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DiffHarmony++: Enhancing Image Harmonization with
Harmony-VAE and Inverse Harmonization Model

Anonymous Authors

ABSTRACT
Latent diffusion model has demonstrated impressive efficacy in

image generation and editing tasks. Recently, it has also promoted

the advancement of image harmonization. However, methods in-

volving latent diffusion model all face a common challenge: the

severe image distortion introduced by the VAE component, while

image harmonization is a low-level image processing task that re-

lies on pixel-level evaluation metrics. In this paper, we propose

Harmony-VAE, leveraging the input of the harmonization task it-

self to enhance the quality of decoded images. The input involving

composite image contains the precise pixel level information, which

can complement the correct foreground appearance and color in-

formation contained in denoised latents. Meanwhile, the inherent

generative nature of diffusion models makes it naturally adapt to

inverse image harmonization, i.e. generating synthetic composite

images based on real images and foreground masks. We train an

inverse harmonization diffusion model to perform data augmen-

tation on two subsets of iHarmony4 and construct a new human

harmonization dataset with prominent foreground objects. Exten-

sive experiments demonstrate the effectiveness of our proposed

Harmony-VAE and inverse harmonization model. The code, pre-

trained models and the new dataset will be made publicly available.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
image harmonization, latent diffusion model, VAE, data augmenta-

tion, inverse harmonization, stable diffusion

1 INTRODUCTION
Image composition is a crucial technique in digital editing, where a

new image is created by combining the foreground of one image

with the background of another. This process, widely applied in

fields such as advertising and entertainment, often encounters a

challenge: the merged image may appear unrealistic due to mis-

matches in lighting and color between the foreground and back-

ground. To solve this problem, image harmonization is employed.

It involves modifying the foreground to ensure visual consistency

with the background, focusing on aligning color, illumination, and

texture, without changing the original content or meaning. Recent
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advancements in deep learning [45, 11, 17, 41] have significantly

facilitated image harmonization.

The latent diffusionmodel (LDM) [37] is gaining increasing atten-

tion and has established new SoTA in the field of image generation.

It can swiftly transfer to downstream image-to-image translation

tasks such as image editing [1, 23] and restoration [33, 47] . As image

harmonization can be categorized as an image-to-image translation

task, the latent diffusion model is also suitable for doing image

harmonization. For example, Li et al. [27] follow the network ar-

chitecture in ControlNet [51] and adapt pretrained latent diffusion

model, i.e. Stable Diffusion, to perform image harmonization, but

they ignore the image distortion problem inherent in VAE decod-

ing process, resulting in unsatisfactory model performance. Zhou

et al. [52] adopt a two-stage approach. The first stage finetunes

the denoising UNet, while the second stage involves designing a

refinement module to alleviate the image distortion issue. It finally

achieves SoTA performance. However, this approach exhibits sev-

eral limitations: 1) The second-stage training relies on the results of

the first stage, necessitating retraining of the second stage upon up-

dates in the first stage. 2) Introducing an independent UNet model

complicates the harmonization process. 3) It’s limited to usage at

fixed resolutions.

To solve aforementioned limitations, we propose Harmony-VAE,

which incorporates composite images as additional information

into the decoding process of the VAE, enabling the VAE decoder to

reconstruct images with realistic details. Our motivation stems from

the highly precise object shape information present in composite

images, which can complement the correct foreground appearance

and color information contained in denoised latents. The training

of Harmony-VAE is independent of fine-tuning denoising UNet;

it reconstructs real images with composite images as condition,

significantly reducing training costs, and it can improve the per-

formance of all LDM-based harmonization models. Furthermore,

although trained only on 256px images, Harmony-VAE significantly

enhances the decoding quality of higher resolution images, demon-

strating strong generalization capabilities. We call DiffHarmony

equipped with Harmony-VAE as DiffHarmony++.

The latent diffusion model enhanced by our proposed Harmony-

VAE, with simple modifications, can be adapted to construct a model

that performs inverse image harmonization, serving the purpose

of data augmentation. Inverse image harmonization refers to the

generation of synthetic composite images from real images and

foreground masks. The outcomes should not be unique, as the con-

tent of the images may be influenced by various factors such as

weather and lighting conditions. This process can be modeled as

a one-to-many image-to-image translation task, and employing

a diffusion model to handle it is a very natural choice. Based on

DiffHarmony++, we train an inverse harmonization diffusion model

on iHarmony4[10]. This model enables virtually unlimited expan-

sion of harmonization data. Leveraging the inverse harmonization

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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model, we perform data augmentation on two smaller subsets of

iHarmony4, namely Hday2night and HFlickr. Compared to training

solely on the original data, training with augmented data greatly

enhances performance on these two datasets.

Another significant advantage of our proposed inverse harmo-

nization model is to automatically construct new image harmo-

nization datasets, which has long been a challenge in the field of

image harmonization. The creation of datasets like RealHM[20]

often needs extensive manual effort and expertise in digital im-

age processing, proving to be time-consuming and labor-intensive.

iHarmony4 employs automatic color transfer algorithms to gener-

ate synthetic composite images, but still need manual screening to

filter out unreasonable data. Leveraging the inverse harmonization

model, we generate a substantial number of synthetic composite

images based on the imaterialist[12] dataset and train a harmony

classifier to identify most unharmonized images, culminating in

the creation of the Human Harmony dataset. Training harmoniza-

tion models on this newly constructed dataset, both qualitative

and quantitative evaluations affirm that the proposed inverse har-

monization diffusion model is a highly promising approach for

building new datasets.

Our contributions can be summarized as follows:

• We propose Harmony-VAE to tackle the image distortion

problem inherent in VAE decoding process, which is themost

challenging aspect of applying LDM to image harmonization

tasks.

• We design a simple yet effective inverse harmonization dif-

fusion model, and validate its efficacy on two image harmo-

nization datasets.

• We contribute a new Human Harmony dataset with inverse

harmonization model and use harmony classifier to further

filter out high quality data.

2 RELATEDWORKS
2.1 Image Harmonization
Image harmonization is a critical task in image composition [34],

aimed at achieving visual consistency between the foreground and

background of composite images. Early efforts were primarily cen-

tered around traditional color matching algorithms [49, 43, 44, 50, 7].

These methods focused on aligning the low-level color statistics be-

tween the foreground and background, utilizing techniques such as

shifting, scaling, and histogram matching. For example, Lalonde et

al. [26] recolor image regions for realistic compositing by studying

the color statistics of a large dataset of natural images and look-

ing at differences in color distribution in realistic and unrealistic

images. With the advent of deep learning, a surge of supervised

deep harmonization methods came out [45, 11, 17, 41, 36, 46, 48,

53, 20, 2, 3, 4]. Tsai et al. [45] propose an end-to-end deep convolu-

tional neural network for image harmonization, which can capture

both the context and semantic information of the composite images

during harmonization. Cun et al. [11] learn the feature map in the

masked region and the others individually with a novel attention

module named Spatial-Separated Attention Module. The applica-

tion of domain translation or style transfer techniques to image

harmonization [8, 16, 30, 10] offers a creative means of reconciling

discrepancies between the foreground and background by concep-

tualizing different illumination conditions as distinct domains or

styles. Cong et al. [10] translate foreground to the same domain

as background with a domain verification discriminator. Cong et

al. [8] use a domain code extractor to capture the background do-

main information to guide the foreground harmonization, which

is regulated by well-tailored triplet losses. In the mean time, the

integration of Retinex theory [15, 14, 13] into image harmonization

has opened new pathways by decomposing images into reflectance

and illumination maps, and also the development of deep networks

predicting color transformation [9, 22, 29, 49] signifies a balance be-

tween efficiency and effectiveness, streamlining the harmonization

process without sacrificing quality.

2.2 Image Harmonization Dataset
Jiang et al. [20] construct RealHM dataset with 216 image pairs by

manually adjusting the foreground according to the background,

which is time-consuming, labor-intensive, and unreliable. Another

line of work is collecting a set of foreground images captured in

different illumination conditions, followed by replacing one fore-

ground with another counterpart, for example Transient Attributes

Database [25] (101 sets, in which each set has well-aligned images

for the same scene captured in different conditions). Cao et al. [3]

and Guo et al. [15] try to construct harmonization dataset by vary-

ing the lighting condition of the same scene using 3D rendering

techniques, however the rendered images have large domain gap

with real images so the trained model is hard to directly applied

to real test images. Some other works [45, 11, 10] adopted an in-

verse approach, i.e., adjusting the foreground of real image to create

synthetic composite image. The representative, iHarmony4 dataset

utilize automatic color transfer for foreground adjustment followed

by aesthetic predictor and binary CNN classifier for filtering (also

at last need manual screening). Niu et al. [35] learns a VAE condi-

tioned on ground-truth real image and foreground mask to predict

color transformation LUT to adjust foreground part in real image,

producing new synthetic composite images automatically.

2.3 Diffusion Model
Diffusion models are adept at generating realistic images from

random noise, showcasing unparalleled performance in image syn-

thesis. Ho et al. [19] introduced Denoising Diffusion Probabilistic

Models (DDPMs) employing a Markovian diffusion process. This

method progressively adds noise to an image until it becomes pure

noise. Then, a deep neural network trained to predict this noise

reverses the process, creating a new image from the noise. Alter-

natively, a non-Markovian diffusion process [42] is proposed to

offer a quicker and more adaptable solution than the Markovian

method in DDPMs. Due to the remarkable ability to create lifelike

images, diffusion models have been extensively used in various im-

age synthesis applications by researchers. For example, Palette [40],

a conditional diffusion model set new standards in image-to-image

translation tasks including colorization, inpainting, uncropping,

and JPEG restoration. RePaint [32] utilized a pre-trained uncondi-

tional DDPM as a basis for generation, conditioning the process

by sampling from unmasked regions of the provided image data.
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Figure 1: Demonstration of Harmony-VAE training and inference of DiffHarmony++. (a) The training goal of Harmony-VAE is
to reconstructing 𝐼 with 𝐼 and𝑀 as condition. The extracted features will be fed into VAE decoder through skip connection in
way of element-wise addition. We add zero-initialized convolution layer before each skip connection to stablize training. (b) At
denoising stage, the process starts with pure Gaussian noise 𝑧𝑇 , iteratively refines it through Denoising U-Net, and finally get
denoised latent variable 𝑧′

0
, during which the encoded composite image E(𝐼 ) and downsampled foreground mask image are

concatenated in channel dimension as condition. Then the latent variable 𝑧′
0
will be decoded into harmonized image 𝐼 .

Sahak et al. [39] introduced SR3+, a diffusion model that set new

benchmarks in the blind super-resolution task.

Diffusion models in latent space have recently garnered unprece-

dented attention. Latent Diffusion Model (LDM) [37] is proposed

to serve as the theoretical foundation for Stable Diffusion. Numer-

ous works based on Stable Diffusion targeted on solving image-

to-image translation tasks, and some have applied latent diffusion

model framework to the image harmonization task (which can be

categorized as image-to-image translation). For instance, Appear-

ance Consistency Discriminator [27] is proposed to guide LDM

and convert the generated image from RGB to HSV/HSL space to

adjust the lightness channel. Chen et al. [6] achieved Zero-Shot

Image Harmonization by incorporating Attention-Constraint Text

and Content Retention modules into Stable Diffusion. Lu et al. [31]

focused on using pretrained LDM to blend photographic objects

into paintings, achieving artistically coherent composite images.

Zhou et al. [52] proposed DiffHarmony, which adapted the Sta-

ble Diffusion inpainting variation for image harmonization and

propose a refinement stage to address image distortion issues.

3 HARMONY-VAE
3.1 Preliminary
The Stable Diffusion (SD) model stands as a quintessential repre-

sentation of latent diffusion model and serves as the cornerstone

for our approach. It undergoes pre-training in two distinct stages

employing a VAE (Variational AutoEncoder) and a denoising U-Net.

In the first stage, it trains the VAE, where the encoder E first en-

codes the image I into a latent space, resulting the latent variable

𝑧0 = E(I); subsequently the decoderD endeavors to reconstruct it

into the original image, yielding the reconstructed image
ˆI. In the

second stage, the VAE is frozen and the goal is training a denoising

U-Net 𝜖𝜃 , which involves adding noise over 𝑡 steps to the latent

variable 𝑧0 to get noisy latent 𝑧𝑡 (𝑡 ∈ [1,𝑇 ]), and updating the

denoising U-Net with latent denoising loss, as formulated below:

L = E𝑧0,𝑐,𝜖∼N(0,1),𝑡
[
∥𝜖 − 𝜖𝜃 (𝑧𝑡 , 𝑡, 𝑐)∥22

]
(1)

Here, 𝜖 denotes the noise added to the latent variable 𝑧0 at each

noise step, 𝜖𝜃 represents the denoising U-Net, receiving timestep 𝑡

and additional conditions 𝑐 (e.g., text, conditional images, masks,

etc.) as input.

During the inference process, pure noise 𝑧𝑇 is sampled from

a normal distribution. The model will iteratively employ 𝜖𝜃 to

estimate the noise for each denoising step 𝑡 , progressively refining

the latent variable 𝑧𝑇 to ultimately attain denoised latent variable

𝑧′
0
. Finally, the denoised latent variable 𝑧′

0
is fed into the decoder

D to generate the image. For intricate details on the training and

inference of Stable Diffusion, please refer to [37].

In image harmonization task, we delineate the conceivable vari-

ables as follows: the input to image harmonization task comprises

the composite image 𝐼 and the foreground mask image𝑀 (where

the foreground is represented as 1 in white, and the background as 0

in black), while the output is the harmonized image 𝐼 . Ground-truth

real image utilized in model training and evaluation is denoted

as 𝐼 . The composite image 𝐼 can be divided into the foreground

component 𝐼𝑓 and the background component 𝐼𝑏 . The objective of

image harmonization task is to adjust the composite foreground 𝐼𝑓

to produce the harmonized image 𝐼 , which should closely resemble

𝐼 .

When employing the latent diffusionmodel for image harmoniza-

tion, a viable approach could be: during training, setting 𝑧0 = E(𝐼 ),
𝑐 = (E(𝐼 ), down(𝑀)) (where down denotes the downsampling op-

eration), in detailed words utilizing the encoded composite image

and downsampled mask image as conditions (typically concate-

nated along the channel dimension) for denoising the noisy latent

𝑧𝑡 . During inference, initialize from random noise 𝑧𝑇 , progressively

denoise it to obtain 𝑧′
0
and decode it through D to yield 𝐼 . This ap-

proach has already been proven effective in DiffHarmony[52], and



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

in our subsequent descriptions, we assume that the latent diffusion

model part adopts the same architecture as it.

3.2 Our Method
When employing latent diffusion models for image harmoniza-

tion task, a common obstacle to model performance is the image

distortion problem caused by VAE[24] decoding process. Image har-

monization falls within the domain of low-level image processing,

demanding pixel-level accuracy of output images. However, VAE in

Stable Diffusion, which decodes a single latent variable to an image,

often results in distortion in subtle high-frequency textures or lead

to the fabrication of content not present in the original image (as

VAE fundamentally operates as a generative model).

To address the aforementioned issue, we propose the Harmony-

VAE, aiming at enhancing the quality of the output harmonized

image 𝐼 during the decoding stage of VAE by utilizing the input of

the harmonization task, namely the composite image 𝐼 and fore-

ground mask image𝑀 .

Specifically, we incorporate an additional encoder, the condi-

tional encoder E𝑐 , to encode 𝐼 and𝑀 . During the encoding process,

we obtain the final latent variables and intermediate features of the

encoder. These features are fused into VAE decoder through skip

connections (similar to UNet[38]) and element-wise addition. The

training objective of the Harmony-VAE is to reconstruct the real im-

age 𝐼 with 𝐼 and𝑀 as condition. This process can be mathematically

formalized as:

L =




𝐼 − D
(
E(𝐼 ), E𝑐 (𝐼 , 𝑀)

)


2
2

(2)

Strictly speaking, during the training of the Harmony-VAE, E(𝐼 )
part should actually be the latent variable 𝑧′

0
. However, when the

denoising module performs sufficiently well, the distributions of

the latent variables corresponding to the real image 𝐼 and the har-

monized image 𝐼 are close enough, thereby using the encoded real

image E(𝐼 ) as the model input for training does not incur signifi-

cant performance loss. Moreover, this choice brings another benefit:

the training of the Harmony-VAE model does not depend on the

denoising part, greatly reducing the training cost, as there is no

need to generate data samples from the diffusion model offline or

online.

During training of the Harmony-VAE, the weights of the condi-

tional encoder E𝑐 are initialized from the weights of the original

VAE encoder. To maintain training stability, we add zero-initialized

convolution layers before each skip connection, and utilize the

zero-initialization strategy for the portion of convolution weights

processing the mask image 𝑀 at the input convolution conv_in.

During training, we set the weights of the conditional encoder E𝑐 ,
decoder D, and all zero-initialized convolution layers trainable.

After training, it can be integrated seamlessly into DiffHarmony

inference process. We call DiffHarmony equipped with Harmony-

VAE as DiffHarmony++. For a comprehensive schematic illustration

of Harmony-VAE training and DiffHarmony++ inference, please

refer to Figure 1. We highlight the newly added model weights in

red dashed lines.

4 INVERSE IMAGE HARMONIZATION
4.1 Inverse Harmonization Model
The acquisition of training data for image harmonization task has

always been a costly endeavor. Traditional procedures for con-

structing harmonization datasets often involve three main steps:

selecting challenging compositing pairs, creating precise masks for

foreground objects with distinct boundaries, and adjusting fore-

ground appearance to match the background using tools like Pho-

toshop [20]. These steps require a considerable amount of manual

labor and expertise in image processing, making them challeng-

ing and time-consuming. The construction of the iHarmony4 [10]

dataset employs a highly automated process, such as color trans-

fer modules and classifiers to identify unreasonable data, but still

requires manual screening.

Diffusion models are initially applied to image generation and

conditional image generation. Considering harmonization data gen-

eration (as in iHarmony4), given the foreground mask image 𝑀

and the real image 𝐼 , the output is the composite image 𝐼 . The re-

sulting composite image 𝐼 is not unique because many variations

can make the foreground appear incongruous with the background.

This process can be modeled as a typical one-to-many conditional

image-to-image translation task, hence employing diffusion models

to generate harmonization data is a natural choice.

Our approach is based on DiffHarmony++ to train an inverse

harmonization model. The model takes the foreground mask image

𝑀 and the real image 𝐼 as input and outputs the composite image 𝐼 .

We train it using the existing harmonization dataset iHarmony4.

We can use the inverse harmonization model to generate addi-

tional training data for existing harmonization datasets. Specifically,

we generate 𝐾 candidate composite images for each (𝐼 , 𝑀) data pair

in the dataset and specify the blending ratio as 𝛾 . Assuming the

number of (𝐼 , 𝑀) data pairs in the original dataset is 𝑁1, and the to-

tal number of original composite images is 𝑁2, we randomly select⌈
𝛾𝑁2

𝑁1

⌉
newly generated composite images for each (𝐼 , 𝑀) data pair

and add them to the training data. After blending, we train new

harmonization models separately using the original dataset and the

augmented dataset, comparing the results of the two experiments

on oiriginal test set to observe the benefits of data augmentation

(Experimental results show that our data augmentation strategy

significantly improves model performance compared to training

solely on the original data. Details can be found in the 5.3 section).

4.2 Construct Human Harmony Dataset
The field of image harmonization has long lacked datasets specifi-

cally tailored to human portraits domains. These datasets have the

potential to optimize product showcases and enhance user experi-

ences, offering significant value and innovation opportunities for

e-commerce, retail, and fashion design. However, for the reasons

mentioned earlier, constructing such datasets has been challenging.

Now, after verifying the effectiveness of our inverse harmonization

model, we have the opportunity to construct a Human Harmony

dataset in a cheap and fast way.

Furthermore, the analysis in DiffHarmony [52] suggests that

latent diffusion models may perform better on samples with large

foregrounds. Portrait photography data typically features large
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Dataset Metric Composite DoveNet[10] BargainNet[8] RainNet[30] iS
2
AM[41] D-HT[14] SCS-Co[16] HDNet[5] Li 𝑒𝑡 𝑎𝑙 . [28] GIFT[35] DiffHarmony[52] Ours

HCOCO

PSNR↑ 35.47 35.83 37.03 37.08 39.16 38.76 39.88 41.04 34.33 39.91 41.71 42.42

MSE↓ 41.07 36.72 24.84 29.52 16.48 16.89 13.58 11.60 59.55 12.70 9.18 8.43

fMSE↓ 542.06 551.01 397.85 501.17 266.19 299.30 245.54 - - 229.68 170.44 155.73

HAdobe5k

PSNR↑ 33.77 34.34 35.34 36.22 38.08 36.88 38.29 41.17 33.18 38.76 41.08 41.78

MSE↓ 63.40 52.32 39.94 43.35 21.88 38.53 21.01 13.58 161.36 18.35 19.51 18.81

fMSE↓ 404.62 380.39 279.66 317.55 173.96 265.11 165.48 - - 143.96 120.78 113.18

HFlickr

PSNR↑ 30.03 30.21 31.34 31.64 33.56 33.13 34.22 35.81 29.21 34.44 37.10 37.74

MSE↓ 143.45 133.14 97.32 110.59 69.97 74.51 55.83 47.39 224.05 54.33 30.89 28.77

fMSE↓ 785.65 827.03 698.40 688.40 443.65 515.45 393.72 - - 360.08 216.27 201.52

Hday2night

PSNR↑ 34.50 35.27 35.67 34.83 37.72 37.10 37.83 38.85 34.08 38.28 39.45 39.49

MSE↓ 76.61 51.95 50.98 57.40 40.59 53.01 41.75 31.97 122.41 37.81 22.42 22.48

fMSE↓ 989.07 1075.71 835.63 916.48 590.97 704.42 606.80 - - 566.47 470.846 464.35

Average

PSNR↑ 34.35 34.76 35.88 36.12 38.19 37.55 38.75 40.46 32.70 38.92 40.97 41.66

MSE↓ 59.67 52.33 37.82 40.29 24.44 30.30 21.33 16.55 141.84 19.46 14.86 13.98

fMSE↓ 594.67 532.62 405.23 469.60 264.96 320.78 248.86 - - 225.30 166.48 153.98

Table 1: Quantitative comparison across four sub-datasets of iHarmony4 and in general. Top two performance are shown in red
and blue. ↑ means the higher the better, and ↓ means the lower the better.

foregrounds objects. Building a Human Harmony dataset will help

us further validate this hypothesis.

We select imaterialist-fashion-2020-fgvc7 [12] as our initializa-

tion. It comprises a vast number of high-resolution portrait pho-

tographs, and the majority features large foregrounds objects (hu-

man body parts). Each image is paired with highly-detailed segmen-

tation map, which can be used to construct accurate foreground

mask.

To ensure the quality of the generated harmonization data, we

train a harmony classifier using the iHarmony4 dataset. Given an

input image, the classifier outputs the probability of it belonging to

composite images.

Following Section 4.1, we generate𝐾 candidate composite images

for each (𝐼 , 𝑀) data pair. To ensure the quality of the generated

images, we separately train a Harmony-VAE suitable for inverse

harmonization model using the iHarmony4 dataset. Subsequently,

we use the harmony classifier to classify the candidate set, selecting

the image with the highest classification probability as the final

composite sample.

5 EXPERIMENT
5.1 Datasets and Metrics
5.1.1 iHarmony4 Dataset. We conduct experiments on the bench-

mark iHarmony4 [10] dataset, which consists of four sub-datasets:

HCOCO, HFlickr, HAdobe5K, and Hday2night, with a total of 65,742

(7,404 for testing) pairs of composite and real images in the train-

ing (testing) sets. Following previous work [10, 41], we merge the

training set of the four sub-datasets into one entire training set and

evaluate each sub-dataset individually.

5.1.2 Human Harmony Dataset. For the Human Harmony dataset,

we filter the imaterial-fashion-2020-fgvc7 [12] dataset to remove

images containing only products. After cleaning the dataset size is

29,106. We set all valid segmentation parts (except background) to

1 to construct foreground mask images. When building the Human

Harmony dataset, we set 𝐾 = 10 and use the harmony classifier

to select the image with the highest classification probability. We

divide the Human Harmony dataset according to the same train-

ing/testing set ratio as the iHarmony4 dataset, resulting in a training

set of size 26,157 and a testing set of size 2,946.

Figure 2: Cumulative distribution curves about foreground
area ratios.We analyze and plot both iHarmony4 andHuman
Harmony dataset.

We analyze the distribution of foreground ratios and plot cumu-

lative distribution curves. We also simultaneously plot the curve of

iHarmony4. From Figure 2, it can be observed that approximately

70% of the images in the Human Harmony dataset have foreground

ratios above 0.2, whereas in iHarmony4 this is less than 15%.

5.1.3 Evaluation Metrics. In line with previous works [16], our

DiffHarmony++ and the baselines are evaluated using Peak Signal-

to-Noise Ratio (PSNR), Mean Squared Error (MSE), and foreground

MSE (fMSE) calculated across RGB channels. fMSE is a specific eval-

uation metric that solely measures the MSE within the foreground

region, gauging the success of foreground harmonization.

5.2 Implementation Details
During the training of Harmony-VAE, we use all iHarmony4 train-

ing data. We set lr = 1𝑒 − 4, with warmup = 0.02, and then keep

it constant. The training lasts 10 epochs. We use the AdamW op-

timizer, with weight_decay=0, 𝛽1 = 0.9, and 𝛽2 = 0.999. We save

model weights using exponential moving average (EMA), with

max_decay = 0.999. Images are resized to 256px during train-

ing. As for the diffusion model, we adopt the pre-trained DiffHar-

mony [52] directly. Following [52], we use Euler ancestral discrete

scheduler [21] to generate the samples in only 5 steps during infer-

ence.

The implementation details of inverse harmonization model are

mostly consistent with DiffHarmony++, except that we use (𝐼 , 𝑀)



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Qualitative results of Harmony-VAE.

as conditions and composite image 𝐼 as the denoising target during

training. The training and inference of corresponding Harmony-

VAE is also modified accordingly.

For the harmony classifier, we utilize pre-trained ResNet50 [18]

model, taking the final 2048-dimensional features after pooling

for linear probing. We train a binary classification head using all

iHarmony4 training data.

5.3 Performance Comparison
5.3.1 Results on iHarmony4. On the iHarmony4 dataset, we com-

pare our approach with the following image harmonization meth-

ods: DoveNet[10] , BargainNet[8] , RainNet[30] , iS
2
AM[41] , D-

HT[14] , SCS-Co[16] , HDNet[5] , Li 𝑒𝑡 𝑎𝑙 .[28] , GIFT[35], DiffHar-

mony[52], etc. In Table 1, we report the average results for the

four sub-test sets and the entire test set, which are either replicated

from the original papers or reproduced using publicly available

models. For the overall results on the entire test set, our method

significantly outperforms previous SOTA methods. Our method

achieves the best results on almost all sub-sets , except for the MSE

on the HAdobe5k and Hday2night subsets.

Our proposed model outperforms DiffHarmony because we uti-

lize Harmony-VAE instead of the VAE from Stable Diffusion. In the

process of image decoding, using only the regular VAE from Stable

Diffusion can result in severe distortion. In contrast, our proposed

Harmony-VAE can preserve more details. Our qualitative results

are provided in Figure 3. It can be observed that Harmony-VAE

successfully repairs severely damaged facial features, architectural

patterns, small text, and other contents during the decoding process.

base augmented

Hday2night

PSNR: 39.06 PSNR: 42.26
MSE: 25.70 MSE: 17.49
fMSE: 439.11 fMSE: 223.67

HFlickr

PSNR: 34.52 PSNR: 36.57
MSE: 61.15 MSE: 41.18
fMSE: 413.08 fMSE: 252.86

Table 2: Qualitative results of data augmentation experi-
ments. Data generated by inverse harmonization model can
greatly boost model performace on small datasets.

5.3.2 Effectiveness of Data Augmentation. We conduct data aug-

mentation experiments with inverse harmonization model on two

subsets of iHarmony4, Hday2night and HFlickr, as they have rel-

atively fewer training data, making them more likely to benefit

from data augmentation. HFlickr has 4,836 real images and 8,280

composite images, while Hday2night has only 109 real images and

447 composite images.

Our experimental results are shown in Table 2. "base" repre-

sents the results obtained by training only on the original dataset,

while "augmented" represents the results obtained by training on

the augmented dataset. For both datasets, we set the blending ra-

tio 𝛾 = 1. All experiments use the same hyperparameter setting
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Dataset Model 0% ∼ 5% 5% ∼ 15% 15% ∼ 100%

iHarmony4

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 3835 1951 1618

HDNet512

PSNR: 45.64 PSNR: 39.97 PSNR: 34.59

MSE: 3.16 MSE: 11.33 MSE: 47.19

fMSE: 143.93 fMSE: 129.87 fMSE: 152.01

DiffHarmony++

PSNR: 45.20 PSNR: 40.17 PSNR: 34.97
MSE: 3.67 MSE: 11.31 MSE: 41.94

fMSE: 173.40 fMSE: 128.27 fMSE: 136.67

Human

Harmony

𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 26 323 2597

HDNet512

PSNR: 41.05 PSNR: 37.16 PSNR: 32.60

MSE: 7.66 MSE: 18.48 MSE: 65.71

fMSE: 210.96 fMSE: 160.73 fMSE: 182.04

DiffHarmony++

PSNR: 42.48 PSNR: 39.52 PSNR: 34.31
MSE: 5.60 MSE: 11.45 MSE: 60.17

fMSE: 176.26 fMSE: 101.86 fMSE: 154.02
Table 3: Comparison between HDNet trained with high-resolution images and DiffHarmony++ on both iHarmony4 and Human
Harmony dataset. Number of samples of every subset with different foreground proportions are denoted as 𝑁𝑠𝑎𝑚𝑝𝑙𝑒𝑠 .

and train with the same total amount of data. We train enough

steps to ensure convergence and then evaluate on the original test

set. We perform inference only on 512px images and then scale

the results to 256px for evaluation, as achieving optimal inference

performance is not necessary for observing the effectiveness of

data augmentation. The results show that data augmentation with

inverse harmonization model significantly improves the model per-

formance on both datasets, thus validating its ability to generate

high-quality composite images.

5.3.3 Advanced Analysis. In Table 3, we present a detailed compar-

ison of the performance of DiffHarmony++ and HDNet on both

the iHarmony4 dataset and the Human Harmony dataset. To en-

sure fairness, we stipulate that models directly utilize composite

images as input during both training and inference. (Note: HDNet

in its original implementation crops the background portion of

real images as input background content, significantly improving

its performance and resulting in unfair comparisons with other

approaches.) Following HDNet[5], we divide data into three ranges

based on the ratio of the foreground region area and the entire

image: 0% ∼ 5%, 5% ∼ 15%, and 15% ∼ 100%. We calculate metrics

for each range respectively. We train HDNet with 512px images,

denoting it as HDNet512. During testing, we utilize 1024px images

as input and subsequently resize harmonized images to 256px for

evaluation, maintaining consistent experimental settings with our

approach.

Our results on the iHarmony4 dataset indicate that when test

samples have small foreground proportions (0% ∼ 5%), HDNet512

outperforms DiffHarmony++. However, as the foreground propor-

tion increases, DiffHarmony++ demonstrates increasingly superior

performance. On the Human Harmony dataset, particularly on

larger foreground proportions (15% ∼ 100%), DiffHarmony++ con-

sistently outperforms HDNet512 . Regarding its performance on

samples with smaller foreground proportions, we speculate that

the limited number of data samples leads to a significant variance

in statistical metrics. Due to constraints in time and computational

resources, further investigation into the underlying reasons for this

phenomenon is deferred for future research.

Qualitative results are shown in Figure 4. Our approach often

generates visually appealing outcomes that closely resemble the

authentic real images.

5.4 Ablation Study
We conduct ablation study to validate the effectiveness of the com-

ponents in our proposed Harmony-VAE.

𝑅𝑖𝑛𝑓 Harmony-VAE PSNR MSE fMSE

512px ✘ 38.12 25.09 292.16

512px ✔ 40.11 19.81 215.01

1024px ✘ 40.98 14.86 166.48

1024px ✔ 41.66 13.98 153.98

1024px ✘ 41.72 13.35 151.65

1024px ✔ 41.75 13.23 150.92

Table 4: Ablation study of using Harmony-VAE at multiple
inference resolutions. For easier comparison we add addi-
tional results of DiffHarmony plus refinement module at
bottom and mark the corresponding lines in gray color.

We do inference with and without Harmony-VAE at multiple

resolutions. As shown in Table 4, adding the Harmony-VAE results

in an improvement in the overall performance. The benefit of intro-

ducing Harmony-VAE is more prominent when DiffHarmony uses

lower image resolutions, as the Harmony-VAE and using higher

resolution input both aim to address the issue of image distortion,

and they complement each other. We also add additional results

of DiffHarmony plus refinement module [52] at bottom and mark

the corresponding lines in gray color. Comparing to using only

Harmony-VAE, using only the refinement module and the cascaded

use of Harmony-VAE and refinement module only bring negligible

improvement. This suggests that employing Harmony-VAE alone

to enhance DiffHarmony could achieves optimal performance, and
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Figure 4: Qualitative results on Human Harmony Dataset.

furthermore Harmony-VAE can be trained in a more elegant and

cost-effective manner. It is noteworthy that even training only

on 256px images, the Harmony-VAE still brings significant im-

provement when inferring with 1024px images, demonstrating the

generalization of our approach.

zero init random init

E𝑐
PSNR: 39.86

NaNMSE: 20.45

fMSE: 221.05

E𝑐 + D
PSNR: 40.11 PSNR: 31.49

MSE: 19.81 MSE: 114.81

fMSE: 215.01 fMSE: 1231.56

Table 5: Ablation study of our proposed zero init strategy and
finetuning different parameters.

From Table 5, it can be observed that not using zero-initialized

convolution severely damages the normal training of the model.

The random initialization of convolution layers introduces nonneg-

ligible perturbations to the original feature distribution when fused

with the VAE decoder. From the fine-tuning parameter ablation

experiments, it can be seen that fine-tuning only the conditional

encoder already provides a considerable improvement in recon-

struction performance, while unfreezing the decoder can further

increase the benefits.

6 CONCLUSION
In this paper, we have proposed the Harmony-VAE, aimed at lever-

aging the conditional information in image harmonization tasks to

enhance the quality of image decoding of the VAE component in

the latent diffusion model. Our proposed Harmony-VAE preserves

finer details, effectively restoring severely damaged facial features,

architectural patterns, small text during the decoding process. Fur-

thermore, we have trained an inverse harmonization model which

can synthesize new composite images based on real images and

foreground masks. The substantial improvements observed on the

Hday2night and HFlickr datasets attest to the efficacy of our model.

Building upon this, we have subsequently constructed the Human

Harmony Dataset, comprising samples with prominent foreground

areas. Experimental results demonstrate the effectiveness of our

inverse harmonization model of superiority of the LDM-based har-

monization approach on samples featuring prominent foreground

objects.
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