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Abstract

Code-switching (CS) is the process of speakers001
interchanging between two or more languages.002
The scarcity of CS data drives the develop-003
ment of advanced Natural Language Process-004
ing (NLP) and Automatic Speech Recognition005
(ASR) models, which incorporate ideas from006
linguistic theory. To describe CS, the Matrix007
Language Frame (MLF) theory defines a Ma-008
trix Language (ML) as the language that pro-009
vides the grammatical structure for a CS sen-010
tence. System morphemes are the type of mor-011
phemes that contribute to a sentence’s grammat-012
ical structure and are used in the MLF theory013
for ML detection. The discovery of the sys-014
tem morphemes can improve automatic CS text015
generation and analysis. This work introduces016
several novel approaches for discovering sys-017
tem morphemes based on the MLF theory. De-018
terministic and predictive System Morpheme019
Principle (SMP) implementations are used to020
discover system words approximating system021
morphemes through the task of ML determi-022
nation and prediction for SEAME and Miami023
datasets. The outputs from the two SMP im-024
plementations are compared to the outputs of025
the Morpheme Order Principle (MOP). Apply-026
ing the deterministic SMP approach revealed027
that the conventional system words (pronouns,028
conjunctions, determiners, auxiliaries) fall into029
top 50% most frequent word frequencies when030
averaged over Part of Speech (POS). Moreover,031
the deterministic SMP has also revealed the032
ranking of the POS with respect to the ML de-033
termination task, showing the importance of034
particles and adpositions. Using the extracted035
system words in a CS text simulation task leads036
to a total of 3.3% fluency improvement, demon-037
strating the advantages of the statistical analysis038
of the linguistic properties of data in the de-039
terministic SMP. This study provides valuable040
insight into the properties of tokens in relation041
to their grammatical categories in CS data.042

1 Introduction 043

Code-switching (CS) is the process of speakers 044

switching between several languages in spoken or 045

written language. CS data is typically scarce, there- 046

fore, models for CS analysis and recognition often 047

yield poor performance in comparison to monolin- 048

gual models. Despite being poorly documented, the 049

use of CS is widespread (e.g India, South Africa, 050

Nigeria) (Diwan et al., 2021; Ncoko et al., 2000; 051

Rufai Omar, 1983), and therefore it is essential to 052

develop Natural Language Processing (NLP) and 053

Automatic Speech Recognition (ASR) technologies 054

for processing both CS speech and text. 055

To describe code-switching the Matrix Lan- 056

guage Frame (MLF) theory was introduced (Myers- 057

Scotton, 1993). It postulates the concept of a main, 058

i.e. dominant language and a secondary, inserted 059

language to describe CS sentences. These lan- 060

guages are called Matrix Language (ML) and Em- 061

bedded Language (EL), respectively. The MLF 062

theory proposes two rule-based methods for ML 063

determination. The Morpheme Order Principle 064

aims to identify the surface morpheme order for a 065

CS sentence if it consists of singly occurring EL 066

lexemes and any number of ML morphemes. The 067

System Morpheme Principle states that system mor- 068

phemes which have grammatical relations external 069

to their head constituent will come from ML. Sys- 070

tem morphemes are a type of morpheme that pri- 071

marily serve a grammatical function rather than car- 072

rying lexical meaning. Morphemes associated with 073

POS, such as coordinating and subordinating con- 074

junctions, auxiliaries, determiners and pronouns 075

are commonly cited as system morphemes, yet the 076

linguistic literature does not provide a definitive 077

or comprehensive closed set. There are no known 078

methods for automatic detection or determination 079

of system morphemes. MLF theory provides the 080

framework for identifying the "main" or "domi- 081

nant" language in a CS sentence and may bring 082
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valuable insights for CS data, such as language083

or morpheme distributions, but it has been rarely084

implemented for NLP or ASR tasks.085

In this paper, several novel approaches for dis-086

covering system morphemes based on the MLF087

theory are introduced. Two variations of the Sys-088

tem Morpheme Principle (SMP) are developed that089

discover system morphemes through the task of090

ML determination and prediction. The Morpheme091

Order Principle (MOP) is used to assess the ML092

determination performance of these two SMP im-093

plementations. The correlation between the conven-094

tional system words that approximate system mor-095

phemes (pronouns, subordinating and coordinating096

conjunctions, determiners, auxiliaries) and word097

frequencies averaged over Part of Speech (POS)098

are analysed. The deterministic SMP revealed the099

ranking of the POS with respect to the ML determi-100

nation task, demonstrating the big influence of con-101

ventional system words on the ML determination102

task as well as several new unconventional system103

words for English/Mandarin and English/Spanish104

CS. The deterministic SMP was used to reveal the105

ranking of the POS with respect to the ML determi-106

nation task. A predictive SMP is also trained and107

compared to the performance of the deterministic108

SMP.109

The remainder of the paper is organised as fol-110

lows. Section 2 introduces relevant literature for111

the applications of MLF. Section 3 provides a de-112

tailed description of the methods used. This is113

followed by Section 4, which provides information114

on datasets, detailed implementation, experiment115

descriptions as well as discussion of results. Sec-116

tion 5 summarises and completes the paper.117

2 Related work118

Following the MLF, one can state that CS is a com-119

position of two languages and not a manifestation120

of a new language. This way, multilingual data121

should be sufficient for building an ASR model122

that can recognise CS. In reality, multilingual mod-123

els cannot surpass the quality of systems trained on124

CS data (Li et al., 2019; Shan et al., 2019). This is125

due to the systems not being introduced to sequen-126

tial (grammatical) information, which helps with127

CS processing. This additional information could128

be derived from applying the MLF theory to CS129

data.130

Although the MLF model has not been used ex-131

plicitly in NLP, the ideas of the dominant ML have132

been used for CS data simulation. MLF model 133

has been used for simulating CS sentences from 134

monolingual texts for them further to be used in 135

language modelling as in Hu et al. 2019 and Lee 136

et al. 2019 or constructing a self-supervised train- 137

ing procedure for a machine learning algorithm in 138

such a way that it encourages the generation of 139

utterances with CS (Chang et al., 2019). There 140

have been attempts to determine the influence of 141

different attributes of CS speech and text, which 142

are in line with the linguistic theories: POS and 143

cognate word pairs (Soto and Hirschberg, 2019), 144

Brown word vectors (Adel et al., 2015). The latest 145

multilingual systems for CS achieve the best re- 146

sults when Byte Pairwise Encoding (BPE) is used 147

for tokenisation, in contrast to grapheme (charac- 148

ter) (Hou et al., 2020; Chowdhury et al., 2021) or 149

word tokenisation, which also supports the MLF 150

theory since BPE tokens frequently coincide with 151

morphemes. 152

While distinguishing between content/system 153

morphemes is important for the ML determination 154

task, it can serve a different purpose in NLP. Ac- 155

cording to the Morpheme Sorting Principle of the 156

MLF theory, the four morpheme categories of the 157

4-M model have different probabilities of being in 158

the EL. 4-M model is a morpheme classification 159

framework also introduced in Myers-Scotton 2002, 160

which describes the order in which a bilingual ac- 161

cesses their mental lexicon, implying that some 162

morphemes and words are formed earlier during 163

language production. This introduces advantages 164

to text and speech generation and processing sys- 165

tems, guiding the generation processes to be more 166

natural and the analysis more precise. However, the 167

way content/system morphemes were determined 168

in these studies was usually a poorly argued de- 169

sign decision of the author. Iakovenko and Hain 170

2024 introduces precise implementations of the 171

ML determination principles from the MLF the- 172

ory, but a fixed system morpheme set is used for 173

the SMP implementation. Similarly, Bullock et al. 174

2018 presents rule-based systems for textual ML 175

determination in CS text based on the token and 176

system POS majorities, but the choice of the sys- 177

tem morphemes is poorly argued. Also, in Du et al. 178

2021 words that belong to the noun and/or verb 179

POS were regarded as content morphemes. How- 180

ever, none of the works specify why these POS 181

were chosen for translation into the EL or for stay- 182

ing in the ML. POS distributions were explored in 183

Hamed et al. 2018 for Arabic/English CS but the 184
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differences of EL POS distributions between the185

two languages acting as ML were not explored.186

It must be highlighted that the MLF theory does187

not perfectly model CS; for example, there have188

been observations that the MLF theory does not189

describe the CS of African languages (Auer and190

Muhamedova, 2005; Nguyen, 2024). An alterna-191

tive linguistic theory that addresses this issue is192

the Equivalence Constraint (EC) theory (Sankoff193

and Poplack, 1981), which relies on the princi-194

ple of grammatical congruence for modelling and195

analysing code-switching. Even so, the authors196

of this paper believe that it is essential to develop197

MLF-based methods for better understanding and198

modelling of CS. While pure MLF implementa-199

tions may not describe any CS production, we be-200

lieve that their relaxed modifications may be used201

to fit a variety of CS data (e.g. ML for parts of CP).202

The above indicates the importance of identi-203

fying system morphemes, but it was not carried204

out before in the context of ML determination and205

other downstream tasks. Therefore, the objective206

of this study is to advance technologies for CS by207

discovering the system morphemes based on the208

ML determination principles from the MLF theory.209

3 Methods for ML determination and210

system morpheme set discovery211

Being called "principles for ML determination"212

(Section 1), MOP and the SMP present three of the213

features of CS Complementiser Projections (CP)214

which cannot be used to determine the ML directly.215

Therefore, the principles need to be reformulated216

to perform only ML prediction based on a set of217

conditions. Let x = (x1, .., xn) be a CS CP as a se-218

quence of morphemes, l = (l1, .., ln), li ∈ L1∪L2219

- a sequence of corresponding LID tags, then: a)220

The Morpheme Order Principle: if singly occurring221

xi:j lexemes (sequence of morpheme constituents222

in a lexeme where i is the index of the prefix and j223

is the index of the suffix of the word) come from the224

same language L2 within a context of morphemes225

from L1, then L1 is the ML and L2 is the EL (a226

detailed description of the method can be found227

in Iakovenko and Hain 2024 under the name of228

P1.1); b) The System Morpheme Principle: if a229

set of indices of system morphemes in the CS CP230

Isys = {i | xi ∈ Xsys}, where Xsys is the system231

morpheme set, {xi | i ∈ Isys} are the system mor-232

phemes which have grammatical relations external233

to their head constituent and {li = L1 | i ∈ Isys},234

then L1 is the ML and L2 is the EL. Below are de- 235

tailed descriptions of the SMP method variations. 236

3.1 Implementing the System Morpheme 237

Principle 238

Compared to MOP, there are fewer issues in adapt- 239

ing SMP the principle for ML determination. How- 240

ever, as highlighted in the earlier section, there are 241

no computational methods for determining system 242

morphemes or a set of system morphemes. Despite 243

lacking the complete system morpheme set, one 244

can determine system morphemes from a composi- 245

tion of context-free probabilities of morphemes if 246

an ML identity is known for a CP. 247

3.1.1 Deterministic approach to SMP 248

Let us first assume that system morphemes Xsys - 249

the morphemes that contribute to the grammatical 250

structure of the CS CP - are the morphemes that 251

are frequent in the data. Let us further assume 252

that for all x ∈ Xsys the corresponding morpheme 253

type is equal to Tsys (system morpheme type), and 254

similarly for all x ∈ Xcont morpheme type is Tcont 255

(content morpheme type). Then x being a system 256

morpheme may be approximated by the morpheme 257

frequencies P (x): 258

t̂ =

{
Tsys, P (x) > β

Tcont, otherwise
(1) 259

where β is threshold for discriminating system mor- 260

pheme set Xsys and content morpheme set Xcont. 261

This approach may also be used to derive system 262

morphemes from monolingual data. 263

For the approach to better generalise to a variety 264

of morphemes, one can use morpheme frequencies 265

averaged over their grammatical category: 266

t̂ ≈

{
Tcont, P (g(x)) > γ

Tsys, otherwise
(2) 267

Once the Tsys system morpheme types are ob- 268

tained, the ML can be predicted effortlessly using 269

the expression from the beginning of Section 3. 270

3.2 Predictive approach to SMP 271

Alternatively, a predictive approach to determining 272

ML can be defined. Two additional sequences can 273

be derived from CS CP x: a sequence of gram- 274

matical categories of morphemes g = [g1, .., gn], 275

gi ∈ G, and a sequence of morpheme types 276

following the 4-M model (Myers-Scotton, 2002) 277

t = [t1, .., tn], ti ∈ Tsys∪Tcont. All sequences can 278
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be obtained using token classification algorithms279

and have the same length |x| = |g| = |t| = |l|.280

The following holds true: x → g → t and x → l,281

where the arrow is a many-to-one correspondence.282

The textual representation x is language-dependent,283

while g and t are language-independent. Since284

morpheme types can be unambiguously derived285

from the grammatical category of a morpheme, t286

can be substituted with g when trying to recognise287

the ML L:288

P (L|t, l, θ) = P (L|g, l, θ) (3)289

With P t(L|g, l, θt), one can try to recognise the290

textual ML from the number of occurrences of a291

singular grammatical category and language com-292

bination (gt, lt). Consider a model P t(L|g, l, θt)293

which predicts ML from a single feature (gt, lt).294

Then, running evaluation with a chosen metric295

m for a test CS dataset Dt = [(gt1, l
t
1, L1), ..,296

(gtm, ltm, Lm)] one can calculate feature importance297

ft for the task of ML determination:298

ft = m((argmax
Li∈L

P t(L = Li|gt1, lt1, θt), ...,299

argmax
Li∈L

P t(L = Li|gtm, ltm, θt)),300

(L1, ..., Lm)) (4)301

Obtaining ft values for all (gt, lt) combinations302

will result in feature importances [f1, .., ft] = F303

may then be used as the content-to-system mor-304

pheme scale for a specific language mix and ap-305

proximate morpheme types Tsys ∪ Tcont.306

4 Experiments307

In this section, the methods for discovering the308

system morphemes are applied. It is important to309

highlight that the experiments in this section are310

carried out on a word-level as an approximation of311

morpheme-level tokenisation. This is done because312

grammatical categories of morphemes (e.g. POS313

tag) are ambiguous, and there are no existing tools314

or methods to determine grammatical categories of315

morphemes reliably. Therefore, the objective is to316

find system morphemes equal to whole words that317

act as ML markers, and those will be called system318

words from now onwards. Furthermore, the ML319

determination is carried out on the sentence level320

as an approximation of the CP-level analysis. This321

is also related to the limitation of resources and322

tools for reliable CP segmentation of texts.323

4.1 Datasets 324

Both monolingual and CS datasets are used for the 325

experiments below. For the joint POS+LID tag- 326

ger training the Universal Dependencies 2.0 (Nivre 327

et al., 2020) dataset is used for Mandarin, English 328

and Spanish languages. The token distributions for 329

the training, validating and testing of the model 330

are given in Table A3 in the Appendix section. To 331

discover system words from monolingual data, the 332

train sets from the Fleurs dataset (Conneau et al., 333

2022) are used, and the statistics for the tokens are 334

presented in Table A2 in the Appendix section. 335

In order to train, test and validate an automatic 336

ML detector from POS+LID tags data is simu- 337

lated using the 15349 semantically aligned mono- 338

lingual sentences from the GALE corpus (Liu et al., 339

2010). Semantic alignment in GALE is the align- 340

ment of syntactically congruent words. Real CS 341

data: SEAME (Lyu et al., 2010) and Miami1 is 342

used for testing and probability estimations. Sen- 343

tences that contain tokens from two languages: En- 344

glish/Mandarin (Miami) or English/Spanish (Mi- 345

ami) are chosen for the analysis. The statistics for 346

the two CS datasets is given in Table 1 347

Table 1: CS datasets statistics.

Language Sentence count Token count
SEAME 57052 766525
Miami 292 3589

4.2 Joint POS and LID training 348

It has been shown before that POS tagger models 349

trained on monolingual data can generalise to CS 350

in token classification tasks (Soto and Hirschberg, 351

2018; Ball and Garrette, 2018), although still under- 352

performing compared to monolingual data. There- 353

fore, monolingual English, Mandarin and Spanish 354

datasets from the Universal Dependencies 2.0 are 355

used for joint POS and LID training. The statistics 356

for the splits are given in Section 4.1. For each 357

token in the source sentence, a POS tag and the 358

LID are recognised simultaneously. 359

To train an English/Mandarin POS+LID predic- 360

tor, a pretrained multilingual BERT (Devlin et al., 361

2018) with 12 attention heads is finetuned on the 362

train subset of the data mentioned above. The 363

model is finetuned for 3 epochs with cross-entropy 364

loss. The accuracies on the validation and test 365

subsets are 94% and 93% respectively, while the 366

1https://biling.talkbank.org/access/Bangor/Miami.html
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F1-scores are 94% and 92%. Calculating the per-367

formance metrics on Miami gives F1 score of 80%368

which supports the earlier claims of applicability369

of monolingual POS systems to CS.370

4.3 Data-driven discovery of system words371

4.3.1 Average token probabilities estimated372

from monolingual data373

For the first experiment the method described in374

Section 3.1.1 is applied to the monolingual Fleurs375

dataset for three languages: English, Mandarin and376

Spanish. POS tags are recognised for each of the377

sentences in the corpora using the joint POS+LID378

tagger described above. The word probabilities are379

estimated and average token probabilities are calcu-380

lated for every POS tag. Finally, the average prob-381

abilities are summed across the three languages382

to give a per POS tag probability. These are then383

sorted to demonstrate the similarity with the con-384

ventional system word set mentioned in linguistic385

and some NLP literature (Figure 1).386

From Figure 1 it can be observed that the387

conventional grammatical categories that are typ-388

ically represented by system words auxiliaries389

(AUX), determiners (DET), coordinating con-390

junctions (CCONJ), subordinating conjunctions391

(SCONJ) and pronouns (PRON) seem to be lo-392

cated in the top half of the sorted list. Apart from393

the conventional aforementioned grammatical cat-394

egories, particles (PART) and adpositions (ADP)395

seem to have average probabilities which are com-396

parable to those of the conventional grammatical397

probabilities.398

Suppose that the expectation of the token prob-399

ability that belongs to a certain POS can be used400

as an indicator for the ML which is present in a401

CS sentence, then the top N POS can be extracted402

for each of the three languages from the estimated403

rankings. Examples of the extracted POS sets are404

given in the Appendix Table A4, which will be405

discussed later in more detail.406

4.3.2 Average token probabilities estimated407

from CS data408

The same approach as above can be applied to409

a subset of real CS data where the ML can be410

determined using the MOP method described in411

Iakovenko and Hain 2024. Similar to Fleurs, to-412

ken probabilities are estimated and then averaged413

over POS, but, contrary to the experiment above,414

averaging of the probabilities is carried out only415

for the tokens for which the LID is equal to the416

ML determined using MOP. The resulting rankings 417

of POS are displayed in Figures A4 and A5 for 418

SEAME and in Figures A6 and A7 for Miami in 419

the Appendix section. 420

Although in the case of CS the POS which 421

are conventionally represented by system words 422

are less aligned with average probability rankings, 423

some conventional system POS still lead in the 424

rankings such as CCONJ for SEAME when the 425

ML is Mandarin and SCONJ for Miami when ML 426

is Spanish. Furthermore, some similarities with 427

the monolingual data are observed, for example, 428

the leading tendencies of PART and ADP, which 429

may be a reason enough to consider words which 430

belong to these POS as system words. 431

4.3.3 Measurement of performance on the ML 432

determination task 433

To measure if the extracted POS can indicate 434

the ML in a CS sentence they are tested as the 435

Xsys set in the deterministic SMP method (Section 436

3.1.1). The outcomes of the deterministic SMP 437

method with different sets Xsys were compared 438

to the baseline approach where system words are 439

represented by 5 conventional POS (DET, AUX, 440

CCONJ, SCONJ, PRON) following Myers-Scotton 441

2002 and Bullock et al. 2018. The results are pre- 442

sented in Figure A8 for SEAME and Figure A9 443

for Miami in the Appendix section, where the top 444

N selected POS varies from 1 to 14. The metric 445

for measuring the agreement is Matthew’s Corre- 446

lation Coefficient (MCC) because the outcomes of 447

deterministic SMP are compared to outcomes of 448

MOP. It is not appropriate to use such measures as 449

Accuracy or F1 in this task because MOP outputs 450

are also machine generated, although it is highly 451

accurate and the outputs rarely deviate from human 452

judgment (Iakovenko and Hain, 2024). 453

In Figure A8 of the Appendix one can see how 454

MCC first increases as the top N increases: this is 455

due to SMP becoming more accurate as the number 456

of top POS for analysis increase. Around 6-9 top 457

N the SMP implementations reach their optimal 458

performance which means that the top N selected 459

usually do not get translated into the EL. After the 460

best 6-9 top N a slight decrease in the MCC values 461

can be observed due to the rest of POS (e.g. nouns 462

or verbs) being used in both ML and EL more 463

frequently and therefore influencing the decision 464

in SMP less or even cause errors. 465

From the line plots it can be observed that the 466

best results are obtained using monolingual data to 467
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Figure 1: Average word probabilities estimates grouped by POS and sorted by the sum of the average across
languages. POS highlighted in red are the POS which are conventionally believed to be represented by system
words in linguistics and NLP (Myers-Scotton, 2002; Bullock et al., 2018).

extract grammatical categories that system words468

belong to. The best performing top N are 9 for469

SEAME and 8 for Miami. The ability to utilise470

monolingual data to estimate system words pro-471

vides advantages when dealing with low-resource472

or zero-resource data. The extracted POS, which473

provide the system words for the ML, are displayed474

in the Appendix Table A4. The best MCC values475

are obtained using these POS which are 0.22 for476

SEAME with top 9 extracted POS (a 0.07 increase477

from the conventional 5-POS baseline) and 0.33 for478

Miami with top 8 extracted POS (a 0.03 improve-479

ment from the baseline).480

4.4 Model-driven discovery of system words481

In this section, the application of the predictive482

SMP towards system word discovery is described.483

The components are described below in detail as484

well as the datasets used and their construction.485

There is limited ML annotated data available.486

Although simulated data can be generated using487

the MLF theory, it is avoided in this part of the488

experiment to ensure that the influence of the MLF489

approach is limited strictly to the system word dis-490

covery procedure. Therefore, a possible option is491

to generate a simulated dataset following the EC492

method described in Rizvi et al. 2021. To use the493

method, a dependency-level alignment of transla-494

tions is needed, which is present in the GALE cor-495

pus for NMT. For each sentence pair, alignments496

with semantic links are used to translate parts of497

sentences from ML to EL. A sentence may have498

more than one substitution of such substitutions499

from ML to EL. 100974 simulated CS sentences500

are generated from the original 15349 sentences501

of the GALE corpus. The resulting simulated CS 502

sentences are then split into train (114832) and test 503

(26283) subsets. POS tags are generated for all 504

of the above subsets using the POS+LID tagger 505

described previously (Section 4.2) and used as an 506

input for the SMP ML predictor below. 507

The same baseline determiner as in Section 4.3 508

that follows the deterministic approach to SMP 509

(Section 3.1.1) and determines the ML based on 510

the 5 conventional POS in a CS sentence is applied 511

to the test subset of the simulated CS data. The 512

system yields 74% accuracy with 24% of CS sen- 513

tences determined as an "unknown language". 24% 514

test sentences are marked with the "unknown lan- 515

guage" label because the SMP method does not 516

have 100% coverage due to some CS sentences 517

containing system words from both languages or 518

not having any system words from any languages. 519

Therefore one of the goals of applying a predictive 520

approach to SMP is to maximise the number of CS 521

sentences for which ML can be determined. 522

In contrast to the baseline system, a decision tree 523

classifier (DT) is trained to determine pseudo-ML 524

identity (the language of the original non-translated 525

sentence) from POS tags generated from simulated 526

CS data. The classifier yields 98% accuracy on 527

the simulated CS test set while maintaining 100% 528

coverage rate. 529

4.4.1 Agreement analysis 530

In order to analyse the properties of the imple- 531

mented SMP predictor on real CS data agreement 532

analysis for SMP and MOP is carried out. In this 533

experiment only the SEAME dataset is analysed 534

because no English/Spanish translation dataset is 535

manually aligned by dependency groups. Similarly 536
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to the prior experiments, the agreement is measured537

by MCC. The obtained MCC of 0.18 is higher in538

comparison to the baseline (MCC=0.15), which539

appears to show the usefulness of the predictive540

method for real CS data. However, the method does541

not seem to outperform the deterministic SMP ap-542

proach when the POS that are typically represented543

by system words are derived from monolingual544

data (MCC=0.22 when top 10 POS are used).545

4.4.2 Feature importance analysis546

While in Section 4.3 dataset statistics were esti-547

mated separately and explicitly for the determinis-548

tic SMP approach, in the predictive SMP approach549

the importance of POS are determined implicitly550

from task execution performance (Section 3.2). It551

is possible to measure Gini importance of the clas-552

sifier, but upon calculation, it only revealed the553

nature of the simulated data which is not the goal554

of the experiment. A better strategy for determin-555

ing the importance of specific (POS, lang) pairs556

generated from CS text is to train several separate557

ML classifiers for each of the (POS, lang) features.558

Having multiple classifiers one can calculate the559

feature that obtains the highest agreement mea-560

sured in MCC on real CS data (Figure 2).561

MCC values for the two ML determination ap-562

proaches executed on real CS data are shown in563

Figure 2. The overall importance of each of the564

individual features seems to form three groups with565

noticeable step-changes in MCC. This is visible be-566

tween Mandarin adverbs (ADV) and English verbs567

(VERB), and also between English CCONJ and En-568

glish PRON. However the same tendencies of the569

conventional system word grammatical categories570

being important for ML prediction task cannot be571

observed to the same extent as with deterministic572

SMP: while English SCONJ and DET, and Man-573

darin DET and AUX seem to have a big impact on574

the ML prediction task, the rest of the POS show575

little to no impact.576

The little impact of Mandarin CCONJ and577

PRON, and English AUX, PRON and CCONJ in578

the predictive SMP can be attributed to the dif-579

ference in the training data and the model used.580

Although EC can facilitate the creation of natural-581

looking CS sentences, it might not necessarily be582

representative of the real CS data. Using both EC583

and MLF theory inspired data simulations would584

improve the scores beyond the deterministic SMP585

performance.586

4.5 Using discovered system words for 587

creating fluently sounding simulated CS 588

For the final experiment, a small classifier for 589

automatic fluency assessment is trained on 697 590

English/Mandarin and English/Spanish CS exam- 591

ples from the CS-Fleurs dataset (Yan, 2025). A 592

fully-connected neural network is trained for 5 593

epochs with cross-entropy loss and Adam optimiser 594

(Kingma and Ba, 2014) similar to the approach in 595

Kodali et al. 2025. The learning rate is set to 0.01 596

and the size of the single hidden layer is 50. Such a 597

small neural network was chosen due to the small 598

size of the training set and the noisy nature of the 599

fluency assessment data. The accuracy of the clas- 600

sification into 3 classes of fluency reaches 33.57% 601

on the validation set. 602

To demonstrate the usefulness of the extracted 603

grammatical system word types, Large Language 604

Model (LLM) (OpenAI ChatGPT version 4o) is 605

prompted with and without system word con- 606

straints, similarly to (Kuwanto et al., 2024). System 607

words are extracted from each original non-English 608

monolingual sentence according to the extracted 609

system POS approach (Appendix Table A4). The 610

prompts used are presented in the Appendix Table 611

A5. The generated CS samples for the three ap- 612

proaches are then scored using a trained classifier 613

for automatic fluency. The results are presented in 614

Figure 3. 615

As can be seen from the figure, the number of 616

simulated CS sentences which are classified as "Un- 617

natural" reduces with the introduction of generic 618

system words in the prompt by 2%, and then is re- 619

duced by another 1.3% with the proposed approach 620

when the grammatical categories (POS) of system 621

words are extracted from monolingual data totaling 622

3.3% improvement from the baseline. This high- 623

lights the usefulness of system word identification 624

for text generation in general, and the necessity of 625

ML-based system word determination in contrast 626

to using a fixed system word set. 627

5 Conclusion 628

This study introduces several novel approaches for 629

identifying system morphemes in code-switched 630

(CS) text based on the Matrix Language Frame 631

(MLF) theory. Two variations of the System Mor- 632

pheme Principle (SMP) have been developed to 633

discover system morphemes through the task of 634

ML determination and prediction. To assess ML 635

determination performance across different feature 636

7



Figure 2: MCC of MOP and predictive SMP outputs on SEAME data. Predictive SMP uses single feature input.

Figure 3: Classification of the CS examples simulated
by 3 LLM-based approaches.

sets, the Morpheme Order Principle (MOP) from637

MLF theory is utilised.638

The methods are implemented on a word-level639

as an approximation of the morpheme-level system640

morpheme discovery. The proposed deterministic641

approach highlights a correlation between conven-642

tional system morphemes such as pronouns, con-643

junctions, determiners and auxiliaries, and token644

frequency averages across Part-of-Speech (POS)645

categories. It also ranks POS in terms of their im-646

portance for ML determination, emphasising the647

significance of particles and adpositions. Utilising648

monolingual data to identify POS categories func-649

tioning as system morphemes resulted in a 0.07650

improvement in Matthew’s Correlation Coefficient651

(MCC) for SEAME (from 0.15 to 0.22) and a 0.04652

increase for Miami (from 0.29 to 0.33). Addition-653

ally, an alternative predictive SMP model achieved654

a 0.03 MCC improvement (from 0.15 to 0.18),655

demonstrating the benefits of linguistic analysis656

in the deterministic SMP method, leading to higher657

MCC. Finally, the extracted system morphemes are658

used in a CS text simulation task, leading to a total659

of 3.3% fluency improvement, demonstrating the660

advantages of the statistical analysis of the linguis-661

tic properties of data in the deterministic SMP.662

Overall, this study provides valuable insights663

into the relationship between token properties and 664

their grammatical roles in CS data. The presented 665

findings contribute to a deeper understanding of 666

system morphemes and their role in ML determi- 667

nation, paving the way for more accurate computa- 668

tional models in multilingual language processing. 669

6 Limitations 670

The main limitation of the method is related to 671

the data availability: there is no ML-annotated CS 672

data openly available to date. Therefore, it is prob- 673

lematic to assess the quality of ML classification 674

and the feature importance. ML identity can be 675

determined in CS data using the rule-based MOP 676

principle, which has a high accuracy, but the prin- 677

ciple can only be applied in the case of singleton 678

EL insertions. Since there is no ML annotation, 679

simulated data has to be leveraged, but its usage 680

is limited as shown in the paper and additionally 681

requires dependency-aligned parallel data. 682
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A Appendix851

Table A2: Fleurs dataset statistics.

Language Sentence count Token count
English 2518 52602

Mandarin 3246 60622
Spanish 2796 68285

Figure A4: Average SEAME token probabilities
grouped by POS for when the ML is English according
to MOP.

Figure A5: Average SEAME token probabilities
grouped by POS for when the ML is Mandarin accord-
ing to MOP.

Figure A6: Average Miami token probabilities grouped
by POS for when the ML is English according to MOP.

Figure A7: Average Miami token probabilities grouped
by POS for when the ML is Spanish according to MOP.
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Table A3: Universal Dependencies 2.0 dataset statistics.

Sentence count Token count
Language train dev test train dev test

English 32179 5110 7798 523806 76180 7798
Mandarin 7994 3054 3555 859067 93318 3555
Spanish 28474 1000 3147 197232 25326 3147

Table A4: Extracted grammatical categories of system morphemes for English, Mandarin and Spanish.

Language Tsys

English [PART, DET, SCONJ, CCONJ, AUX, INTJ, ADP, PRON, NUM]
Mandarin [AUX, DET, PRON, CCONJ, ADP, SCONJ, NUM, ADV, ADJ]
Spanish [ADP, CCONJ, SCONJ, PART, DET, INTJ, PRON, NUM]

Figure A8: MCC for different SMP implementations on
the SEAME dataset. The green dashed line represents
the maximum MCC that could have been possible for
the SMP implementation: it is not equal to 1 because
MOP does not have 100% coverage. The red dashed
line is the baseline implementation with 5 conventional
POS.

Figure A9: MCC for different SMP implementations
for the Miami dataset.
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Table A5: Prompts used for the CS text simulation experiment. Extracted Xsys is the proposed approach which
uses extracted system morphemes to guide CS text simulation.

Approach Prompt
Baseline You are a Bilingual Spanish-English speaker, you will help translate this Spanish passage into

a code-mixed Spanish-English passage. Translate the following passage into a code-mixed
Spanish-English passage: Los expertos llegaron a la conclusión de que las materias oscuras se
afectan entre sí al igual que lo hace la materia regular.
Respond with a code-mixed sentence. Do not explain.

Fixed Xsys You are a Bilingual Spanish-English speaker, you will help translate this Spanish passage into
a code-mixed Spanish-English passage, considering the matrix language is Spanish, and the
following words are system morphemes are in the passage: la, las, lo, los, que, se; translate
the following passage into a code-mixed Spanish-English passage: Los expertos llegaron a la
conclusión de que las materias oscuras se afectan entre sí al igual que lo hace la materia regular.
Respond with a code-mixed sentence. Do not explain.

Extracted Xsys You are a Bilingual Spanish-English speaker, you will help translate this Spanish passage into
a code-mixed Spanish-English passage, considering the matrix language is Spanish, and the
following words are system morphemes are in the passage: a, al, de, entre, la, las, lo, los, que,
se; translate the following passage into a code-mixed Spanish-English passage: Los expertos
llegaron a la conclusión de que las materias oscuras se afectan entre sí al igual que lo hace la
materia regular.
Respond with a code-mixed sentence. Do not explain.

12


	Introduction
	Related work
	Methods for ML determination and system morpheme set discovery
	Implementing the System Morpheme Principle
	Deterministic approach to SMP

	Predictive approach to SMP

	Experiments
	Datasets
	Joint POS and LID training
	Data-driven discovery of system words
	Average token probabilities estimated from monolingual data
	Average token probabilities estimated from CS data
	Measurement of performance on the ML determination task

	Model-driven discovery of system words
	Agreement analysis
	Feature importance analysis

	Using discovered system words for creating fluently sounding simulated CS

	Conclusion
	Limitations
	Appendix

