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(a) Mercator (b) Miller (c) Sinusoidal (d) Equirectangular

Figure 6: An illustration for map projection distortion: (a)-(d): Tissot indicatrices for four projections. The equal
area circles are putted in different locations to show how the map distortion affect its shape.

9 APPENDIX

9.1 THE MAP PROJECTION DISTORTION PROBLEM

In fact there is no map projection, which can preserve distances in all directions. The so-called
equidistant projection can only preserve distance on one direction, e.g., the longitude direction for
the equirectangular projection (See Figure 6d), while the conformal map projections (See Figure 6a)
can preserve directions while resulting in a large distance distortion. For a comprehensive overview
of map projections and their distortions, see Mulcahy & Clarke (2001). This is a well recognized
problem in Cartography which shows the importance of calculating on a round planet Chrisman
(2017). Due to the limitations of these 2D location encoders, there is an urgent need for a location
encoding method which preserves the spherical distance (e.g., great circle distance5) between two
points. The multi-scale encoding method utilizes Double Fourier Sphere basis (OpS2q terms) or a
subset (OpSq terms) of it while still being able to correctly measure the spherical distance. This
inspires us to explore the most effective subset of Fourier bases on spheres.

9.2 SPHEREC,SPHEREC+,SPHEREM,SPHEREM+

sphereC Inspired by the fact that any point px, y, zq in 3D Cartesian coordinate can be expressed by
sin and cos basis of spherical coordinates (λ, φ plus radius) 6, we define the basic form of Sphere2Vec,
namely sphereC encoder, for scale s as

GpsphereCqpxq “
S´1
ď

s“0

rsinφs, cosφs cosλs, cosφs sinλss. (9)

It can be shown that when S “ 1,GpsphereCqpxq directly satisfies our expectation in Equation 1 where
fpxq “ cosp xR q. See more detailed analysis and comparison to the grid encoder in Appendix 9.3.

sphereM Considering the fact that many geographical features are more sensitive to either latitude
(e.g., temperature, sunshine duration) or longitude (e.g., timezones, geopolitical borderlines), we
might want to focus on increasing the resolution of either φ or λ while the other is hold relatively
at large scale. Therefore, we introduce a multi-scale position encoder sphereM , where interaction
terms between φ and λ always have one of them fixed at top scale:

GpsphereMqpxq “
S´1
ď

s“0

rsinφs, cosφs cosλ, cosφ cosλs, cosφs sinλ, cosφ sinλss. (10)

This new encoder ensures that the φ term interact with all the scales of λ terms and λ term interact
with all the scales of φ terms. Note that when S “ 1, GpsphereMq is equivalent to GpsphereCq. Both
sphereC and sphereM are multi-scale versions of a spherical distance-kept encoder (See Equation
12) and keep that as the main term in their multi-scale representation.

5https://en.wikipedia.org/wiki/Great-circle_distance
6https://en.wikipedia.org/wiki/Spherical_coordinate_system

14



Under review as a conference paper at ICLR 2022

sphereC+ and sphereM+ From the analysis of the two proposed encoders and the state-of-the-art
grid encoders (Appendix 9.3), we know that grid pays more attention to the sum of cos difference of
latitudes and longitudes, while our proposed encoders pay more attention to the spherical distances.
In order to capture both information, we consider merging grid with each proposed encoders to get
more powerful models that encode geographical information from different angles.

GpsphereC`qpxq “ GpsphereCqpxq YGpgridqpxq,

GpsphereM`qpxq “ GpsphereMqpxq YGpgridqpxq.
(11)

9.3 ANALYSIS OF sphereC AND ITS COMPARISON TO THE grid ENCODER

To illustrate that sphereC is good at capturing spherical distance, we take a close look at its basic
case S “ 1 (define s “ 0 and fs “ 1), where the multi-scale encoder degenerates to

pGpsphereCqpxq “ rsinpφq, cospφq cospλq, cospφq sinpλqs. (12)

These three terms are included in the multi-scale version (S ą 1) and serve as the main terms at the
largest scale and also the lowest frequency (when s “ S ´ 1). The high frequency terms are added
to help the downstream neuron network to learn the point-feature more efficiently. Interestingly,
pGpsphereCq captures the spherical distance in a very explicit way:
Theorem 2. Let x1, x2 be two points on the same sphere with radius R, then

x pGpsphereCqpx1q, pG
psphereCqpx2qy “ cosp

∆D

R
q, (13)

where ∆D is the great circle distance between x1 and x2. Under this metric,

} pGpsphereCqpx1q ´ pGpsphereCqpx2q} “ 2 sinp
∆D

2R
q. (14)

Moreover, } pGpsphereCqpx1q ´ pGpsphereCqpx2q} «
∆D
R ,when ∆D is small w.r.t. R.

See the proof in Appendix 9.4. Since the central angle ∆δ “ ∆D
R P r0, πs and cospxq is strictly

monotonically decrease for x P r0, πs, Theorem 2 shows that pGpsphereCqpxq directly satisfies our
expectation in Equation 1 where fpxq “ cosp xR q. In comparison, when S “ 1, the inner product in
the output space of grid encoder is

x pGpgridqpx1q, pG
pgridqpx2qy “ cospφ1 ´ φ2q ` cospλ1 ´ λ2q, (15)

which models the latitude difference and longitude difference of x1 and x2 separately rather than
spherical distance. This introduces problems in encoding. For instance, consider data pairs x1 “

pλ1, φq and x2 “ pλ2, φq, the distance between them in output space of grid, } pGpgridqpx1q ´

pGpgridqpx2q}
2 “ 2´ 2 cospλ1 ´ λ2q stays as a constant in terms of φ. However, when φ varies from

´π
2 to π

2 , the actual spherical distance changes in a wide range, e.g., the actual distance between the
data pair at φ “ ´π

2 (South Pole) is 0 while the distance between the data pair at φ “ 0 (Equator),
gets the maximum value. This issue in measuring distances also has a negative impact on grid’s
ability to model distributions in areas with sparse sample points because it is hard to learn the true
spherical distance. We observe that grid reaches peak performance at much smaller rmin than that of
Sphere2Vec encodings (See Appendix 9.7). Moreover, sphereC outperforms grid near polar regions
where grid claims large distance though the spherical distance is small (A, B in Figure 1).

9.4 PROOF OF THEOREM 2

Proof. Since pGpsphereCqpxiq “ rsinpφiq, cospφiq cospλiq, cospφiq sinpλiqs for i “ 1, 2, the inner
product

x pGpsphereCqpx1q, pG
psphereCqpx2qy

“ sinpφ1q sinpφ2q ` cospφ1q cospλ1q cospφ2q cospλ2q ` cospφ1q sinpλ1q cospφ2q sinpλ2q

“ sinpφ1q sinpφ2q ` cospφ1q cospφ2q cospλ1 ´ λ2q

“ cosp∆δq “ cosp∆D{Rq,

(16)
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where ∆δ is the central angle between x1and x2, and the spherical law of cosines is applied to derive
the second last equality. So,

} pGpx1q ´ pGpx2q}
2

“ x pGpx1q ´ pGpx2q, pGpx1q ´ pGpx2qy

“ 2´ 2 cosp∆D{Rq

“ 4 sin2
p∆D{2Rq.

(17)

So } pGpx1q ´ pGpx2q} “ 2 sinp∆D{2Rq since ∆D{2R P r0, π2 s. By Taylor expansion, } pGpx1q ´

pGpx2q} « ∆D{R when ∆D is small w.r.t. R.

9.5 PROOF OF THEOREM 1

@˚ P tsphereC, sphereC`, sphereM, sphereM`u, Gp˚qpx1q “ Gp˚qpx2q implies

sinpφ1q “ sinpφ2q, (18)

cospφ1q sinpλ1q “ cospφ2q sinpλ2q, (19)

cospφ1q cospλ1q “ cospφ2q cospλ2q, (20)

from s “ 0 terms. Equation 18 implies φ1 “ φ2. If φ1 “ φ2 “ π{2, then both points are at North
Pole, λ1 “ λ2 equal to whatever longitude defined at North Pole. If φ1 “ φ2 “ ´π{2, it is similar
case at South Pole. When φ1 “ φ2 P p´

π
2 ,

π
2 q, cospφ1q “ cospφ2q ‰ 0. Then from Equation 19 and

20,

sinλ1 “ sinpλ2q, cospλ1q “ cospλ2q, (21)

which shows that λ1 “ λ2. In summary, x1 “ x2, so Gp˚q is injective.
If ˚ “ sphereDFS, Gp˚qpx1q “ Gp˚qpx2q implies

sinpφ1q “ sinpφ2q, cospφ1q “ cospφ2q, sinpλ1q “ sinpλ2q, cospλ1q “ cospλ2q, (22)

which proves x1 “ x2 and Gp˚q is injective directly.

9.6 BASELINES

In order to understand the advantage of sphereical-distance-kept location encoders, we compare
different versions of Sphere2Vec with multiple baselines:

• No Prior indicates a image classifier without using any location information, i.e., predicting
image labels purely based on image information P py|Iq.

• tile divides the study area A (e.g., the earth surface) into grids with equal intervals along
the latitude and longitude direction. Each grid has an embedding to be used as the encoding
for every location x fall into this grid. This is a common practice by many previous work
when dealing with coordinate data (Berg et al., 2014; Adams et al., 2015; Tang et al., 2015).

• wrap is a location encoder model introduced by Mac Aodha et al. (2019). Given a location
x “ pλ, φq, it uses a coordinate wrap mechanism to convert each dimension of x into

2 numbers - Gpwrapqpxq “ rsinpπ
λ

180˝
q, cospπ

λ

180˝
q, sinpπ

φ

90˝
q, cospπ

φ

90˝
qs. Then the

results are passed through a multi-layered fully connected neural network NNpwrapq
pq

which consists of an initial fully connected layer, followed by a series of h residual blocks,
each consisting of two fully connected layers (k hidden neurons) with a dropout layer in
between. We adopt the official code of Mac Aodha et al. (2019)7 for this implementation.

7http://www.vision.caltech.edu/~macaodha/projects/geopriors/
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• wrap ` ffn is similar to wrap except that it replaces NNpwrapq
pq with NNffnpq, a

simple learnable multi-layer perceptron with h hidden layers and k neurons per layer as
that Sphere2Vec has. wrap ` ffn is used to exclude the effect of different NNpq on the
performance of location encoders. In the following, all location encoder baselines use
NNffnpq as the learnable neural network component so that we can directly compare the
effect of different position encoding Gp¨q on the model performance.

• rbf randomly samples M points from the training dataset as RBF anchor points

{xanchorm ,m “ 1...M}, and use gaussian kernels exp
`

´
‖ xi ´ xanchorm ‖2

2σ2

˘

on each
anchor points, where σ is the kernel size. Each point pi has a M -dimension RBF feature
vector which is fed into NNffnpq to obtain the location embedding. This is a strong baseline
for representing floating number features in machine learning models.

• rff , i.e., Random Fourier Features (Rahimi & Recht, 2008; Nguyen et al., 2017), first en-
codes location x into aD dimension vector -Gprffqpxq “ ϕpxq “

?
2?
D
rcos pωTi x` biqs

D
i“1

where ωi
i.i.d
„ N p0, δ2Iq and bi is uniformly sampled from r0, 2πs. I is an identity matrix.

Each component of ϕpxq first projects x into a random direction ωi and makes a shift by bi.
Then it wraps this line onto the unit cirle in R2 with the cosine function. Rahimi & Recht
(2008) show that ϕpxqTϕpx1q is an unbiased estimate of the Gaussian kernal Kpx,x1q.
ϕpxq is consist of D different estimates to produce a further lower variance approximation.
To make rff comparable to other baselines, we feed ϕpxq into NNffnpq to produce the
final location embedding.

• grid is a multi-scale location encoder on 2D Euclidean space proposed by Mai et al. (2020b).
Here, we simply treat x “ pλ, φq as 2D coordinate. It first useGpgridqpxq shown in Equation
3 to encode location x into multi-scale representation and then feed it into NNffnpq to
produce the final location embedding.

• theory is another multi-scale location encoder on 2D Euclidean space proposed by Mai
et al. (2020b). It use a position encoder Gptheoryqpxq shown in Equation 23.. Here, xs “
rλs, φss “ r

λ
fs
, φfs s and a1 “ r1, 0s

T ,a2 “ r´1{2,
?

3{2sT ,a3 “ r´1{2,´
?

3{2sT P R2

are three unit vectors which orient 2π{3 apart from each other. The encoding results are
feei.nto NNffnpq to produce the final location embedding.

Gptheoryqpxq “
S´1
ď

s“0

3
ď

j“1

rsinpxxs,ajyq, cospxxs,ajyqs. (23)

9.7 Sphere2Vec HYPERPARAMETERS

Table 2 shows the best hyperparameter combinations of different Sphere2Vec models on different
image classification dataset. We use a smaller S for sphereDFS since it has OpS2q terms while
the other models have OpSq terms. sphereDFS with S “ 8 yield a similar number of terms
to the other models wth S “ 32 (See Table 3). Interestingly, all first four Sphere2Vec models
(sphereC, sphereC`, sphereM , and sphereM`) shows the best performance on all five datasets
with the same hyperparamter combinations. Note that compared with other datasets, iNat2017 and
iNat2018 are more up-to-date datasets with more training samples and better geographic coverage.
This indicates that the proposed 4 Sphere2Vec models show similar performance over different
hyperparameter combinations.

9.8 IMPACT OF MRR BY THE NUMBER OF SAMPLES AT DIFFERENT LATITUDE BANDS

See Figure 7

9.9 PREDICTED DISTRIBUTIONS INAT2018

We plot the predicted species distributions from different models at different geographic regions, and
compare them with the training sample locations of the corresponding species, see Figure 8. We can
see that compared with wrap˚ and grid, in each geographic region with sparse training samples and
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Table 2: The best hyperparameter combinations of Sphere2Vec models on different image classification datasets.
The learning rate α tends to be smaller for larger datasets; We fix the total number of frequencies S to be 8 for
sphereDFS and 32 for all others; the maximum scale rmax “ 1; rmin: the minimum scale; the number of
hidden layers NNpq is fixed to h “ 1; the number of neurons in NNpq is fixed to k “ 1024 except for the
smallest dataset.

Dataset α rmin k
BirdSnap 0.001 10´6 512
BirdSnap: 0.001 10´4 1024
NABirds: 0.001 10´4 1024
iNat2017 0.0001 10´2 1024
iNat2018 0.0005 10´3 1024

Table 3: Dimension of position encoding for different models in terms of total scales S

Model sphereC sphereC` sphereM sphereM` sphereDFS
Dimension 3S 6S 5S 8S 4S2 ` 4S

(a) iNat2017 (b) iNat2018

Figure 7: Impact of MRR by The Number of Samples at Different Latitude Bands.

the North Pole area, the spatial distributions produced by sphereC` are more compact while the
other two have over-generalization issue.

9.10 EMBEDDING CLUSTERING

We use the location encoder trained on iNat2017 or iNat2018 dataset to produce a location embedding
for the center of each small latitude-longitude cell. Then we do agglomerative clustering8 on all these
embeddings to produce a clustering map. Figure 9 and 10 show the clustering results for different
models with different hyperparameters on iNat2017 and iNat2018 dataset.

9.11 ABLATION STUDY ON DIFFERENT SELF-SUPERVISED LOSS

Both the BI (Equation 6) and MC (Equation 7) unsupervised loss have three loss component: in-
batch, negative location, SimCSE loss component. How does each of them contribute to the overall
unsupervised training? In order to answering this question, we do ablation studies on these two
objectives by using iNat2018 dataset as an example. Figure 11a and 11b illustrate the ablation study
results.

From Figure 11a, we see that as for BI, adding LneglocBI will significantly increase the model perfor-
mance especially when Γ is large. Adding LsimcseBI also improves the model performance when Γ is
small. As for the ablation study on MC loss as shown in Figure 11b, adding LneglocMC can significantly
increase the model performance and adding LsimcseMC can also make the performance slightly better.

8https://scikit-learn.org/stable/modules/generated/sklearn.cluster.
AgglomerativeClustering.html
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(a) Feather duster worm (b)wrap˚ (c) grid (d) sphereC`

(e) White-browed wagtail (f)wrap (g) grid (h) sphereC`

(i) Arctic fox (j)wrap (k) grid (l) sphereC`

(m) Scarlet leafwing (n)wrap (o) grid (p) sphereC`

(q) African pied hornbill (r)wrap (s) grid (t) sphereC`

(u) False Tiger Moth (v)wrap (w) grid (x) sphereC`

Figure 8: Compare the predicted distributions of example species from different models. The first figure of each
row marks the data points from iNat2018 training data.

9.12 EFFECTIVENESS OF UNSUPERVISED PRETRAINING ON FMOW DATASET

.
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(a)wrap˚ (b) grid prmin “ 10´2
q (c) grid prmin “ 10´6

q

(d) rbf pσ “ 1,m “ 200q (e) theory prmin “ 10´2
q (f) theory prmin “ 10´6

q

(g) sphereM prmin “ 10´1
q (h) sphereM prmin “ 10´2

q (i) sphereC prmin “ 10´2
q

(j) sphereC` prmin “ 10´2
q (k) sphereM` prmin “ 10´2

q (l) sphereDFS prmin “ 10´2
q

Figure 9: Embedding clusterings of iNat2017 models. (a) wrap˚ with 4 hidden ReLU layers of 256 neurons; (d)
rbf with the best kernel size σ “ 1 and number of anchor points m “ 200; (b)(c)(e)(f) are Space2Vec models
Mai et al. (2020b) with different min scale rmin “ t10´6, 10´2

u.a (g)-(l) are different Sphere2Vec models.b
a They share the same best hyperparameters: S “ 64, rmax “ 1, and 1 hidden ReLU layers of 512 neurons.

bThey share the same best hyperparameters: S “ 32, rmax “ 1, and 1 hidden ReLU layers of 1024 neurons.

(a)wrap˚ (b) grid prmin “ 10´3
q (c) grid prmin “ 10´6

q

(d) rbf pσ “ 1,m “ 200q (e) theory prmin “ 10´3
q (f) theory prmin “ 10´6

q

(g) sphereM prmin “ 10´1
q (h) sphereM prmin “ 10´3

q (i) sphereC prmin “ 10´3
q

(j) sphereC` prmin “ 10´3
q (k) sphereM` prmin “ 10´3

q (l) sphereDFS prmin “ 10´3
q

Figure 10: Embedding clusterings of iNat2018 models. (a) wrap˚ with 4 hidden ReLU layers of 256 neurons;
(d) rbf with the best kernel size σ “ 1 and number of anchor points m “ 200; (b)(c)(e)(f) are Space2Vec
models (Mai et al., 2020b) with different min scale rmin “ t10´6, 10´3

u.a (g)-(l) are Sphere2Vec models with
different min scale.b

a They share the same best hyperparameters: S “ 64, rmax “ 1, and 1 hidden ReLU layers of 512 neurons.
bThey share the same best hyperparameters: S “ 32, rmax “ 1, and 1 hidden ReLU layers of 1024 neurons.
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(a) Ablation Study on BI (b) Ablation Study on MC

Figure 11: Ablation study on different unsupervised learning setting on iNat2018 dataset. (a) Alblation study on
BI loss. BI´ Lbatch

BI ` Lnegloc
BI ` Lsimcse

BI indicates the full BI loss while BI´ Lbatch
BI ` Lnegloc

BI deletes the
SimCSE component. BI´ Lbatch

BI additionally deletes the negative location loss component. Comparing among
those three model settings can help us understand the effect of different loss components. Similarly, we do the
same ablation study on MC loss and show in (b).

Figure 12: Comparison among two models with identical model architecture but different training objectives
on fMoW dataset. Each point on each curve indicates a specific training process. We repeat each of them for
five times and show the standard deviations as shaded areas along the line. We can see that with statistically
significance, MC unsupervised loss is also effective in the few shot learning setting on the fMoW dataset.
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Table 4: Ablation Study on unsupervised loss LMC over iNat2018 dataset. We show the effect of different
hyperparematers of LMC on the performance of location encoders. We use sphereM` as an representative
location encoder ad use supervised training dataset ratio Γ as 0.5. lr indicates the learning rate used for
unsupervised LMC training. dropout indicates the dropout rate used by location encoder which will affect the
SimCSE loss as Gao et al. (2021) shows.

Γ epxq L lr α1 |N s| α2 τ0 τ1 τ2 dropout Top1

0.5 sphereM` LMC

0.001

1 1 1 1 1 1 0.5

71.31
0.0005 71.86
0.0002 71.78
0.00005 71.76
0.00001 71.83

0.000005 71.7
0.000001 71.69

0.0005

2

1 1 1 1 1 0.5

71.8
1 71.86

0.5 71.71
0 71.42

0.0005 1 1

2

1 1 1 0.5

71.71
1 71.86

0.5 71.81
0 71.82

0.0005 1 1 1

64

1 1 0.5

71.85
32 71.95
24 71.74
22 71.81
20 72.08
18 71.77
16 72.02
12 71.87
8 71.93
4 71.69
2 71.89
1 71.86

0.1 71.67
0.01 71.63

0.0005 1 1 1 20
2

1 0.5
71.85

1 72.08
0.5 71.76

0.0005 1 1 1 20 1
2

0.5
71.84

1 72.08
0.5 71.69

0.0005 1
1

1 20 1 1 0.5
72.08

4 71.84
8 71.69

0.0005 1 1 1 20 1 1

0.7 71.38
0.6 71.91
0.5 72.08
0.4 71.55
0.3 71.08
0.2 69.96
0.1 68.17.
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Table 5: Ablation Study on unsupervised loss LBI over iNat2018 dataset. We show the effect of different
hyperparematers of LBI on the performance of location encoders. We use sphereM` as an representative
location encoder ad use supervised training dataset ratio Γ as 0.5. lr indicates the learning rate used for
unsupervised LMC training.

Γ epxq L lr β1 |N s| β2 dropout Top1

0.5 sphereM` LBI

0.001

1 1 0 0.5

71.76
0.0008 71.87
0.0005 71.85
0.0002 72.02
0.0001 71.67

0.00001 71.62
0.000005 71.48
0.000002 71.56

0.0002

2

1 0.5

71.98
1 72.02

0.5 71.85
0 71.65

0.0002 1

1

0.5

72.02
4 71.82
8 71.94
16 71.84

0.0002 1 1

0.00

0.5

72.02
0.10 72.06
0.20 71.93
0.50 71.83
1.00 71.84.

Table 6: Ablation Study on unsupervised loss MSE over iNat2018 dataset. We show the effect of different
hyperparematers of MSE on the performance of location encoders. We use sphereM` as an representative
location encoder ad use supervised training dataset ratio Γ as 0.5. lr indicates the learning rate used for
unsupervised MSE training.

Γ epxq L lr dropout Top1

0.5 sphereM` MSE

0.001

0.5

71.05
0.0005 71.41
0.0001 71.55

0.00001 71.58
0.000005 71.69
0.000002 71.71
0.000001 71.6
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