎ2
¸ ˚˙ ˝

A1

+ 2Èwt ≠ wú ≠ ÷tgt, gt ≠ gtÍ¸ ˚˙ ˝
B

+÷
2
t Îgt ≠ gtÎ2

. (36)

Notice that for B in (36),

E[B] =E[Èwt ≠ wú ≠ ÷tgt, gt ≠ gtÍ]
= Èwt ≠ wú ≠ ÷tgt, gt ≠ E›[gt]Í = 0, (37)

where E›, is the expectation over the distribution › = {›1, . . . , ›k}, the data sampled in a mini-batch by each
client at time step t.

Now consider A1 in (36). We can further split it into 3 terms as

Îwt ≠ ÷tgt ≠ wúÎ2 = Îwt ≠ wúÎ2 ≠ 2÷tÈwt ≠ wú
, gtÍ¸ ˚˙ ˝

A2

+ ÷
2
t ÎgtÎ2

¸ ˚˙ ˝
A3

. (38)

One can upper bound A3 using Lemma A.2 (L-smoothness), which yields

÷
2
t ÎgtÎ2 Æ ÷

2
t

Nÿ

k=1
p

Õ
kÎÒFk(wk

t )Î2
Ik,·(t) Æ 2L÷

2
t

Nÿ

k=1
p

Õ
k

!
Fk(wk

t ) ≠ F
ú
k

"
Ik,·(t). (39)

Moreover considering A2, we can expand it as

≠2÷tÈwt ≠ wú
, gtÍ = ≠2÷t

Nÿ

k=1
p

Õ
kÈwt ≠ wú

, ÒFk(wk
t )ÍIk,·(t). (40)
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Now each term ≠2÷tÈwt ≠ wú
, ÒFk(wk

t )Í can be upper bounded as

≠ 2Èwt ≠ wú
, ÒFk(wk

t )Í = ≠2Èwt ≠ wk
t , ÒFk(wk

t )Í ≠ 2Èwk
t ≠ wú

, ÒFk(wk
t )Í

Æ 1
÷t

Îwt ≠ wk
t Î2 + ÷tÎÒFk(wk

t )Î2

¸ ˚˙ ˝
AM-GM inequality

≠ 2(Fk(wk
t ) ≠ Fk(wú)) ≠ µÎwk

t ≠ wúÎ2
¸ ˚˙ ˝

Strong Convexity

, (41)

where the AM-GM inequality refers to the fact that the arthiemtic mean is greater geometric mean. Precisely
for two vectors z1, z2, we have

2Èz1, z2Í = 2Èaz1, (1/a)z2Í Æ a
2Îz1Î2 + 1

a2 Îz2Î2
, (42)

where setting a = Ô
÷t, z1 = wú ≠wt and z2 = ÒFk(wk

t ), leads to the desired inequality, and Strong Convexity
is due to Assumption 2.

Combining (38), (39), (40) and (41) we obtain

Îwt+1 ≠ ÷tgt ≠ wúÎ2 Æ Îwt ≠ wúÎ2 + 2L÷
2
t

Nÿ

k=1
p

Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t)

+ ÷t

Nÿ

k=1
p

Õ
k

3
1
÷t

Îwt ≠ wk
t Î2 + ÷tÎÒFk(wk

t )Î2 ≠ 2(Fk(wk
t ) ≠ Fk(wú)) ≠ µÎwk

t ≠ wúÎ2
4

Ik,·(t)

(a)
Æ Îwt ≠ wúÎ2 ≠ µ÷t

Nÿ

k=1
p

Õ
kÎwk

t ≠ wúÎ2
Ik,·(t) +

Nÿ

k=1
p

Õ
kÎwt ≠ wk

t Î2
Ik,·(t)

+ 4L÷
2
t

Nÿ

k=1
p

Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t) ≠ 2÷t

Nÿ

k=1
p

Õ
k

!
Fk(wk

t ) ≠ Fk(wú)
"

Ik,·(t)

(b)
Æ (1 ≠ ÷tµ)Îwt ≠ wúÎ2 +

Nÿ

k=1
p

Õ
kÎwt ≠ wk

t Î2
Ik,·(t)

+ 4L÷
2
t

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ F
ú
k ) ≠ 2÷t

ÿ

kœP
p

Õ
k

!
Fk(wk

t ) ≠ Fk(wú)
"

¸ ˚˙ ˝
A4

+ 4L÷
2
t

ÿ

k /œP

p
Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t) ≠ 2÷t

ÿ

k /œP

p
Õ
k

!
Fk(wk

t ) ≠ Fk(wú)
"

Ik,·(t)

¸ ˚˙ ˝
A5

, (43)

where (a) is due to (39) and (b) follows from Lemma A.3. A4 captures the aggregation of priority clients,
while A5 captures the aggregation of non-priority clients. We will bound them separately. First let us consider
A4 in (43)

!
recall ÷t Æ 1

4L

"

4L÷
2
t

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ F
ú
k ) ≠ 2÷t

ÿ

kœP
p

Õ
k

!
Fk(wk

t ) ≠ Fk(wú)
"

= ≠“t

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ F
ú
k ) + 2÷t

ÿ

kœP
p

Õ
k(Fk(wú) ≠ F

ú
k )

= ≠“t

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ F
ú) + 4L÷

2
t

ÿ

kœP
p

Õ
k(F ú ≠ F

ú
k )

= ≠“t

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ F
ú)

¸ ˚˙ ˝
A6

+4L÷
2
t Et, (44)
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where “t := 2÷t(1 ≠ 2L÷t) and

Et := E
5

�
1 +

q
k /œP pkIk,·(t)

6
.

Now to upper bound A6 in (44) we consider the following chain of inequalities

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ F
ú) =

ÿ

kœP
p

Õ
k(Fk(wk

t ) ≠ Fk(wt)) +
ÿ

kœP
p

Õ
k(Fk(wt) ≠ F

ú)

Ø
ÿ

kœP
p

Õ
kÈÒFk(wt), wk

t ≠ wtÍ +
ÿ

kœP
p

Õ
k(Fk(wt) ≠ F

ú)

(a)
Ø ≠1

2
ÿ

kœP
p

Õ
k

5
÷tÎÒFk(wt)Î2 + 1

÷t
Îwk

t ≠ wtÎ2
6

+
ÿ

kœP
p

Õ
k(Fk(wt) ≠ F

ú)

(b)
Ø ≠

ÿ

kœP
p

Õ
k

5
÷tL(Fk(wt) ≠ F

ú
k ) + 1

÷t
Îwk

t ≠ wtÎ2
6

+
ÿ

kœP
p

Õ
k(Fk(wt) ≠ F

ú), (45)

where (a) is due to the AM-GM inequality and (b) is due to Lemma A.2. Using this, A6 in (44) can be upper
bounded as

A6 Æ “t

ÿ

kœP
p

Õ
k

5
÷tL(Fk(wt) ≠ F

ú
k ) + 1

2÷t
Îwk

t ≠ wtÎ2
6

≠ “t

ÿ

kœP
p

Õ
k(Fk(wt) ≠ F

ú)

= “t(÷tL ≠ 1)
ÿ

kœP
p

Õ
k(F (wt) ≠ F

ú) + “t÷tLEt + “t

2÷t

ÿ

kœP
p

Õ
kÎwk

t ≠ wtÎ2

(a)
Æ “t÷tLEt + “t

2÷t

Nÿ

k=1
p

Õ
kÎwk

t ≠ wtÎ2 (b)
Æ

ÿ

kœP
p

Õ
kÎwk

t ≠ wtÎ2 + “t÷tLEt, (46)

where (a) is because (F (wt) ≠ F
ú) Ø 0 and “t(÷tL ≠ 1) Æ 0, since we assume ÷L Æ 1

4L and (b) is because
“t

2÷t
Æ 1. Therefore (44) (A4 in (41)) can be upper bounded as

A4 Æ
ÿ

kœP
p

Õ
kÎwk

t ≠ wtÎ2
Ik,·(t) + (“t÷tL + 4L÷

2
t )Et

Æ
ÿ

kœP
p

Õ
kÎwk

t ≠ wtÎ2
Ik,·(t) + 6L�÷

2
t E

5
1

1 +
q

k /œP pkIk,·(t)

6
. (47)

Now consider A5 in (43)

4L÷
2
t

ÿ

k /œP

p
Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t) ≠ 2÷t

ÿ

k /œP

p
Õ
k

!
Fk(wk

t ) ≠ Fk(wú)
"

Ik,·(t)

= ≠“t

ÿ

k /œP

p
Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t) + 2÷t

ÿ

k /œP

p
Õ
k(Fk(wú) ≠ F

ú
k )Ik,·(t)

= ≠“t

ÿ

k /œP

p
Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t)

¸ ˚˙ ˝
A7

+÷tDt. (48)

where “t := 2÷t(1 ≠ 2L÷t) and (for (�k := Fk(wú) ≠ F
ú
k ))

Dt := 2E
5 q

k /œP pk�kIk,·(t)
1 +

q
k /œP pkIk,·(t)

6
. (49)
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Now to upper bound to A7 in 48, we consider the following chain of inequalities
ÿ

k /œP

p
Õ
k(Fk(wk

t ) ≠ F
ú
k )Ik,·(t) =

ÿ

k /œP

p
Õ
k(Fk(wk
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where (a) is due to the AM-GM inequality and (b) is due to Lemma A.2. Using this, A7 in (48) can be upper
bounded as
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where (a) is because for
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Therefore (48) (A5 in (43)) can be upper bounded as
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Combining (36),(37),(43), (47) and (52), followed by taking expectation on both sides and using Lem-
mas A.4and A.5, we infer that
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which proves Lemma A.6.

A.4 Extensions to partial participation of clients

In this section, we generalize our findings to scenarios where only a randomly selected subset of priority
indices are involved at any given time instance (with or without replacement). Additionally, we consider the
case where non-priority clients engage according to any arbitrary participation pattern in each communication
round.

Initially, we focus on the arbitrary participation of non-priority clients. A critical insight from our research
is that for the k

th non-priority client, the determination of their participation or non-participation in the
aggregation during a specific communication round is guided by the indicator random variable Ik,·(t). This
variable is a general selection rule, flexible enough to encompass all potential situations, whether the server
selects the clients, the clients voluntarily participate, or both.

For a broader applicability to arbitrary client cases, our analysis can be conveniently extended by redefining
Ik,·(t) for a non-priority client as

Ik,·(t) := 1{|Fk

!
wk

t

"
≠ F

!
wk

t

"
| < ‘t} ◊ 1{Client k participates in ·(t)th communication round}. (54)

Under this revised definition of Ik,·(t), our results remain valid. We consider this revised definition throughout
this subsection. In a particular case, when

E[1{Client k participates in ·(t)th communication round}] = p,
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this scenario corresponds to a selection method where each non-priority client is chosen uniformly at random
with a probability p. This flexible integration of non-priority clients aligns with realistic situations, wherein
certain non-priority clients may be excluded in every communication round due to factors such as unreliability
or associated high computation or communication costs.

Now let us consider the selection pattern with replacement considered in Li et al. (2020a), which corresponds
to partial priority-client participation. We also follow the proof skeleton in Li et al. (2020a). Let the set St

define the clients participating at time step t. We refer to the following sampling scheme as “sampling with
replacement”.

The server sets St by sampling (with replacement) an index k œ P corresponding to probabilities generated
by the data fraction pk : k œ P, recalling that

q
kœP pk = 1. Therefore, St is a multiset. If t corresponds to a

communication round then the server aggregates the parameters as
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The main insight to why we can prove our result is that this aggregation wÕ
t+1 is an unbiased estimate of

wt+1 defined in the previous section. Specifically under ESt|Ik,·(t) , the following lemmas (restated from Li
et al. (2020a)) hold true.
Lemma A.7. (Unbiased sampling scheme) If t corresponds to a communication round, , we have

ESt|Ik,·(t) [w
Õ
t] = wt.

Lemma A.8. (Bounding the variance of wÕ
t) Assume that Assumption 4 is true and ÷·(t) Æ 2÷t for all t Ø 0.

If t corresponds to a communication round then the expected variaance between wÕ
t and wt is bounded by
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These lemmas are straightforward extensions to Lemmas 4 and 5 in Li et al. (2020a), so we skip the proof
here.

Now consider one-step SGD, under this new aggregation method
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where (a) is due to Lemma A.7 and A.8. Notice that B1 can be upper bounded with Lemma A.6. Therefore
we get a upper bound with an added term (if we re-define �t := ÎwÕ

t ≠ wúÎ2)
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The above equation (58) is similar to the bound in Lemma A.6, except for an additional bias due to the
variance between wÕ

t and wt. Therefore we can use the same inductive arguments here too. We skip this
since this is a straightforward extension of the proofs considered in the previous sections and state the a
combined theorem, under partial participation of the priority clients and arbitrary participation of the non
priority clients below.
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Theorem A.9. (Convergence under partial participation) Suppose that Assumptions 1, 2, 3, and 4 hold, and
we set a decaying learning rate ÷t = 2

µ(t+“) , where “ = 8L
µ and any ‘t Ø 0. The expected error following T

total local iterations (equivalent to T/E communication rounds) for FedALIGN under partial participation of
the priority clients and arbitrary participation of the non-priority clients, satisfies
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where ◊T œ [0, 1] and flT can be adjusted by selecting an appropriate ‘t in each time step (flT and ◊T are
defined as before). Here, C
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B Computational Complexity of FedALIGN

Notation

Here we do a computational complexity analysis for FedALIGN.

• N : Total number of clients.

• P: Set of participating clients in each round.

• E: Number of local epochs.

• B: Number of batches in the local dataset of each client.

• t: Communication round.

• d: Dimension of the model parameters.

• ÷: Learning rate.

Server-Side Complexity

The server-side operations mainly involve broadcasting the model, aggregating updates, and checking
conditions for client updates.

1. Broadcasting the model parameters and loss F (wt):

• Complexity: O(N · d) for broadcasting wt and F (wt).

2. Aggregating updates from clients:

• Let |P| be the number of participating clients.
• Complexity: O(|P| · d) for summing the weighted updates.

3. Computing the average model update:

• Complexity: O(d) for dividing by the total weight p.

4. Overall server-side complexity per round:

O(N · d + |P| · d + d) = O(N · d)
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Client-Side Complexity

The client-side operations involve updating the model using local data, which is where most of the computa-
tional e�ort is spent.

1. Computing local loss Fk(wt):

• Complexity: O(B · d), where B is the number of batches.

2. ClientUpdate function:

• For each epoch E:
– For each batch B:

� Complexity of gradient computation and model update: O(B · d).
• Since this operation is nested within E epochs, the complexity for each client update is:

O(E · B · d)

Overall Complexity per Communication Round

Combining the server and client operations, we get the overall complexity per communication round:

1. Server-side operations:
O(N · d)

2. Client-side operations:

• For participating clients (|P|):

O(|P| · (E · B · d + B · d)) = O(|P| · E · B · d)

3. Combining both, the total complexity per communication round t is:

O(N · d + |P| · E · B · d)

4. In the worst case, where all clients participate (|P| = N), the complexity is:

O(N · d + N · E · B · d) = O(N · E · B · d)

Summary

The computational complexity of the FedALIGN algorithm per communication round is dominated by the
client-side updates and is given by:

O(N · E · B · d)
where:

• N is the number of clients,

• E is the number of local epochs,

• B is the number of batches in the local dataset,

• d is the dimension of the model parameters.

C Experiment Details

We first describe the models and data distributions we used to run our main experiments in more detail. All
our code is available in the supplementary material.
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C.1 Benchmark Datasets

Following the procedure in Brendan McMahan et al. (2017), we split the data into shards and assign multiple
shards to each client. The loss used in all models is the cross-entropy loss.

For the FMNIST dataset we trained a Logistic Regression model with 784 ◊ 10 fully connected layer. The
dataset is split into 120 shards with each shard containing 500 samples of a single class. Each of the 60 clients
are assigned two shards each.

For the balanced-EMNIST dataset we trained a 2-NN network with 784 ◊ 200 input layer, followed by a
200 ◊ 200 hidden layer and 200 ◊ 47 output layer. The dataset is split into 600 shards with each shard
containing 180 samples of a single class. The 60 clients are provided with 24 shards each.

For the CIFAR10 dataset we use a CNN with the first convolutional layer 5◊5 kernel, with 32 output channels.
The next convolutional layer again uses a 5 ◊ 5 kernel with 64 output channels. We then attach sequential
layers (fully connected) with (512 ◊ 128) dimension. This is followed by a 128 ◊ 10 output layer. The nodes
with ReLU activation include a Kaiming initialization of weights. We also include batch normalization after
the second convolutional layer and both the sequential layers. The data assignment is the same as that of
FMNIST.

C.2 Synthetic Datasets

We follow an extended version of the setup Li et al. (2018) for generating synthetic data. For each device
k, samples (Xk, Yk) are generated according to the model y = argmax(softmax(Wx + b)), where x œ R

60,
W œ R

10◊60, and b œ R
10. Heterogeneity is introduced by drawing Wk and bk from normal distributions,

N(uk, 1), with uk ≥ N(0, –). Each input xk is drawn from N(vk, �), where � is a diagonal matrix with
�j,j = j

≠1.2. Each element in the mean vector vk is drawn from N(Bk, 1), where Bk ≥ N(0, —). For our
main experiments we choose – = 1, while — = 1. This gives us the data possessed by the priority clients.

We extend the setup to include non-priority clients where global data is distributed and progressively noisy
data is added. Two forms of noise are considered: 1) Label flips, with the maximum noise range across all
non-priority clients determined by “label noise factor” and “label noise skew factor” controls how skewed
towards this maximum noise clients are. If “label noise skew factor”, it means you have more high noise
non-priority clients. 2) Irrelevant independent data points, with the maximum fraction of irrelevant data
points determined by “random data fraction factor” and “random data fraction skew factor” controls how
skewed towards containing this maximum clients are, in similar way as before.

These noise additions aim to model more realistic scenarios of heterogeneity between priority and non-priority
clients, where non-priority clients are likely to contain down-sampled, low quality and irrelevant data that
may harm the objective generated by the priority clients. We use the skews to model that these non-priority
clients in general are aligned at variable levels to the global objective. High skews imply a larger number of
non-priority clients are misaligned.

We use the Synth(1, 1) for our experiments, which is generated by fixing – = 1 and — = 1. In constructing
our non-priority clients, we fix “random data fraction factor” = 1 and “label noise factor” = 2.5. We then
pick three di�erent parameter values for “label noise skew factor” = 0.5, 1.5, 5 and “random data fraction
skew factor” = 0.5, 1.5, 5. These specific skew factors correspond to tags of low, medium and high noise in
Figure 2.

D Additional Experiments

In this section we consider some additional experiments that further highlight the e�cacy of FedALIGN.

Outline of additional experiments. In the following subsections we add the following additional
experiments:

• Sensitivity of FedALIGN to varying ‘
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• Performance of FedALIGN vs Models trained locally of Non-Priority Clients.

• Performance of FedALIGN vs Baselines, adapted for FedProx.

• Performance of FedALIGN vs Baselines under partial client participation.

• Sensitivity of FedALIGN to number of Priority Clients.

• Sensitivity if FedALIGN to number of warm-up rounds.

• More experiments under di�erent number of priority clients, di�erent number of local iterations and
di�erent noise skews for the synthetic data.

• Figure summarizing the sensitivity of FedALIGN (and other methods) to non-priority.

Figure 3: Sensitivity of FedALIGN to ‘ for FMNIST dataset. The graph shows the accuracy for di�erent ‘

values, with ‘ = 0.6 providing the best performance for a priority fraction of 0.1. The experiments were run
for 50 communication rounds each.

D.1 Sensitivity of FedALIGN to varying ‘

In our experiments to assess the sensitivity to ‘ for the FMNIST dataset, we found that ‘ = 0.6 provides the
best performance for a priority fraction of 0.1. Notably, ‘ = 0 corresponds to no non-priority clients selected,
while ‘ = 1 corresponds to the every non-priority clients selected in each round approach. Figure 3 illustrates
these results, demonstrating the impact of di�erent ‘ values on model accuracy. These findings underscore the
importance of selecting an optimal ‘ value to balance the trade-o� between inclusion of non-priority clients
and alignment, ultimately boosting the overall model performance. Our intuition supports this: including too
few clients fails to add additional computation, while including too many dilutes adds a lot of bias, leading to
degradation in performance. By fine-tuning ‘, we can strike the right balance.

D.2 Performance of FedALIGN vs models trained locally at non-priority clients

In our experiments, we assess the accuracy of models trained using FedALIGN on test data of non-priority
clients. To simulate a realistic, resource-constrained environment, we consider a scenario in which each client
possesses only 50 samples (as opposed to 500 samples each client possessed in our main experiments). This
scenario more closely models real-world situations where local models are hindered by limited computational
power or inadequate data to develop an optimal model.

Our experimental findings, represented in Figure 4, demonstrate a significant performance enhancement for
FedALIGN over local models across all our benchmark datasets in this setting. This result underlines a
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compelling motivation for non-priority clients to participate in the federated learning framework, since they
stand to benefit from a more robust global model.

However, as we have outlined in the main text, the superiority of a global model is not the sole reason
incentivizing client participation. A working global model consistently aids in refining local models, which
further boosts their performance. Thus, FedALIGN produces satisfactory models, which adds another layer
of incentive for clients to join the federation.

Figure 4: Test accuracy for benchmark datasets, on test data generated for local clients, where each client
possess 50 data samples. FedALIGN (orange), converges faster and performs better than the local model.

D.3 Performance of FedALIGN vs Baselines, adapted to FedProx

In our experiment, we consider FedProx Li et al. (2018) by incorporating a proximal regularization term
(between the global and local model) in the local loss function of each client, amplified by a factor µ set at 1.
We investigate a setting with 4 priority clients and 60 non-priority ones, maintaining the data distribution
outlined in the paper’s main section. The value of ‘ is set to 0.2.

We establish two baseline scenarios: one applying FedProx exclusively to the priority clients, the other
extending it to all clients. These are compared against our FedALIGN variant, tailored to FedProx. Notably,
our selection criteria operates as a separate, algorithm-independent step, simplifying its application to
FedProx.

As illustrated in Figure 5, the results demonstrate FedALIGN’s clear superiority over the baselines, under-
scoring its e�ectiveness in this context.

D.4 Performance of FedALIGN vs Baselines under the partial participation scenario

In this experiment, we examine a partial participation scenario where subsets of clients, both priority and
non-priority, are selected uniformly at random in each communication round. The client updates received
from this subset form the basis of our investigation.

For this case, we consider a total of 60 clients, with 18 designated as priority clients. This increased count
of priority clients is required for su�cient representation in every communication round. However, this
configuration induces a more homogeneous global objective since more clients contributing to the global
objective, encompasses more classes. For EMNIST, since each client gets 24 shards, we designate 4 clients to
be priority clients (su�cient to lead to homogeneity).

As anticipated, we observe an improvement in FedALIGN performance under these circumstances. As
predicted, the gains are not as significant as those we illustrated in the main result, where we only consider
2 priority clients, where the advantage of faster convergence is particularly evident because it is a more
heterogeneous setup. The reason for this is because the full participation case considers 2 external clients with
only 4 classes, which leads to significant heterogeneity. The reason for the smaller gain is due to the increased
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Figure 5: Test accuracy for FMNIST and EMNIST, when FedALIGN is adapted to FedPROX case, under
full participation, with 4 priority clients and N = 60 clients, with E = 5. There is a clear advantage to using
FedALIGN both in terms of convergence speed and improved test accuracy.

homogeneity in the global objective when more clients are included. Moreover we point to the synthetic
experiments in Figure 2, which allow us to control heterogeneity between priority clients and how well aligned
the non-priority clients are, even when we include more priority clients. This models more realistic cases of
practical PFL and FedALIGN does significantly well in those cases. In subsection D.7, we demonstrate this
phenomenon under the full participation case, further underscoring the importance of client heterogeneity
being key to the success of FedALIGN, which is an important property in realistic FL settings.

For this experiment, we chose 0.3 (0.5 for the case of EMNIST, because there are lesser priority clients) as
the fraction of clients involved in each round and set the value of ‘ to 0.2. Thus, while our setup performs
e�ciently even with partial participation, the experiment underscores the impact of client diversity on the
e�ectiveness of FedALIGN.

Figure 6: The impact of varying the fraction of priority clients on model performance using FMNIST with
‘ = 0.2. The x-axis represents the fraction of clients designated as priority, ranging from 0.2 to 1. We
use 60 total clients. The y-axis shows the corresponding model accuracy. Initially, the accuracy degrades,
likely because including more priority clients leads to more heterogeneity. Then the accuracy loss are
counterbalanced by the more additional updates from priority clients, leading to a complex dependency and
varying sensitivity.
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D.5 Sensitivity of FedALIGN to increasing fraction of priority clients.

In another experiment, we varied the fraction of clients designated as priority clients, ranging from 0.2 to 1,
with 1 meaning all clients are included, using FMNIST with ‘ = 0.2 (see Fig. 6).

We observed two competing factors influencing the model’s performance. When the priority fraction is
low, including more non-priority clients can increase accuracy due to the additional updates. However, this
also introduces bias from the non-priority clients which reduces accuracy. Conversely, as we increase the
number of priority clients, we achieve more aligned gradient updates but lose the benefit of extra updates
from non-priority clients. This competition results in a complex dependency, causing sensitivity to vary
significantly as the fraction of non-priority clients changes. .

D.6 Sensitivity of FedALIGN to number of warm-up rounds.

We examined the sensitivity of FedALIGN to the number of warm-up rounds. We set a total of 50
communication rounds and varied the number of warm-up rounds from 0 to 40, using FMNIST with ‘ = 0.2
(see Fig. 7).

We observed that initially, increasing the number of warm-up rounds improves performance, as it allows the
model to better tune to the data from priority clients. However, as the number of warm-up rounds continues
to increase, performance begins to decline. This is because the additional warm-up rounds come at the
expense of updates from non-priority clients, leading to a trade-o� between tuning to priority clients and
incorporating diverse updates.

Figure 7: We set a total of 50 communication rounds and varied the number of warm-up rounds from 0
to 50, using FMNIST with ‘ = 0.2. We observed that initially, increasing the number of warm-up rounds
improves performance, as it allows the model to better tune to the data from priority clients. However, as
the number of warm-up rounds continues to increase, performance begins to decline. This is because the
additional warm-up rounds come at the expense of updates from non-priority clients, leading to a trade-o�
between tuning to priority clients and incorporating diverse updates.

D.7 More experiments under di�erent parameter choices

Here we provide results for additional experiments under various di�erent parameter choices, where we can
consider cases where more clients are included in the priority set and di�erent local updates. Clearly as we
start increasing the number of priority clients, the gap between the performance gains in FedALIGN is lower.
This is due to a reduced heterogeneity in the global objective as you start increasing the number of clients. In
the second plot of Figure 9 we also consider reducing the number of local updates to E = 3. We set ‘ = 0.2
for all these experiments.
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Figure 8: Test accuracy for benchmark datasets, in the partial participation case, with 18 priority clients
and N = 60 clients for FMNIST and CIFAR, and 4 priority clients for EMNIST, with E = 5.

Figure 9: (1) Test accuracy for FMNIST, in the full participation case, with 6 priority clients and N = 60
clients, with E = 5, (2) Test accuracy for EMNIST, in the full participation case, with 9 priority clients and
N = 60 clients, with E = 3 and (3) Test accuracy for EMNIST, in the full participation case, with 18 priority
clients and N = 60 clients, with E = 5.

Figure 10: Summary of the results in Figure 2. FedALIGN does consistently better than other methods:
None and FedAVG. None remains constant because the experiment is the same irrespective of non-priority
client alignment
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